首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of bioreactors for tissue engineered heart valves would be aided by a thorough understanding of how mechanical forces impact cells within valve leaflets. The hypothesis of the present study is that flow may influence the biosynthetic activity of aortic valve leaflet cells. Porcine leaflets were exposed to one of several conditions for 48 h, including steady or pulsatile flow in a tubular flow system at 10 or 20 l/min, and steady shear stress in a parallel plate flow system at 1, 6, or 22 dyne/cm2. Protein, glycosaminoglycan, and DNA synthesis increased during static incubation but remained at basal levels after exposure to flow. The modulation of synthetic activity was attributed to the presence of a shear stress on the leaflet surface, which may be transmitted to cells within the leaflet matrix through tensile forces. The -smooth muscle (-SM) actin distribution observed in fresh leaflets was proportionately decreased after exposure to antibiotics and not recovered by either static incubation or exposure to flow. These results indicate that exposure to flow maintains leaflet synthetic activity near normal levels, but that the inclusion of another force, such as bending or backpressure, may be necessary to preserve -SM actin immunoreactive cells. © 2001 Biomedical Engineering Society. PAC01: 8780Rb, 8719Hh, 8719Uv, 8715Rn, 8768+z, 8719Ff, 8714Gg, 8714Ee  相似文献   

2.
Point-wise velocity measurements have been traditionally acquired to estimate blood damage potential induced by prosthetic heart valves with emphasis on peak values of velocity magnitude and Reynolds stresses. However, the inherently Lagrangian nature of platelet activation and hemolysis makes such measurements of limited predictive value. This study provides a refined fluid mechanical analysis, including blood element paths and stress exposure times, of the hinge flows of a CarboMedics bileaflet mechanical heart valve placed under both mitral and aortic conditions and a St Jude Medical bileaflet valve placed under aortic conditions. The hinge area was partitioned into characteristic regions based on dominant flow structures and spatio-temporal averaging was performed on the measured velocities and Reynolds shear stresses to estimate the average bulk stresses acting on blood elements transiting through the hinge. A first-order estimate of viscous stress levels and exposure times were computed. Both forward and leakage flow phases were characterized in each partition by dynamic flows dependent on subtle leaflet movements and transvalvular pressure fluctuations. Blood elements trapped in recirculation regions may experience exposure times as long as the entire forward flow phase duration. Most calculated stresses were below the accepted blood damage threshold. Estimates of the stress levels indicate that the flow conditions within the boundary layers near the hinge and leaflet walls may be more detrimental to blood cells than bulk flow conditions, while recirculation regions may promote thrombus buildup.  相似文献   

3.
Quantification of heart valve leaflet deformation during the cardiac cycle is essential in understanding normal and pathological valvular function, as well as in the design of replacement heart valves. Due to the technical complexities involved, little work to date has been performed on dynamic valve leaflet motion. We have developed a novel experimental method utilizing a noncontacting structured laser-light projection technique to investigate dynamic leaflet motion. Using a simulated circulatory loop, a matrix of 150–200 laser light points were projected over the entire leaflet surface. To obtain unobstructed views of the leaflet surface, a stereo system of high-resolution boroscopes was used to track the light points at discrete temporal points during the cardiac cycle. The leaflet surface at each temporal point was reconstructed in three dimensions, and fit using our biquintic hermite finite element approach (Smith et al., Ann. Biomed. Eng. 26:598–611, 2001). To demonstrate our approach, we utilized a bovine pericardial bioprosthetic heart valve, which revealed regions of complex flexural deformation and substantially different shapes during the opening and closing phases. In conclusion, the current method has high spatial and temporal resolution and can reconstruct the entire surface of the cusp simultaneously. Because it is completely noncontacting, this approach is applicable to studies of fatigue and bioreactor technology for tissue engineered heart valves. © 2001 Biomedical Engineering Society. PAC01: 8719Hh, 8780-y, 4262Be, 8719St  相似文献   

