首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
窄带野胶片检查在多叶准直器质量保证中作用探讨   总被引:1,自引:2,他引:1  
目的 探讨窄带野曝光的胶片在检测多叶准直器叶片位置误差中的作用和多叶准直器的质量保证。方法  (1)故意造成某些叶片含有不同大小的误差 ,确定肉眼可发现的误差最小值 ;(2 )改变源 片距离和曝光剂量 ,进一步突出所能发现的误差 ,确定最佳曝光条件 ;(3)随机产生含有不同大小误差的叶片序列文件 ,在最佳条件下每间隔 2cm曝光 ,冲洗 ,盲法观察 ,确定胶片检查叶片位置误差的敏感性和特异性 ;(4)通过检查叶片位置误差间接地检查马达状态和托架的稳定性。结果 肉眼检查时 ,窄带野曝光的KodakX OMAT V胶片可以发现小至 0 .2mm的叶片位置误差 ,拟定最佳曝光条件为源 片距离 80cm、直线加速器 6MVX线曝光机器跳数 2 5MU。以是否等于 1mm为判断标准检查叶片位置误差的灵敏性为 73.4 % ,特异性为 96 .4 %。检查未发现 >0 .2mm的叶片位置误差 ,即未发现马达故障或托架不稳定的现象。结论 窄带野曝光的胶片检查多叶准直器叶片位置误差具有较高的准确性 ,建议采用研究拟定的最佳曝光条件定期检查多叶准直器叶片位置误差 ,以此间接检查马达状态和托架稳定性。  相似文献   

2.
康德华  邓小武  黄劭敏 《癌症》2009,28(7):771-774
背景与目的:加速器的多叶准直器叶片到位精度误差会对调强放射治疗产生剂量分布偏差。剂量偏差将导致治疗失败或者是严重的器官损伤。本研究将通过简单的方法实现多叶准直器叶片到位精度的质量控制和质量保证。方法:使用医科达加速器和医科达iViewGT非晶硅平板电子射野影像系统(electronic portal imaging devices,EPIDs),使用8MV光子线,获得计划系统设计好的射野图形.利用软件测量叶片的实际到位坐标,同DicomRT文件中的坐标作比较,获得他们之间的误差,根据误差的方向和大小调整叶片的到位精度。结果:可以控制叶片的到位精度在1mm之内。结论:利用EPIDs做叶片到位精度的质量控制,方法简单快速可靠。  相似文献   

3.
The purpose of this study was to conduct a measurement and treatment planning study on the dosimetric and delivery advantages of a new 160-leaf multileaf collimator (MLC). Recently, a new 160-leaf multileaf collimator (Siemens 160 MLC(TM)) was introduced. The 160-MLC is a single focused design that consists of 160-leafs (80 pairs), each 95 mm thick with a projected leaf width of 5 mm at the machine isocenter. Compared to its double focused predecessors, the 82-leaf MLC (Siemens OPTIVIEW((tm)) MLC) and 58-leaf MLC (Siemens 3-D MLC((tm))), the 160-MLC has leaf widths of half the size. The most notable difference is the new slanted leaf design that replaced the tongue and groove system and allows for complete interdigitation. A systematic study that compared the dosimetric and delivery differences among the 160-MLC, 58-MLC, and divergent Cerrobend blocks was performed. Dosimetric conformity for each collimator type was determined by conforming each to circular targets of various diameters. The effective penumbra for each collimator type was calculated by conforming each, at various collimator angles, to a square stationary target. The quality of 3D conformal radiotherapy treatment (3D-CRT) plans and the quality intensity modulated radiation treatment (IMRT) plans were respectively compared with each collimator type. The 160-MLC was found to have improved dosimetric conformity over the 58-MLC. The divergent Cerrobend block showed marginal dosimetric conformity improvement over the 160-LMC. Overall, the 160-MLC had a 45% and 29% reduction in the 20/80 and 30/90 effective penumbra over the 58-MLC, respectively, while exhibiting only a slightly larger effective penumbra over the divergent Cerrobend block. Comparing 3D-CRT plans generated for small lesions of the head and neck, the V100 for the PTV of the plans generated with the Cerrobend blocks, the 58-MLC, and the 160-MLC were 97.78%, 92.51%, and 99.18%, respectively, while with regards to the OARs, the three produced similar DVHs. IMRT plans generated with the 160-MLC were found to significantly reduce the total delivered monitor units by up to 14.7% and the number of segments by as much as 10.7% compared to the 58-MLC. The average delivery time for the direct aperture optimized (DAO) IMRT plans generated with the 160-MLC was approximately 5 minutes. Overall, compared to the 58-MLC, the new 160-MLC was found to improve dosimetric conformity and IMRT delivery efficiency.  相似文献   

