首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the purpose of introducing nucleic acids into cells, cationic polymers have been steadily improved as gene carriers. This has resulted in improved polymer-based gene transfer formulations, termed polyplexes, which efficiently transfect cell cultures and also have shown encouraging gene transfer potential in in vivo administration. Targeted delivery to liver, lung, tumor, or other tissues has been achieved in experimental animals by localized or systemic application. Therapeutic effect has been demonstrated, although efficiencies are still too low to justify clinical use. The limitations of first-generation polymeric carriers (modest activity and significant toxicity) have been addressed by developments of new biodegradable polycations, incorporation of targeting and intracellular transport functions, and polyplex formulations that avoid unspecific adverse interactions with the host. A key future step will be the development of polyplexes into artificial viruses, with virus-like entry functions presented by smart polymers and polymer conjugates. These polymers have to sense their biologic microenvironment, respond in a more dynamic manner to alterations in pH, ionic or redox environment, undergoing programmed structural changes compatible with the different gene delivery steps.  相似文献   

2.
Purpose Knowledge about the uptake mechanism and subsequent intracellular routing of non-viral gene delivery systems is important for the development of more efficient carriers. In this study we compared two established cationic polymers pDMAEMA and PEI with regard to their transfection efficiency and mechanism of cellular uptake. Materials and Methods The effects of several inhibitors of particular cellular uptake routes on the uptake of polyplexes and subsequent gene expression in COS-7 cells were investigated using FACS and transfection. Moreover, cellular localization of fluorescently labeled polyplexes was assessed by spectral fluorescence microscopy. Results Both pDMAEMA- and PEI-complexed DNA showed colocalization with fluorescently-labeled transferrin and cholera toxin after internalization by COS-7 cells, which indicates uptake via the clathrin- and caveolae-dependent pathways. Blocking either routes of uptake with specific inhibitors only resulted in a marginal decrease in polyplex uptake, which may suggest that uptake routes of polyplexes are interchangeable. Despite the marginal effect of inhibitors on polyplex internalization, blocking the caveolae-mediated uptake route resulted in an almost complete loss of polyplex-mediated gene expression, whereas gene expression was not negatively affected by blocking the clathrin-dependent route of uptake. Conclusions These results show the importance of caveolae-mediated uptake for successful gene expression and have implications for the rational design of non-viral gene delivery systems.  相似文献   

3.
4.
Epidermal growth factor receptor (EGFR) targeted DNA polyplexes, containing polyethylenimine (PEI) conjugated with EGF protein as cell-binding ligand for endocytosis and polyethylene glycol (PEG) for masking the polyplex surface charge, mediated a 3- to 30-fold higher luciferase gene expression in HUH7, HepG2 and A431 cell transfections than analogous untargeted PEG–PEI polyplexes. Transfection levels can be further enhanced by treatment of cells with amphiphilic photosensitizers followed by illumination. In this process photosensitizers localized in membranes of endocytic vesicles are activated by light, resulting in the destruction of endocytic membrane structures and releasing co-endocytosed polyplexes into the cell cytosol. Photochemical enhanced gene expression was observed in all cell lines, with the magnitude of enhancement depending on the particular PEI polyplex formulation and cell line, ranging between 2- and 600-fold. Importantly, improved gene transfer retained EGF receptor specificity, as demonstrated by comparison with ligand-free polyplexes and by receptor antibody or ligand competition experiments. These results suggest that this combined procedure enables a dual mode of targeting polyplexes: biological targeting via EGFR interaction, combined with physical targeting with light to direct a photochemical delivery of therapeutic genes to a desired location.  相似文献   

5.
Epidermal growth factor receptor (EGFR) targeted DNA polyplexes, containing polyethylenimine (PEI) conjugated with EGF protein as cell-binding ligand for endocytosis and polyethylene glycol (PEG) for masking the polyplex surface charge, mediated a 3- to 30-fold higher luciferase gene expression in HUH7, HepG2 and A431 cell transfections than analogous untargeted PEG-PEI polyplexes. Transfection levels can be further enhanced by treatment of cells with amphiphilic photosensitizers followed by illumination. In this process photosensitizers localized in membranes of endocytic vesicles are activated by light, resulting in the destruction of endocytic membrane structures and releasing co-endocytosed polyplexes into the cell cytosol. Photochemical enhanced gene expression was observed in all cell lines, with the magnitude of enhancement depending on the particular PEI polyplex formulation and cell line, ranging between 2- and 600-fold. Importantly, improved gene transfer retained EGF receptor specificity, as demonstrated by comparison with ligand-free polyplexes and by receptor antibody or ligand competition experiments. These results suggest that this combined procedure enables a dual mode of targeting polyplexes: biological targeting via EGFR interaction, combined with physical targeting with light to direct a photochemical delivery of therapeutic genes to a desired location.  相似文献   

