首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Tissue containing the attachment of nerve roots to the spinal cord was dissected from seven rats perfused with buffered aldehydes. Both dorsal and ventral roots were obtained from all cord levels. All tissues were prepared routinely for electron microscopy. The outer layers of the root sheath are homologous with the outer layers of the pia mater and are essentially continuous with it. The inner layers of the root sheath, which are a structurally modified and centrally directed continuation of the perineurium across the subarachnoid space, terminate as an open-ended tube near the junction of the peripheral and central nervous systems. Here there is direct continuity between the endoneurial connective tissue space and the pial connective tissue space. The latter, in turn, communicates directly with the subarachnoid space through fenestrations between pial cells. The relationship of this to certain clinical manifestations is briefly discussed.  相似文献   

2.
Knowledge of the structure and function of the central canal of the human spinal cord is important in understanding the pathogenesis of syringomyelia. Analysis of the morphology of the central canal is difficult using isolated histological sections. A 3-dimensional reconstruction technique using digitised histological sections was therefore developed to visualise the morphology of the central canal. The technique was used to study the canal in the conus medullaris and filum terminale of 1 sheep and 4 human spinal cords. A variety of morphological features were demonstrated including canal duplication, a terminal ventricle and openings from the canal lumen into the subarachnoid space. The findings suggest the possibility of a functionally important fluid communication in the caudal spinal cord which may have a sink function.  相似文献   

3.
The aim of this study was to describe the arterial arrangement of the cervical spinal cord in rabbit because it has been used widely to examine the pathophysiology of spinal cord injury. The study was carried out on 20 adult New Zealand White rabbits. We prepared corrosion casts of the arterial system of the cervical spinal cord. Batson's corrosion casting kit no. 17 was used as a casting medium. The origin of the ventral spinal artery from the right vertebral artery was found on average in 40 % of cases. The origin from the left vertebral artery was found on average in 35 % of cases. The ventral spinal artery raised from the anastomosis of two ventral spinal arteries on average in 25 % of cases. The presence of spinal arteries entering the ventral spinal artery in the cervical region was observed in 46.2 % of cases on the right side and in 53.8 % of cases on the left side. On the dorsal surface we found two irregular dorsal spinal arteries receiving dorsal branches of spinal arteries or they were absent. Until the cervical spinal cord arterial arrangement in species of laboratory animals is described in detail, it will be very difficult to determine the appropriate species for experiments in this field. Variations in arterial arrangement can produce biased or erroneous results in studies.  相似文献   

4.
The access of transplanted cells to large areas of the CNS is of critical value for cell therapy of chronic diseases associated with widespread neurodegeneration. Intrathecal cell application can match this requirement. Here we describe an efficient method for cell injection into the cisterna magna and the assessment of the cell distribution within subarachnoidal space in mice. In order to maximize cell distribution we applied a "concord-like" position, where the cisterna magna is nearly the highest point of the animal's body. A drop of saline on the needle insertion site avoided the outflow of transplanted cells from subarachnoidal space with CSF during surgery. Twenty-four hours later the preparation of the CNS with an intact dura mater by a suitable dissection technique (described in detail) revealed approx. 80% of the injected cells (100,000 cells per animal) within the subarachnoidal space ranging from the skull base (olfactory nerve to premedullary cisterns) to the IV ventricle, and to both the ventral and dorsal surfaces of the spinal cord. Thus the "concorde-like" position proved to be very useful for intrathecal cell application leading to a widespread cell distribution within the subarachnoidal space.  相似文献   