4.
PURPOSE: To examine the impact of computerized record and verify (R&V) systems on types of radiotherapeutic error. MATERIALS AND METHODS: Radiation therapy treatment errors reported by therapists at the University of Utah between July 1, 1999 and June 30, 2000 were retrospectively reviewed. RESULTS: During a 1-year period in which 22,542 external beam radiation therapy treatments were administered, 38 treatment errors (representing 0.17% of external beam treatments administered during this period) were identified and reviewed. Nine cases (0.04% of treatments) representing four types of record and verify (R&V)-related errors were identified, in which the department's R&V system played a contributory role in the treatment error. CONCLUSIONS: The common denominator among these R&V-related errors was excessive reliance upon the computer system by therapists. R&V systems eliminate some, but not all, pathways of radiotherapeutic error. Although R&V systems have assumed a crucial role in the precise and reproducible delivery of increasingly complex radiation therapy treatments, their inability to eradicate all radiotherapeutic errors coupled with their parallel ability to facilitate certain mistakes mandates vigilance on the part of the radiation therapy team. Radiation therapy treatment procedures must preserve careful oversight of R&V functions to minimize prospects for treatment error.  相似文献   

5.
Objective To investigate the impacts of gantry rotation angle errors, monitor unit (MU) errors, collimator and multi-leaf collimator (MLC) position errors upon the γ passing rate of dose verification in volumetric modulated arc therapy (VMAT). Methods Ten patients with rectal cancer and 10 patients with uterine tumors were selected. The operating errors of accelerator parameters were introduced during the VMAT execution. By comparing the γ passing rates during dose verification between the simulating and original plans, the impact and sensitivity of the operating errors of each accelerator parameter on γ passing rate were analyzed. Results When the γ criteria were set as 3%/3mm, 3%/2mm and 2%/2mm, the γ passing rate decreasing gradient was less than 7.0% after the introduction of gantry rotation angle, MU and collimator position errors, respectively. However, after the reverse, opposite, and co-directional motion errors of the MLC blades on both sides were introduced,the γ passing rate decreasing was less than 19.13 %, 18.53%, 0.19 %; 19.87%, 20.01%, 0.42 % and 23.11%, 23.45%,0.65 % for absolute dose verification, respectively. Conclusion During VMAT, the reverse and opposite motion errors of MLC blades exert more significant effect on the γ passing rate compared with the gantry rotation angle errors, MU errors, collimator position errors and co-directional motion errors of the MLC blades. When the γ criteria of 3%/3mm, 3%/2mm and 2%/2mm are adopted, the impact of accelerator operating errors upon the γ passing rate is strengthened in sequence. Therefore, when performing dose verification for a specific patient, appropriate γ criteria should be chosen and absolute dose verification should be taken as the reference index to evaluate the consistency between the calculated and measured dose distribution.  相似文献   

6.
目的 研究加速器机架旋转角度、机器跳数(MU)、准直器到位和多叶准直器(MLC)叶片到位等误差对容积旋转调强放疗(VMAT)计划剂量验证γ通过率的影响。方法 选取已行VMAT的直肠癌和宫颈癌各10例,分别引入加速器各参数运行误差。通过比较引入误差计划与临床计划的剂量验证γ通过率,分析各参数误差对γ通过率的影响及其敏感性。结果 评价指标取3%/3mm、3%/2mm和2%/2mm时,引入机架旋转误差、机器跳数误差和准直器到位误差后的直肠癌和宫颈癌计划相比临床计划的剂量验证γ通过率变化均<7.0%,引入两侧MLC叶片反向、相向、同向运动误差后,每毫米误差导致绝对剂量验证γ通过率变化分别<19.13%、18.53%、0.19%,19.87%、20.01%、0.42%和23.11%、23.45%、0.65%。结论 执行VMAT计划时,相比机架旋转角度误差、机器跳数误差、准直器到位误差和MLC叶片同向偏移误差,MLC叶片反向或相向运动误差对绝对剂量验证γ通过率的影响更加明显,评价指标取3%/3mm、3%/2mm和2%/2mm时绝对剂量验证γ通过率受加速器各参数误差影响依次递增。执行特定患者剂量验证时,应适当使用评价指标并以绝对剂量验证γ通过率为评估计算和测量剂量分布一致性的参考指标。  相似文献   