6.
Solid tumors form a heterogeneous group of diseases, although common features such as hyperproliferation, overexpression of certain growth factor receptors and deregulated vessel formation including leaky vasculature give the opportunity to target macromolecular drug and nucleic acid carriers to tumor tissue. Similar to other macromolecular drugs, nucleic acid carriers have to be designed to enable tumor targeting after systemic injection. Chemical modification of nucleic acids makes them resistant towards enzymatic degradation. Cationic lipids or polycations condense nucleic acids into small, virus-like structures and the surface modification with hydrophilic polymers allows passive accumulation in tumor tissue; tumor cell binding ligands allow cellular targeting. To avoid toxic side effects, biodegradable and biocompatible carriers were designed. The design of thermoresponsive gene carriers allowed their selective tumor accumulation by locoregional hyperthermia. As a therapeutic concept, tumor-specific delivery of antitumoral RNA was realized in an orthotopic brain tumor model. The combination of gene- and radio-therapy enabled selective accumulation of radionuclides in tumors and boosted antitumoral effects. Hence, combining a smart delivery concept for nucleic acids with a suitable therapeutic strategy will allow successful treatment of otherwise incurable malignant diseases.  相似文献   

7.
Over the past decade, significant research has been done in the area of polymer-mediated gene delivery. Synthesis of new polymers and modifications to existing polymers has resulted in polyplexes with improved in vitro and in vivo transfection efficiencies. Targeting has been an important aspect of this research, and various strategies for obtaining selective and enhanced gene delivery to the target site have been evaluated. This review covers the different aspects involved in polyplex targeting. Development of targeted polyplexes involves a careful consideration of the target site, the targeting ligand and the physicochemical properties of the polyplex itself. The need to redirect the polyplexes by using the 'shield and target' approach by reducing nonspecific interactions with negatively charged components, while conferring specificity by incorporating targeting ligands, is discussed. Basic chemistry involved in modifying polymers is covered and examples of targeting strategies used for tissue-specific gene delivery are discussed. Targeting is also discussed in the broader context of developing safe and effective polymeric vectors for in vivo gene delivery. Maximum benefit of targeting can be obtained when it is used as part of a multi-functional complex containing elements designed to improve gene delivery and reduce overall toxicity of the polyplex.  相似文献   

8.
Over the past decade, significant research has been done in the area of polymer-mediated gene delivery. Synthesis of new polymers and modifications to existing polymers has resulted in polyplexes with improved invitro and invivo transfection efficiencies. Targeting has been an important aspect of this research, and various strategies for obtaining selective and enhanced gene delivery to the target site have been evaluated. This review covers the different aspects involved in polyplex targeting. Development of targeted polyplexes involves a careful consideration of the target site, the targeting ligand and the physicochemical properties of the polyplex itself. The need to redirect the polyplexes by using the ‘shield and target’ approach by reducing nonspecific interactions with negatively charged components, while conferring specificity by incorporating targeting ligands, is discussed. Basic chemistry involved in modifying polymers is covered and examples of targeting strategies used for tissue-specific gene delivery are discussed. Targeting is also discussed in the broader context of developing safe and effective polymeric vectors for invivo gene delivery. Maximum benefit of targeting can be obtained when it is used as part of a multi-functional complex containing elements designed to improve gene delivery and reduce overall toxicity of the polyplex.

Keywords: gene delivery, polymers, targeted delivery  相似文献   

9.
Polyethylenimine-based non-viral gene delivery systems.   总被引:24,自引:0,他引:24  
Gene therapy has become a promising strategy for the treatment of many inheritable or acquired diseases that are currently considered incurable. Non-viral vectors have attracted great interest, as they are simple to prepare, rather stable, easy to modify and relatively safe, compared to viral vectors. Unfortunately, they also suffer from a lower transfection efficiency, requiring additional effort for their optimization. The cationic polymer polyethylenimine (PEI) has been widely used for non-viral transfection in vitro and in vivo and has an advantage over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. Here, we give some insight into strategies developed for PEI-based non-viral vectors to overcome intracellular obstacles, including the improvement of methods for polyplex preparation and the incorporation of endosomolytic agents or nuclear localization signals. In recent years, PEI-based non-viral vectors have been locally or systemically delivered, mostly to target gene delivery to tumor tissue, the lung or liver. This requires strategies to efficiently shield transfection polyplexes against non-specific interaction with blood components, extracellular matrix and untargeted cells and the attachment of targeting moieties, which allow for the directed gene delivery to the desired cell or tissue. In this context, materials, facilitating the design of novel PEI-based non-viral vectors are described.  相似文献   