5.
Using an indirect immunofluorescence method the distribution of vasoactive intestinal peptide (VIP) immunoreactivity was studied in human foetus and newborn infant spinal cord and dorsal root ganglia. Further, for comparison some newborn infant brains were also investigated. Vasoactive intestinal peptide-like immunoreactive fibres were exclusively found in the caudal spinal cord and corresponding dorsal root ganglia. No immunoreactive cell bodies were detected. The first appearance of VIP-like immunoreactive fibres in both spinal cord and dorsal root ganglia was suggested during the fourth month of foetal life. Most immunolabelled fibres, concentrated in the sacral segment, were distributed in the Lissauer tract, along the dorsolateral gray border, in the intermediolateral areas and near the central canal in the dorsolateral commissure. A few VIP-like immunoreactive fibres were also seen in the dorsal funiculus and occasionally in the ventral gray horn and ventral roots. Further, a large population of VIP-like immunoreactive fibres occurs longitudinally in dorsal root, in ganglia and in the spinal nerve exit zone. These findings indicate the early appearance of VIP-like immunoreactive fibres in the human foetus spinal cord and corresponding ganglia. Moreover, they emphasize that in both foetus and newborn infant spinal cord VIP-like immunoreactive fibre distribution is limited to the lumbosacral segment.  相似文献   

6.
The spinal projections from the raphe-associated brainstem areas containing serotonergic neurons were studied with aldehyde-induced fluorescence in combination with the retrograde fluorescent tracer True Blue in the rat. This technique makes it possible to determine simultaneously the projections of individual neurons and to detect whether serotonin is present in the same neurons. After tracer injections into the spinal cord retrogradely labeled serotonergic and non-serotonergic neurons were found in the medullary raphe nuclei and adjacent regions and to a lesser extent in association with the dorsal and median raphe nuclei in the mesencephalon. Large True Blue injections that covered one side of the spinal cord at mid-cervical level labeled about 60% of the ipsilaterally situated serotonergic neurons in the medullary raphe regions while the corresponding figure contralaterally was about 25%. On both sides a larger number of labeled non-serotonergic neurons were found; these were sometimes located dorsal to, but often intermingled with, the serotonergic cells. While the serotonergic projection from the mesencephalon could not be labeled from injections below cervical levels, the labeling in more caudal brainstem regions exhibited only minor variations depending on the rostrocaudal level of the spinal segment injected. Furthermore, quantitative data from injections at different levels indicate that the majority of the spinal-projecting neurons traverse most of the length of the cord. Summarizing the results obtained from small injections restricted to subregions of the cord we feel that it is possible to distinguish three fairly distinct pathways for spinal projections from the medullary raphe and adjacent regions: The dorsal pathway originates mainly from cells in the caudal pons and rostral medulla oblongata (rostral part of nucleus raphe magnus, nucleus raphe magnus proper, nucleus reticularis gigantocellularis pars alpha and nucleus paragigantocellularis). This pathway, which contains a large non-serotonergic component, descends through the dorsal part of the lateral funiculus and terminates mainly in the dorsal horn at all spinal cord levels. The intermediate pathway is largely serotonergic with its cell bodies located within the arcuate cell group (situated just ventral and lateral to the pyramids very close to the ventral surface of the brainstem) and in the nucleus raphe obscurus and pallidus and terminates in the intermediate grey at thoracolumbar and upper sacral levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
Activation of a motoneuron pool is often accompanied by inhibition of the antagonistic pool through a system of reciprocal inhibition between the two parts of the neuronal network controlling the antagonistic pools. In the present study, we describe the activity of such a system in the isolated spinal cord of the lamprey, when a tonic motor output is evoked by extracellular stimulation (0.5-1 s train of pulses, 20 Hz) of either end of the spinal cord. With two electrodes symmetrically positioned in relation to the midline, stimulation with either of them separately elicited prolonged (1-5 s) ipsilateral ventral root activity. Activity could be abolished by stronger, simultaneously applied, stimulation of the contralateral side of the cord, suggesting that reciprocal inhibition between hemisegments operates when a tonic motor output is generated. Simultaneous stimulation of both sides of the spinal cord with a single electrode with a large tip (300-400 microm in diameter), positioned over the anatomical midline, elicited inconsistent right-side, leftside, or bilateral ventral root responses. A minor displacement (10-20 microm) to the left or right from the midline resulted in activation of ipsilateral motoneurons, whereas the contralateral motoneurons were silent. These findings indicate that a small asymmetry in the excitatory drive to the left and right spinal hemisegments can be further amplified by reciprocal inhibition between the hemisegments. Longitudinal splitting of the spinal cord along the midline resulted in reduced reciprocal inhibition between the hemisegments separated by the lesion. The reduction was proportional to the extent of the split. The inhibition was abolished when the split reached nine segments in length. From these experiments, the longitudinal distribution of the commissural axons responsible for inhibition of contralateral motor output could be estimated.  相似文献   