7.
目的:采用直线加速器日志文件进行容积调强三维剂量验证的研究,分析射野参数误差对临床剂量的影响。方法:对佛山市第一人民医院2013-01—2013-12收治的10例直肠癌患者设计容积调强计划。利用自编程序从日志文件中读取实际治疗时的机架角度、多叶准直器(multileaf collimator,MLC)叶片位置以及机器跳数(monitorunit,MU),比较射野参数的误差。使用实际射野参数替代原治疗计划的射野参数,在cT图像上重新进行三维剂量重建。比较重建计划与治疗计划,分析射野参数误差对靶区和危及器官三维剂量分布的影响。结果:实际治疗与治疗计划的机架角偏差〈1。,最大机器跳数的偏差〈0.2MU,叶片位置最大误差〈2mm,大部分误差为0.05~1mm。叶片位置误差对计划靶区(planning target volume,PTV)处方剂量所包含的靶区(V100)影响较大,差异有统计学意义,P=0.006;机架角偏差和机器跳数偏差对PTV(V1。)影响较小,差异无统计学意义,P〉0.05;各个射野参数对小肠V40(40Gy剂量所包含的体积)、膀胱V40和股骨头V30(30Gy剂量所包含的体积)的影响较小,差异无统计学意义,P〉0.05。结论:利用加速器日志文件可以进行容积调强三维剂量验证方面的研究,叶片位置误差对计划靶区的剂量影响较大,机架角和机器跳数误差对计划靶区剂量的影响较小,各个射野参数对危及器官剂量的影响不大。  相似文献   

8.
外挂式多叶准直器对准直器散射因子的影响   总被引:1,自引:0,他引:1  
目的 用电离室测量外挂式多叶准直器 (MLC)对准直器散射因子 (Sc)的影响 ,并用双源模型对结果进行分析。方法 测量MLC形成的 2个不规则射野序列 ,并与等效方野的测量值进行了比较 ,应用双源模型得出MLC对Sc产生影响时叶片所处的位置公式。结果 当MLC叶片位置离中心足够近时 ,叶片将对准直器散射因子产生影响 ;产生影响时叶片位置计算值与测量结果相符。结论 基于双源模型的MLC位置公式较好地描述了当外挂式准直器 (MLC或铅块 )形成的射野小于公式给出值时 ,准直器散射因子将受其影响。  相似文献   

9.
目的 模拟机器跳数(MU)和多叶准直器(MLC)叶片位置在计划执行时可能产生的系统误差,检测并分析鼻咽癌静态IMRT和VMAT计划对上述误差的剂量学敏感度。方法 选取5例已行IMRT的鼻咽癌计划,在相同物理参数的基础上重新制定VMAT计划,修改两组计划的MU,引入1.25%、2.50%、5.00%系统误差;同时修改计划的MLC原始文件,引入0.25、0.50、1.00、1.50、2.00 mm系统误差,模拟治疗计划执行过程中可能出现的叶片不到位情况。其中MLC系统误差的运动方式为两侧MLC叶片朝同个方向运动和两侧MLC叶片朝相反方向运动(射野外扩或内收)。采用线性回归分析法计算并比较IMRT和VMAT计划相对于MU和MLC系统误差的剂量学敏感度差异。结果 随着MU系统误差增加,IMRT和VMAT计划的靶区和OAR受量呈线性增加,且满足R2=0.992~1(P<0.05);对于MLC的误差,IMRT和VMAT计划的靶区和OAR相应剂量学参数的偏移误差引起的敏感度最小,分别为-0.26%/mm和-0.65%/mm;其次是外扩误差4.87%/mm和8.68%/mm,最大的是内收误差-6.04%/mm和-9.88%/mm。此外,3种类型误差中VMAT计划由误差引起的剂量学敏感度大于IMRT计划。结论 MU和MLC的系统误差对鼻咽癌IMRT计划的剂量分布有显著影响,尤其是VMAT计划。做好加速器MLC的日常QA工作对更好、更精确地实施放疗计划有着重要的意义。  相似文献   