4.
Tissue engineered heart valves (TEHV) have been observed to respond to mechanical conditioning in vitro by expression of activated myofibroblast phenotypes followed by improvements in tissue maturation. In separate studies, cyclic flexure, stretch, and flow (FSF) have been demonstrated to exhibit both independent and coupled stimulatory effects. Synthesis of these observations into a rational framework for TEHV mechanical conditioning has been limited, however, due to the functional complexity of tri-leaflet valves and the inherent differences of separate bioreactor systems. Toward quantifying the effects of individual mechanical stimuli similar to those that occur during normal valve function, a novel bioreactor was developed in which FSF mechanical stimuli can be applied to engineered heart valve tissues independently or in combination. The FSF bioreactor consists of two identically equipped chambers, each having the capacity to hold up to 12 rectangular tissue specimens (25 × 7.5 × 1 mm) via a novel “spiral-bound” technique. Specimens can be subjected to changes-in-curvature up to 50 mm−1 and uniaxial tensile strains up to 75%. Steady laminar flow can be applied by a magnetically coupled paddlewheel system. Computational fluid dynamic (CFD) simulations were conducted and experimentally validated by particle image velocimetry (PIV). Tissue specimen wall shear stress profiles were predicted as a function of paddlewheel speed, culture medium viscosity, and the quasi-static state of specimen deformation (i.e., either undeformed or completely flexed). Velocity profiles predicted by 2D CFD simulations of the paddlewheel mechanism compared well with PIV measurements, and were used to determine boundary conditions in localized 3D simulations. For undeformed specimens, predicted inter-specimen variations in wall shear stress were on average ±7%, with an average wall shear stress of 1.145 dyne/cm2 predicted at a paddlewheel speed of 2000 rpm and standard culture conditions. In contrast, while the average wall shear stress predicted for specimens in the quasi-static flexed state was ∼59% higher (1.821 dyne/cm2), flexed specimens exhibited a broad intra-specimen wall shear stress distribution between the convex and concave sides that correlated with specimen curvature, with peak wall shear stresses of ∼10 dyne/cm2. This result suggests that by utilizing simple flexed geometric configurations, the present system can also be used to study the effects of spatially varying shear stresses. We conclude that the present design provides a robust tool for the study of mechanical stimuli on in vitro engineered heart valve tissue formation. George C. Engelmayr, Jr. and Lorenzo Soletti are contributed equally.  相似文献   

5.
T Song  I Vesely  D Boughner 《Biomaterials》1990,11(3):191-196
To evaluate an alternative valve fixation technique, we measured the ability of glutaraldehyde-fixed valve tissue to undergo internal shearing during bending. Porcine aortic valves were fixed statically using conventional means, and dynamically while opening and closing repeatedly in a pulse tank. Using a polarized light microscopy technique developed previously, we measured shear deformation angles in thin sections of bent leaflet tissue and calculated shear strains. Statically-fixed leaflet tissue sheared only 1.2% +/- 2.29% (Mean +/- SD) when bent to curvatures of 2.0 mm-1, while dynamically-fixed tissue sheared 5.1% +/- 2.63% (significant at P less than 0.05). It is likely that dynamic fixation increases the ability of prosthetic valve leaflets to shear during bending by reducing the number of interfibre cross-links that would otherwise impede such deformations. Because shear strains reduce internal fibre strains and protect the leaflets against fatigue, prosthetic valves constructed from dynamically fixed tissue should experience lower stresses and hence last longer.  相似文献   

6.
Design limitations of current mechanical heart valves cause blood flow to separate at the leaflet edges and annular valve base, forming downstream vortex mixing and high turbulent shear stresses. The closing behavior of a bileaflet valve is associated with reverse flow and may lead to cavitation phenomenon. The new trileaflet (TRI) design opens similar to a physiologic valve with central flow and closes primarily due to the vortices in the aortic sinus. In this study, we measured the St. Jude Medical 27 mm and the TRI 27 mm valves in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with digital particle image velocimetry (DPIV). Our results showed the major principal Reynolds shear stresses were <100 N/m2 for both valves, and turbulent viscous shear stresses were smaller than 15 N/m2. The TRI valve closed more slowly than the St. Jude Medical valve. As the magnitudes of the shear stresses were similar, the closing velocity of the valves should be considered as an important factor and might reduce the risks of thrombosis and thromboembolism.  相似文献   

7.
Current mechanical conditioning approaches for heart valve tissue engineering concentrate on mimicking the opening and closing behavior of the leaflets, either or not in combination with tissue straining. This study describes a novel approach by mimicking only the diastolic phase of the cardiac cycle, resulting in tissue straining. A novel, yet simplified, bioreactor system was developed for this purpose by applying a dynamic pressure difference over a closed tissue engineered valve, thereby inducing dynamic strains within the leaflets. Besides the use of dynamic strains, the developing leaflet tissues were exposed to prestrain induced by the use of a stented geometry. To demonstrate the feasibility of this strain-based conditioning approach, human heart valve leaflets were engineered and their mechanial behavior evaluated. The actual dynamic strain magnitude in the leaflets over time was estimated using numerical analyses. Preliminary results showed superior tissue formation and non-linear tissue-like mechanical properties in the strained valves when compared to non-loaded tissue strips. In conclusion, the strain-based conditioning approach, using both prestrain and dynamic strains, offers new possibilities for bioreactor design and optimization of tissue properties towards a tissue-engineered aortic human heart valve replacement.  相似文献   