9.
Current surgical treatment of spinal root injuries aims at reconnecting ventral roots to the spinal cord while severed dorsal roots are generally left untreated. Reactive changes in dorsal root ganglia (DRGs) and in injured dorsal roots after such complex lesions have not been analysed in detail. We studied dorsal root remnants and lesioned DRGs 6 months after C7 dorsal rhizotomy, ventral root avulsion and immediate ventral root replantation in adult rabbits. Replanted ventral roots were fixed to the spinal cord with fibrin glue only or with glue containing ciliary neurotrophic factor and/or brain-derived neurotrophic factor. Varying degrees of degeneration were observed in the deafferented dorsal spinal cord in all experimental groups. In cases with well-preserved morphology, small myelinated axons extended into central tissue protrusions at the dorsal root entry zone, suggesting sprouting of spinal neuron processes into the central dorsal root remnant. In lesioned DRGs, the density of neurons and myelinated axons was not significantly altered, but a slight decrease in the relative frequency of large neurons and an increase of small myelinated axons was noted (significant for axons). Unexpectedly, differences in the degree of these changes were found between control and neurotrophic factor-treated animals. Central axons of DRG neurons formed dorsal root stumps of considerable length which were attached to fibrous tissue surrounding the replanted ventral root. In cases where gaps were apparent in dorsal root sheaths, a subgroup of dorsal root axons entered this fibrous tissue. Continuity of sensory axons with the spinal cord was never observed. Some axons coursed ventrally in the direction of the spinal nerve. Although the animal model does not fully represent the situation in human plexus injuries, the present findings provide a basis for devising further experimental approaches in the treatment of combined motor/sensory root lesions.  相似文献   

10.
The present study investigated the projection from the paralemniscal nucleus (PL) to the spinal cord in the mouse by injecting the retrograde tracer fluoro-gold to different levels of the spinal cord and injecting the anterograde tracer biotinylated dextran amine into PL. We found that PL projects to the entire spinal cord with obvious contralateral predominance—420 neurons projected to the contralateral cervical cord and 270 to the contralateral lumbar cord. Fibers from PL descended in the dorsolateral funiculus on the contralateral side and terminated in laminae 5, 6, 7, and to a lesser extent in the dorsal and ventral horns. A smaller number of fibers also descended in the ventral funiculus on the ipsilateral side and terminated in laminae 7, 8 and, to a lesser extent in lamina 9. The present study is the first demonstration of the PL fiber termination in the spinal cord in mammals. The PL projection to the spinal cord may be involved in vocalization and locomotion.  相似文献   

11.
Summary in order to determine the time and site of origin and the final location of various cell groups in the spinal cord, tadpoles of Xenopus laevis, ranging from stage 48 to stage 56 were treated with tritiated thymidine and sacrified at various stages from 49 to 66 (stages according to Nieuwkoop and Faber (1967).From the poorly developed matrix at stage 48–49 not only ventral horn cells, but also neuroblasts of the intermediate zone and the dorsal horn arise. Both the matrix and the ventricle expand in a dorsal direction. From the well-developed matrix at stage 54, in which the mitotic activity is almost exclusively confined to its dorsal part, mainly cells of the dorsal horn develop. However, this later-stage matrix also gives rise to a considerable number of neuroblasts, which become located in the central parts of the intermediate zone and the ventral horn.Generally the later-born cells come to lie dorsomedially to the older ones. The neuroblasts of the lateral motor column, however, migrate through and settle ventrolaterally to their predecessors.Our observations do not support the basal plate-alar plate concept of His (1893).  相似文献   