10.
With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.  相似文献   

11.
Chitosan (CS)-based polyplexes are produced by spontaneous electrostatic association with nucleic acids using CS in excess. Interactions of positively charged polyplexes, and the unbound CS, with negatively charged blood components limit the applicable dosage of such polymeric nanoparticles (NPs) and development of formulations with improved hemocompatibility and transfection efficiency is needed. Here, we introduce a strategy based on Tangential Flow Filtration (TFF) to remove unbound CS, concentrate polyplexes and subsequently coat with hyaluronic acid (HA) to improve hemocompatibility and bioactivity. Optimal TFF conditions were established. A library of HA with different molecular weights and degrees of sulfation was used at different carboxyl + sulfate to phosphate ratios for polyplex coating, bioactivity and hemocompatibility assessment. A systematic optimization of TFF conditions allowed for purification of polylpexes from excess unbound CS and subsequent coating with HA. Except for high molecular weight HA, for which macroscopic aggregation was observed, both sulfated and non-sulfated HAs resulted in small sized and homogenous coated complexes. However, sulfated HAs displayed higher stability during the second filtration process indicating their stronger binding affinity to polyplexes. Finally, we found that low molecular weight HA-coated polyplexes have equivalent silencing efficiency in vitro and improved hemocompatibility compared to uncoated polyplexes.  相似文献   

12.
Despite their relatively lower efficiency, nonviral approaches are emerging as safer alternatives in gene therapy to viral vectors. Delivery of nucleic acids to the target site is an important factor for effective gene expression (plasmid DNA) or knockdown (siRNA) with minimal side effects. Direct deposition at the target site by physical methods, including ultrasound, electroporation and gene gun, is one approach for local delivery. For less accessible sites, the development of carriers that can home into the target tissue is required. Cationic peptides, lipoplexes, polyplexes and nanoplexes have been used as carriers for delivery of nucleic acids. Targeting ligands, such as cell targeting peptides, have also been applied to decorate delivery vehicles in order to enhance their efficacy. This review focuses on delivery strategies and recent progress in non-viral carriers and their modifications to improve their performance in targeting and transfection.  相似文献   

13.
In terms of active targeting by immunoliposomes, two anatomical compartments are considerable for targeting sites. One is located a readily accessible site in intravascular, and another is a much less accessible target site located in the extravascular. However, it was made clear that the active targeting with immunoliposomes is determined by two kinetically competing processes, such as binding to the target site and uptake by the RES. To overcome these contradictions, we have designed a new type of long-circulating immunoliposome, which was PEG-immunoliposome attached antibodies at the distal end of PEG chain, so called the pendant type immunoliposome. The pendant type immunoliposome showed much higher targetability than the ordinary immunoliposomes to both targeting sites of lung endothelial cells and solid tumor tissue. This is due to the free PEG chains (not linked to the antibody) effectively avoiding the RES uptake of liposomes, resulting in elevated the blood concentration and enhanced the target binding of immunoliposomes. The presence of free PEG does not interfere with the binding of the terminally linked antibody to the antigen. For targeting to the vascular endothelial surface in the lung, 34A antibody, which is highly specific to mouse pulmonary endothelial cells, was conjugated to make the pendant type immunoliposomes (34A-PEG-ILP). 34A-PFG-ILP showed significantly higher targeting degree than the ordinary type of immunoliposomes. For targeting to the solid tumor tissue, Fab' fragment of 21B2 antibody which is anti-human CFA and transferrin (TF) were used. Both pendant type immunoliposomes (Fab'-PFG-ILP and TF-PEG-ILP) showed the low RES uptake and the long circulation time, and resulted in enhanced accumulation of the liposomes in the solid tumor. TF-PEG-ILP was internalized into tumor cells with receptor mediated endocytosis, after extravasation into tumor tissue. The pendant type immunoliposome can escape from the gaps between adjacent endothelial cells and openings at the vessel termini during tumor angiogenesis by passive convective transport much rather than ligand directed targeting. Active targeting to tumor tissue with the pendant type immunoliposome is particularly important for many highly toxic anticancer drugs for cancer chemotherapy. An ultimate goal of pendant type immunoliposome is the incorporation of a fusogenic molecule that would induce fusion of liposome following their binding to the target cells or their internalization by endocytosis. Such liposomal formulations should be useful for endocytotic internalization of plasmid DNA and other bioactive materials.  相似文献   