8.
A computational fluid dynamic simulation of a mechanical heart valve closing dynamics in the mitral position was performed in order to delineate the fluid induced stresses in the closing phase. The pressure and shear stress fields in the clearance region and near the inflow (atrial) side of the valve were computed during the mitral heart valve closure. Three separate numerical simulations were performed. The atrial chamber pressure was assumed to be zero in all the simulations. The first simulation was steady flow through a closed mitral valve with a ventricular pressure of 100 mm Hg (1.3 kPa). In the second simulation, the leaflet remained in the closed position while the ventricular pressure increased from 0 to 100 mm Hg at a rate of 2000 mm Hg/s (simulating leaflet closure by gravity before the ventricular pressure rise – gravity closure). In the third case, the leaflet motion from the fully open position to the fully closed position was simulated for the same ventricular pressure rise (simulating the normal closure of the mechanical valve). Normal closure (including leaflet motion towards closure, and sudden stop in the closed position) resulted in a relatively large negative pressure transient which was not present in the gravity closure simulation. The wall shear stresses near the housing and the leaflet edge close to the inflow side were around 4000 Pa with normal closure compared to about 725 Pa with gravity closure. The large negative pressure transients and significant increase in wall shear stresses due to the simulation of normal closure of the mechanical valve is consistent with the previously reported increased blood damage during the closing phase. © 2001 Biomedical Engineering Society. PAC01: 8719Hh, 8780-y, 8719Uv, 8710+e  相似文献   

9.
In this study,in vitro velocity measurements in the near vicinity of a Björk-Shiley aortic valve, one of the more commonly used aortic valve prostheses, were made using a laser-Doppler anemometer. The velocity measurements identified a zone of stagnation, about 20 mm wide, immediately downstream from the fully open disc. The measurements also showed that the flow through the valve was divided into two unequal regions, namely, the major and minor outflow regions. Because of the low flow in the minor outflow region, the shear stresses along the perimeter of the valve in that region were considerably lower than the shear stresses along the sewing ring of the major outflow region. Pathologic studies of nine recovered Björk-Shiley aortic valves indicated varying amounts of thrombus formation on the outflow face of the disc and excess growth of endothelial tissue along the perimeter of the minor outflow region. If the large stagnation zone and the relatively low shear in the minor outflow region which were observed in thein vitro measurements also existin vivo, they could lead to the clinically observed thrombus formation and tissue overgrowth, respectively.  相似文献   

10.

Aortic stenosis is a common cardiac condition that impacts the aorta’s hemodynamics downstream of the affected valve. We sought to better understand how non-uniform stiffening of a stenotic aortic valve would affect the wall shear stress (WSS) experienced by the walls of the aorta and the residence time near the valve. Several experimental configurations were created by individually stiffening leaflets of a polymer aortic valve. These configurations were mounted inside an in vitro experimental setup. Digital particle image velocimetry (DPIV) was used to measure velocity profiles inside a model aorta. The DPIV results were used to estimate the WSS and residence time. Our analysis suggests that leaflet asymmetry greatly affects the amount of WSS by vectoring the systolic jet and stiffened leaflets have an increased residence time. This study indicates that valve leaflets with different stiffness conditions can have a more significant impact on wall shear stress than stenosis caused by the uniform increase in all three leaflets (and the subsequent increased systolic velocity) alone. This finding is promising for creating customizable (patient-specific) prosthetic heart valves tailored to individual patients.

  相似文献   

11.
Studies were done on the structural changes that develop in Ionescu-Shiley valves that are used as replacement heart valves for 4 to 8 years. These changes were compared with those found in similarly used porcine aortic valve (PAV) bioprostheses. A variety of morphologic differences were observed between bovine pericardial valve (BPV) and PAV bioprostheses after orthotopic implantation including: primary tissue failure associated with the use of an alignment suture, thickening of valve leaflet, leaflet tissue delamination, leaflet calcification, and dystrophic alterations of collagen. These findings indicate that valve design criteria directly influence the durability of pericardial valves. However, other factors unique to pericardial tissue also affect the durability and performance of BPVs. These factors include the inability of pericardial tissue to accommodate dynamic stresses; the extensive insudation of plasma proteins and lipids; and the inability to reduce leaflet calcification using agents that effectively mitigate calcification in PAV bioprostheses.  相似文献   