12.
大鼠脊髓全横断损伤模型的建立   总被引:5,自引:0,他引:5  
目前用于脊髓全横断的动物模型,常遗有部分未损脊髓组织,局部脊髓损伤范围很大,尤其是破坏了的血运扩大了继发性变性,造成了复杂的局部病理变化,致使难以分析治疗性脊髓伤区内移植的疗效。因此迫切需要一种还原论式的脊髓横断模型,本实验设计了一种切割辅以吸除的方法,可以在局部造成平均约0.6mm的清洁横断区,同时保存脊髓腹、背动脉及脊髓背静脉的大鼠脊髓横断模型,并用H.E.染色法、神经丝(NF)和胶质纤维酸性蛋白(GFAP)的免疫组织化学方法及生物素化的葡萄糖胺(BDA)的追踪方法检验损伤区及其两侧脊髓的组织反应。  相似文献   

13.
14.
Neurons cannot negotiate an elongation across the peripheral (PNS)–central nervous system (CNS) transitional zone and grow into or out of the spinal cord in the mature mammal. The astrocytic rich CNS part of the spinal nerve root is most effective in preventing regeneration even of nerve fibres from transplanted embryonic ganglion cells. Regeneration of severed nerve fibres into the spinal cord occurs when the transition zone is absent as in the immature animal. Before the establishment of a transition zone there is also new growth of neuronal processes from dorsal horn neurons distally to the injured dorsal root. Thus the experimental strategy to reestablish spinal cord to peripheral nerve connectivity has been to delete the transitional region and implant severed ventral or dorsal roots into the spinal cord. Dorsal root implantation resulted in reestablished afferent connectivity by new neuronal processes from secondary sensory neurons in the dorsal horn of the spinal cord extending into the PNS. The ability for plasticity in these cells allowed for a concurrent retention of their original rostral projection. Ventral root implantation into the spinal cord corrected deficit motor function. In a long series of experiments performed in different species, the functional restitution was demonstrated to depend on an initial regrowth of motor neuron axons through spinal cord tissue (CNS). These findings have led to the design of a new surgical strategy in cases of traumatic spinal nerve root injuries.  相似文献   

15.
Bell-Magendie's law of separation of spinal function states that afferent and efferent fibres join the spinal cord separately in ventral and dorsal spinal nerve roots. For over 100 years there have been reports that challenge the exclusiveness of this law in mammals; very few studies have referred to man. We conducted a prospective morphological study in patients with preganglionic traction injuries of the brachial plexus to address this question. Avulsed ventral and dorsal roots were examined after variable intervals from the injury for histological and ultrastructural evidence for myelinated afferent fibres entering the cord via the ventral roots. Intact myelinated fibres were found in all ventral root specimens, but the majority of fibres in later biopsies are regenerative. A small number of fibres could be demonstrated that are likely to be 'wrong way ventral afferents'. Their number is falsely low due to wallerian degeneration of dorsal and ventral afferents following the mechanical and ischaemic effects of traction injury. Our findings are the first morphological evidence in human material that Bell-Magendie's law might not entirely be correct and they underline the difficulties in comparing traumatic with experimental rhizotomy.  相似文献   

16.
Using the indirect immunofluorescence method, the distribution of substance P-like-immunoreactivity was studied in spinal cord and dorsal root ganglia of 25 human foetuses ranging from 12 to 29 weeks of gestational age. The spinal cord and dorsal root ganglia of three infants (1 day-, 2 and 4 month-old) were also investigated as a post-natal reference. On the whole, the substance P distribution patterns seen in infants were already visible throughout most of foetal life. The highest density of substance P-like-immunoreactive fibres was localized over the superficial layers of the dorsal grey horn. Punctiform immunofluorescence was often found over the white matter especially in the funiculi dorsalis et lateralis. In the ventral horn, substance P immunoreactive fibres were few and far between in the grey matter and were only detected from foetal stage 16 weeks. In addition, longitudino-frontal sections through the dorsal regions revealed repetitive arrangements of substance P-like-immunoreactive fibres along the whole spinal cord. In dorsal root ganglia only a few immunoreactive cells were observed. These findings demonstrate the wide and early occurrence of substance P-like-immunoreactivity in the human foetus spinal cord and dorsal root ganglia. They suggest that the development of the substance P neuronal system begins early in ontogenesis and is regionally differentiated.  相似文献   