14.
The potential of gene therapy to treat cancer is currently limited by the low expression of therapeutic genes in the tumors. Because amino acids are known to have excellent properties in cell penetration and gene expression regulation, we investigated if the conjugation of arginine (Arg), lysine (Lys) and leucine (Leu) onto the surface of the gene delivery system polyethylenimine (PEI) could lead to an improved gene expression in tumors. The intravenous administration of Arg-, Lys- and Leu-bearing PEI polyplexes led to a significant increase of gene expression in the tumor, with a β-galactosidase expression amount at least threefold higher than that obtained after treatment with unmodified PEI polyplex. The three amino acid-bearing PEI polyplexes led to similar levels of gene expression in the tumor. The treatments were well tolerated by the mice. Arg-, Lys- and Leu-bearing PEI polyplexes are therefore highly promising gene delivery systems for cancer therapy.

From the Clinical Editor

In this paper, amino-acid based modulations of gene delivery enhancement are reported. Intravenous administration of Arg-, Lys- and Leu-bearing polyethylenimine polyplexes led to a significant increase of gene expression in the studied tumor model, which may enable the development of more efficient gene delivery strategies for future clinical applications.  相似文献   

15.
We have evaluated the capacity of the cell-binding heptapeptide SIGYPLP to enhance transgene expression using non-viral and viral gene delivery vectors. Targeted polyplex based vectors showed good levels of DNA uptake in freshly isolated human umbilical vein endothelial cells (HUVECs) compared to untargeted controls, whilst displaying only modest increases in reporter gene activity. The targeted polyplexes showed reduced levels of DNA uptake in cells of a none endothelial origin although they mediated higher levels of transgene expression. The enhanced efficiency of transgene expression may relate to the more rapid rate of cell division. However, since in vivo application of polyplexes is compromised by instability to serum proteins, serum-resistant polyplexes (surface modified with multivalent reactive hydrophilic polymers based on poly[N-(2-hydroxypropyl)methacrylamide] (pHPMA)) were also evaluated for their ability to mediate transgene expression. Surface modification of polyplexes with pHPMA ablates non-specific cell entry, reducing levels of transgene expression, whilst the incorporation of the SIGYPLP peptide into the hydrophilic polymer resulted in restored transgene expression in all formulations tested. The technology of surface modification using pHPMA can also be applied in the context of viruses, masking receptor-binding epitopes and enabling the linkage of novel cell targeting ligands, enabling construction of a virus with receptor-specific infectivity. Retargeting of adenovirus based vectors using the same polymer-peptide construct enhanced levels of transgene expression in HUVECs to greater than 15 times that observed using parental (unmodified) virus, whilst restoring levels of transgene expression in non-endothelial cell lines tested. The use of constructs based on conjugates between hydrophilic polymers and small receptor-binding oligopeptides as agents for retargeting viral or non-viral vectors to cellular receptors represents a simple alternative to the use of antibodies as targeting ligands for cell specific gene delivery.  相似文献   

16.
Polycation gene delivery systems: escape from endosomes to cytosol   总被引:5,自引:0,他引:5  
Clinical success of gene therapy based on oligonucleotides (ODNs), ribozymes, RNA and DNA will be greatly dependent on the availability of effective delivery systems. Polycations have gained increasing attention as a non-viral gene delivery vector in the past decades. Significant progress has been made in understanding complex formation between polycations and nucleic acids, entry of the complex into the cells and subsequent entry into the nucleus. Sophisticated molecular architectures of cationic polymers have made the vectors more stable and less susceptible to binding by enzymes or proteins. Incorporation of specific ligands to polycations has resulted in more cell-specific uptake by receptor-mediated mechanisms. However, there are still other barriers limiting the transfection efficiency of polycation gene delivery systems. There is a consensus that polycation-DNA complexes (polyplexes) enter cells via the endocytotic pathway. It is not clearly understood, however, how the polyplexes escape (if they do) from endosomes, how DNA is released from the polyplexes or how the released DNA is expressed. The primary focus of this article is to review various polycation gene delivery systems, which are designed to translocate DNA from endosomes into cytosol. Many polycation gene delivery systems have tried to mimic the mechanisms that viruses use for the endosomal escape. Polycation gene delivery systems are usually coupled with synthetic amphipathic peptides mimicking viral fusogenic peptides, histidine-based gene delivery systems for pH-responsive endosomal escape, polycations with intrinsic endosomolytic activity by the proton sponge mechanism and polyanions to mimic the anionic amphiphilic peptides.  相似文献   