10.
Purpose: After acquiring 4 years of experience with Dynamic Wedge, a software-driven one-dimensional (1D) compensation system, we implemented a new software version called Enhanced Dynamic Wedge (EDW). The EDW allows larger (30 cm) and asymmetric field sizes and additional angles for wedged fields. We implemented this software on four similar dual-energy accelerators that also possess upper and lower physical wedge sets. Our goal was to implement EDW with one common wedge factor (WF) table and one set of treatment-planning files.Methods and Materials: We measured WFs with an ionization chamber and isodose profiles with both film and a diode array. We used a calculation scheme that requires only entry of the wedge angle and fixed jaw value. Filters for computerized treatment planning were configured for each wedge angle. We also examined to what degree the multileaf collimation (MLC) orientation, which is orthogonal to the EDW direction, was compromised for specific treatment sites. As a comparative test, we examined the dosimetric consistency for the 8 sets of physical wedges on the four machines. Finally, we updated our DW quality assurance program for EDW.Results: The measured EDW WF was common for all four machines to within ± 1.5% and the calculation scheme held to within 1.5%. The EDW isodoses were consistent among the machines as measured by film and diode array. The treatment-planning filters provided computed isodose profiles that were nearly identical to measured profiles. Regarding MLC orientation, we found that the collimator angle needed for EDW did not compromise isodose distributions, as apparent in measured isodoses and calculated dose–volume histograms. The consistency of the physical wedges did not fare as well. Two of the lower wedge sets had Wfs and profiles different (>3%) from the other wedge sets.Conclusions: We have successfully implemented EDW on four machines using only one WF table and one set of treatment-planning filters. The EDW provides for improved treatment techniques for particular sites due to the large field sizes and additional angles available. Daily treatment efficiency has increased because of the remote capability provided by EDW.  相似文献   

11.
PURPOSE: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculations were analyzed. RESULTS: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. CONCLUSIONS: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.  相似文献   

12.

Background

The purpose of this study is to implement an electronic method to perform and analyze intensity-modulated radiation therapy quality assurance (IMRT QA) using an aSi megavoltage electronic portal imaging device in a network comprised of independent treatment planning, record and verify (R&V), and delivery systems.

Methods

A verification plan was generated in the treatment planning system using the actual treatment plan of a patient. After exporting the treatment fields to the R&V system, the fields were delivered in QA mode with the aSi imager deployed. The resulting dosimetric images are automatically stored in a DICOM-RT format in the delivery system treatment console computer. The relative dose density images are subsequently pushed to the R&V system. The absolute dose images are then transferred electronically from the treatment console computer to the treatment planning system and imported into the verification plan in the dosimetry work space for further analysis. Screen shots of the gamma evaluation and isodose comparison are imported into the R&V system as an electronic file (e.g. PDF) to be reviewed prior to initiation of patient treatment. A relative dose image predicted by the treatment planning system can also be sent to the R&V system to be compared with the relative dose density image measured with the aSi imager.

Results

Our department does not have integrated planning, R&V, and delivery systems. In spite of this, we are able to fully implement a paperless and filmless IMRT QA process, allowing subsequent analysis and approval to be more efficient, while the QA document is directly attached to its specific patient chart in the R&V system in electronic form. The calculated and measured relative dose images can be compared electronically within the R&V system to analyze the density differences and ensure proper dose delivery to patients.

Conclusions

In the absence of an integrated planning, verifying, and delivery system, we have shown that it is nevertheless possible to develop a completely electronic IMRT QA process.  相似文献   

13.

Background and purpose

Multi-leaf collimator (MLC) positional errors occur during intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) deliveries. The impact of such errors has been evaluated for IMRT but not VMAT. The purpose of this work is to understand how random and systematic VMAT MLC positional errors affect the patient dose distribution.

Materials and methods

Eight head and neck single arc (360°) VMAT treatment plans were created. Random and two types of systematic MLC errors were simulated for error magnitudes of 0.25, 0.5, 1, 2 and 5 mm. The two types of systematic MLC errors were: (1) MLC banks are shifted in the same direction (left or right) and (2) MLC banks are shifted in opposing directions resulting in smaller or larger field shapes. The MLC errors were simulated, for all control points, on both banks of active MLC leaves only.