17.
Terminal myelocystocele is a rare form of occult spinal dysraphism in which the hydromyelic caudal spinal cord and the subarachnoid space are hemiated through a posterior spina bifida. A 1.5 month old boy presented with a large lumbosacral mass and urinary incontinence. The magnetic resonance imaging, operative findings and pathological findings revealed a low lying conus with a dilated central canal dorsally attached to the subcutaneous tissue. Ventral subarachnoid space was enlarged and herniated through the laminar defect of the sacrum. The lesion was typical of a terminal myelocystocele. The clinical features are different from those of myelomeningocele in many aspects. Though the incidence is low, terminal myelocystocele should be included in the differential diagnosis of congenital lesions presenting as a lumbosacral mass.  相似文献   

18.
The development of the structural pattern of the lower sacral and coccygeal segments of the spinal cord in human, rabbit and monkey embryos and fetuses has been studied. The changes observed in serial sections from above downward are outlined, beginning with typical sections through the lower sacral cord. Among the changes, other than diminution in size of the spinal cord and reduction in size of the lower spinal nerves, there is a gradual disappearance of the posterior funiculus. As this occurs the gray matter appears to spread dorsally and the central canal widens. The gray matter becomes reduced in size and the lateral funiculus extends farther dorsally. A little lower down, the gray matter of the alar plate is reduced further in size and there is corresponding enlargement of the central canal. This enlargement constitutes the terminal ventricle. The spinal cord rapidly becomes smaller as both the fibers and the gray matter are diminished. In some specimens, fibers decussate dorsal to the lower end of the terminal ventricle. Little remains of the lower end of the spinal cord except the ependymal wall of the central canal and the surrounding fiber bundles. The shape and size of the lower end of the central canal is subject to variations. In the lower part of the spinal cord a longitudinal bundle on each side is formed by fiber contributions from the anterior horn cells in the basal plates. This bundle contributes fibers to the fifth sacral and the first and second coccygeal nerves. It is designated the sacrococcygeal fasciculus.  相似文献   

19.
鸡胚脊髓背,腹角植块对脊神经节神经突起生长的影响   总被引:2,自引:0,他引:2  
利用作者改良的悬滴培养方法,将Hamburger35期鸡胚脊髓背、腹角植块分别与脊神经节联合培养,以单独脊神经节培养物作为参照.分别于培养24小时、60小时观察测量各个脊神经节神经突起的平均长度,比较两个观测时间各组脊神经节神经突起平均长度的变化以及同一观测时间内植块联合培养组间脊神经节神经突起平均长度的差异.结果发现:从培养24小时到60小时,各组脊神经节神经突起均明显增长;同一观测时间内,与脊髓背角植块联合培养的脊神经节神经突起平均长度显著大于与腹角植块联合培养者.该结果表明,鸡胚脊髓背、腹角植块对脊神经节神经突起生长的作用存在明显差异.  相似文献   

20.
The present study revealed existence of a new dopaminergic nerve terminal plexus in the rat spinal cord, which was visualized by means of the peroxidase antiperoxidase immunohistochemical technique utilizing antibody prepared against conjugated dopamine. Dopamine (DA)-immunoreactive nerve terminals occurred along the ventral motor column throughout all spinal levels, as well as previously noted presumed dopaminergic nerve terminals within the intermediolateral cell column, the dorsal horn and in the area surrounding the central canal. In these new terminals of the anterior column, fine DA-immunoreactive nerve terminals concentrated around motoneurons, suggesting that the dopaminergic nerve system may also be involved in somatic motor processes of the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号