17.
We have evaluated the capacity of the cell-binding heptapeptide SIGYPLP to enhance transgene expression using non-viral and viral gene delivery vectors. Targeted polyplex based vectors showed good levels of DNA uptake in freshly isolated human umbilical vein endothelial cells (HUVECs) compared to untargeted controls, whilst displaying only modest increases in reporter gene activity. The targeted polyplexes showed reduced levels of DNA uptake in cells of a none endothelial origin although they mediated higher levels of transgene expression. The enhanced efficiency of transgene expression may relate to the more rapid rate of cell division. However, since in vivo application of polyplexes is compromised by instability to serum proteins, serum-resistant polyplexes (surface modified with multivalent reactive hydrophilic polymers based on poly[N-(2-hydroxypropyl)methacrylamide] (pHPMA)) were also evaluated for their ability to mediate transgene expression. Surface modification of polyplexes with pHPMA ablates non-specific cell entry, reducing levels of transgene expression, whilst the incorporation of the SIGYPLP peptide into the hydrophilic polymer resulted in restored transgene expression in all formulations tested. The technology of surface modification using pHPMA can also be applied in the context of viruses, masking receptor-binding epitopes and enabling the linkage of novel cell targeting ligands, enabling construction of a virus with receptor-specific infectivity. Retargeting of adenovirus based vectors using the same polymer-peptide construct enhanced levels of transgene expression in HUVECs to greater than 15 times that observed using parental (unmodified) virus, whilst restoring levels of transgene expression in non-endothelial cell lines tested. The use of constructs based on conjugates between hydrophilic polymers and small receptor-binding oligopeptides as agents for retargeting viral or non-viral vectors to cellular receptors represents a simple alternative to the use of antibodies as targeting ligands for cell specific gene delivery.  相似文献   

18.
Lee D  Kim D  Mok H  Jeong JH  Choi D  Kim SH 《Pharmaceutical research》2012,29(8):2213-2224

Purpose

Bioreducible crosslinked polyplexes were prepared via disulfide bond formation after siRNA condensation with polyethylenimine-modified by deoxycholic acid (PEI-DA) to stabilize polyplex structure in an extracellular environment and to promote transfection efficiency in human smooth muscle cells (hSMCs).

Methods

The PEI-DA/siRNA polyplexes were further modified by crosslinking the primary amines of PEI with thiol-cleavable crosslinkers. The effect of disulfide crosslinked PEI-DA/siRNA (Cr PEI-DA/siRNA) polyplexes on target gene silencing was investigated by transfecting hSMCs with matrix metalloproteinase-2 (MMP-2) siRNA under serum conditions. The MMP-2 levels in the conditioned medium were examined using gelatin zymography.

Results

The Cr PEI-DA/siRNA polyplexes showed increased stability against heparin exchange reactions, while their disulfide linkages were successfully cleaved under reducing conditions. The polyplex crosslinking reaction led to a slight decrease in MMP-2 gene silencing activity in hSMCs due to the insufficient redox potential. However, the gene silencing efficiency of the Cr PEI-DA/siRNA polypexes was gradually improved in response to increasing intracellular reduction potential. The increased serum stability of the Cr PEI-DA/siRNA polyplexes resulted in significant enhancement of the intracellular delivery efficiency especially under serum conditions.

Conclusion

The Cr PEI-DA/siRNA polyplex formulation may be a promising siRNA delivery system for the treatment of incurable genetic disorders.  相似文献   

19.
20.
The transfer of genetic material into cells using nonviral vectors offers unique potential for therapeutics; however, the efficacy of delivery depends upon a poorly understood, multistep pathway, limiting the prospects for successful gene delivery. Mechanistic insight into DNA association and release has been hampered by a lack of atomic resolution structural and dynamic information for DNA-polymer complexes (polyplexes). Here, we report a dendrimer-based polyplex system containing poly(ethyleneglycol) (PEG) arms that is suitable for atomic-level characterization by solution NMR spectroscopy. NMR chemical shift, line width, and proton transverse relaxation rate measurements reveal that free and dendrimer-bound polyplex DNA exchange rapidly relative to the NMR time scale (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号