Results

There is a linear correlation of MLC errors with gEUD for all error types. The gEUD dose sensitivities with MLC error for the PTV70 were −0.2, −0.9, −2.8 and 1.9 Gy/mm for random, systematic shift, systematic close and systematic open MLC errors, respectively. The sensitivity of VMAT plans to MLC positional errors was similar to those of IMRT plans with less than 50 segments but much less than those created for a step and shoot with more than 50 segments or sliding-window delivery technique. To maintain the PTV70 to within 2% would require that MLC open/close errors be within 0.6 mm.

Conclusions

Radiation therapy centers should have adequate quality assurance programs in place to assess open/close MLC errors (i.e. leaf gap errors) as they tend to be more impactful than random or systematic MLC shift errors.  相似文献   

14.
目的 针对乳腺癌容积旋转调强(VMAT)计划设计,建立射野边界自动外放方法,并评价其效果。方法 在Pinnacle3 9.10计划系统制定乳腺癌边界外放的VMAT计划(E-VMAT):在计划CT图像的乳腺表面中间位置设置虚拟组织补偿物(P-bolus),将它作为靶区的一部分,进行VMAT计划优化计算,实现射野边界自动外放,然后保持优化得到的射野参数,去除P-bolus后进行最终计划剂量分布计算。选取10例乳腺癌患者,对比E-VMAT计划与常规VMAT计划的剂量学参数和计划执行效率。结果 在射野方向观图上,能观察到E-VMAT方法实现射野钨门和MLC叶片在胸廓方向上的位置外放到皮肤以外。两类计划的靶区和危及器官的剂量学参数相似,计划执行效率一致(P>0.05)。结论 本研究建立的方法可以有效地实现VMAT射野边界自动外放,防止由患者呼吸运动和(或)摆位误差引起的靶区漏照;方法不需要编程实现,适用于不同计划系统。  相似文献   

15.
Purpose: Several intensity modulation (IM) treatment techniques for tangential breast irradiation were evaluated in terms of dose uniformity in the treated breast volume, contralateral breast dose, and treatment irradiation time.

Methods and Materials: Contralateral breast dose was measured via TLD chips, and the dose uniformity was calculated on two anthropomorphic phantoms. IM was applied to all beams or to the lateral-medial (LM) beam only. The techniques evaluated include (a) IM via “step & shoot” multileaf collimator (MLC), (b) IM via intensity modulator (compensator), (c) virtual wedge, and (d) physical wedge. A dose optimization algorithm was used for the first two techniques.

Results: Collimator-generated IM techniques (MLC-IM and the virtual wedge) produced 50% (average) less contralateral breast dose than the conventional two-wedge technique. When the compensator or the physical wedge was used, contralateral breast dose was reduced 30% (average) by leaving the ML beam open.

Conclusion: The treatments generated by dose optimization algorithm and delivered via the compensator and MLC techniques offered superior dose uniformity. Single-beam IM techniques in general use less irradiation time without significant degradation of dose uniformity. The MLC-IM technique in this study required the longest treatment irradiation time, while the virtual wedge and compensator IM techniques required the least.  相似文献   


16.
17.
目的 定量研究多叶准直器(MLC)位置误差对固定野动态调强放疗(dMLC-IMRT)计划的剂量学影响,为该治疗技术确立MLC质控精度和运行容差提供指导。方法 模体研究使用计划系统中建立以5、10、20mm为子野宽度的三组条形10cm×10cm动态滑窗测试野计划。患者计划抽取7种常见肿瘤的临床治疗计划,包括鼻咽癌、胶质瘤、肺癌、食管癌、宫颈癌、前列腺癌和乳腺癌,每种 6例。模拟MLC误差包括系统性开/关误差、系统性偏移误差和随机误差,对原计划引入MLC误差生成模拟计划,比较原计划和模拟计划的剂量学差异。结果 模体研究结果表明剂量偏差与系统性开/关误差成正比,与子野宽度成反比;系统性偏移误差导致积分剂量的整体偏移,对射野中心剂量无影响。患者计划研究结果表明系统性开/关误差对剂量学有影响,7种常见肿瘤计划靶区的剂量敏感性为 7.258~13.743%/mm,剂量敏感度与平均子野宽度负相关;系统性偏移误差引起的每毫米剂量学偏差均<2%;2mm以下随机误差时引起的剂量学变化在临床上可忽略不计。结论 对于行固定野动态IMRT计划宜限制子野最小宽度,而加速器端应加强对MLC的质控。为了确保靶区剂量的不确定度<3%,支持2mm随机误差应作为固定野动态IMRT时的运行容差,0.2mm每侧或0.4mm单侧的对齐精度作为质控精度以保证不同肿瘤的放疗剂量准确性。  相似文献   

18.
Axesse加速器实施VMAT的主要性能测试   总被引:1,自引:0,他引:1  
目的 测试Axesse加速器实施VMAT的准确性和可靠性。方法 按照由简单到复杂、从系统组成部分到系统过程测试对Axesse实施VMAT的准确性和可靠性测试。系统组成部分测试包括剂量输出稳定性测试和MLC到位精度测试;系统过程测试包括VMAT剂量率和机架速度调制能力测试、MLC速度和剂量率调制能力测试,以及患者剂量验证测试。结果 与固定机架照射相比,旋转照射、包括MLC动态滑动旋转照射剂量输出差异<1.0%。Axesse EPID iViewGT 3.40测试MLC到位精度肉眼观察能发现MLC 0.5 mm位置误差,固定机架照射和旋转照射MLC到位精度<1 mm。在临床应用剂量率范围内,VMAT变剂量率和机架速度、变剂量率和MLC速度测试结果不同条形野射束强度差异<2.0%。宫颈癌、前列腺癌和乳腺癌患者VMAT剂量验证的3 mm 3%标准γ通过率分别为96.52%、95.72%和98.83%。结论 Axesse系统VMAT能准确控制MLC运动、变剂量率和机架速度,Axesse系统能准确可靠实施VMAT。  相似文献   

19.
PurposeA robust, efficient, and reliable quality assurance (QA) process is highly desired for modern external beam radiation therapy treatments. Here, we report the results of a semiautomatic, pretreatment, patient-specific QA process based on dynamic machine log file analysis clinically implemented for intensity modulated radiation therapy (IMRT) treatments delivered by high energy linear accelerators (Varian 2100/2300 EX, Trilogy, iX-D, Varian Medical Systems Inc, Palo Alto, CA). The multileaf collimator machine (MLC) log files are called Dynalog by Varian.Methods and MaterialsUsing an in-house developed computer program called “Dynalog QA,” we automatically compare the beam delivery parameters in the log files that are generated during pretreatment point dose verification measurements, with the treatment plan to determine any discrepancies in IMRT deliveries. Fluence maps are constructed and compared between the delivered and planned beams.ResultsSince clinical introduction in June 2009, 912 machine log file analyses QA were performed by the end of 2010. Among these, 14 errors causing dosimetric deviation were detected and required further investigation and intervention. These errors were the result of human operating mistakes, flawed treatment planning, and data modification during plan file transfer. Minor errors were also reported in 174 other log file analyses, some of which stemmed from false positives and unreliable results; the origins of these are discussed herein.ConclusionsIt has been demonstrated that the machine log file analysis is a robust, efficient, and reliable QA process capable of detecting errors originating from human mistakes, flawed planning, and data transfer problems. The possibility of detecting these errors is low using point and planar dosimetric measurements.  相似文献   

20.
目的 研究利用电子射野影像装置(electronic portal imaging device,EPID)检测容积调强旋转放疗(volumetric-modulated arc therapy,VMAT)执行过程中多叶准直器(multileaf collimator,MLC)到位精度的方法。方法 随机选取了8例鼻咽癌患者的放疗计划进行分析,通过二维电离室矩阵进行剂量学验证,得到剂量验证通过率。借助Heimann Imaging Software拍摄软件和医科达Synergy直线加速器机载EPID,获取VMAT计划执行过程中MLC的到位信息,通过梯度检测算法获取MLC实际位置,并与VMAT计划中规定的MLC位置进行比较,得到MLC的位置误差,计算计划通过率。结果 8例鼻咽癌患者的放疗计划在评价标准为3%/3 mm时,剂量验证通过率是(94.8±2.1)%;当叶片到位误差允许值为1 mm时,叶片验证的通过率是(91.1±4.0)%。结论 8例VMAT计划全部通过了剂量验证,但仍存在不同程度的叶片到位误差,因此只对VMAT计划进行剂量验证是不够的,对VMAT计划剂量的验证需要对MLC进行专门的质量控制。通过EPID进行MLC到位精度的检测能够提供更详细、更深入的质控信息,为VMAT技术的开展提供更多的保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号