12.
Previous experimental and numerical blood studies have shown that high shear stress levels, long exposure times to these shear stresses, and flow recirculation promote thromboembolism. Artificial heart valves, in particular bileaflet mechanical heart valves (BMHVs), are prone to developing thromboembolic complications. These complications often form at the hinge regions of BMHVs and the associated geometry has been shown to affect the local flow dynamics and the associated thrombus formation. However, to date no study has focused on simulating the motion of realistically modeled blood elements within the hinge region to numerically estimate the hinge-related blood damage. Consequently, this study aims at (a) simulating the motion of realistically modeled platelets during the leakage (mid-diastole) phase in different BMHV hinge designs placed in the aortic position and (b) quantitatively comparing the blood damage associated with different designs. Three designs are investigated to assess the effects of hinge geometry and dimensions: a 23 mm St. Jude Medical Regent? valve hinge with two different gap distances between the leaflet ear and hinge recess; and a 23 mm CarboMedics (CM) aortic valve hinge. The recently developed lattice-Boltzmann method with external boundary force method is used to simulate the hinge flow and capture the dynamics and surface shear stresses of individual platelets. A blood damage index (BDI) value is then estimated based on a linear shear stress-exposure time BDI model. The velocity boundary conditions are obtained from previous 3D large-scale simulations of the hinge flow fields. The trajectories of the blood elements in the hinge region are found to be qualitatively similar for all three hinges, but the shear stresses experienced by individual platelets are higher for the CM hinge design, leading to a higher BDI. The results of this study are also shown to be in good agreement with previous studies, thus validating the numerical method for future research in BMHV flows. This study provides a general numerical tool to optimize the hinge design based on both hemodynamic and thromboembolic performance.  相似文献   

13.
This review discusses strategies that may address some of the limitations associated with replacing diseased or dysfunctional aortic valves with mechanical or tissue valves. These limitations range from structural failure and thromboembolic complications associated with mechanical valves to a limited durability and calcification with tissue valves. In pediatric patients there is an issue with the inability of substitutes to grow with the recipient. The emerging science of tissue engineering potentially provides an attractive alternative by creating viable tissue structures based on a resorbable scaffold. Morphometrically precise, biodegradable polymer scaffolds may be fabricated from data obtained from scans of natural valves by rapid prototyping technologies such as fused deposition modelling. The scaffold provides a mechanical profile until seeded cells produce their own extra cellular matrix. The microstructure of the forming tissue may be aligned into predetermined spatial orientations via fluid transduction in a bioreactor. Although there are many technical obstacles that must be overcome before tissue engineered heart valves are introduced into routine surgical practice these valves have the potential to overcome many of the shortcomings of current heart valve substitutes.  相似文献   

14.
A double-pulse stereo photogrammetry technique has been developed for the dynamic assessment of the leaflet deformation of bioprosthetic heart valves under simulated physiological conditions. By using a specially designed triggering technique, which takes the advantage of the field transfer mechanisms of the charge coupled device camera, two consecutive images separated by a time interval as short as 5 ms were captured. This made it possible to investigate the realistic leaflet deformation during the valve opening and closing processes which typically last 25–45 ms. This technique was applied to assess a newly developed pericardial valve leaflet in a physiological pulse flow loop. Quantitative leaflet deformations of the valve opening and closing were generated from sequences of digital images. The results can later be applied to finite element analysis of bioprosthetic heart valve leaflet stress and strain during a complete cardiac cycle. © 2002 Biomedical Engineering Society. PAC02: 8719Hh, 8768+z, 8719Rr, 8719Uv  相似文献   

15.
Diseased aortic valves often require replacement, with over 30% of the current aortic valve surgeries performed in patients who will outlive a bioprosthetic valve. While many promising tissue-engineered valves have been created in the lab using the cell-seeded polymeric scaffold paradigm, none have been successfully tested long-term in the aortic position of a pre-clinical model. The high pressure gradients and dynamic flow across the aortic valve leaflets require engineering a tissue that has the strength and compliance to withstand high mechanical demand without compromising normal hemodynamics. A long-term preclinical evaluation of an off-the-shelf tissue-engineered aortic valve in the sheep model is presented here. The valves were made from a tube of decellularized cell-produced matrix mounted on a frame. The engineered matrix is primarily composed of collagen, with strength and organization comparable to native valve leaflets. In vitro testing showed excellent hemodynamic performance with low regurgitation, low systolic pressure gradient, and large orifice area. The implanted valves showed large-scale leaflet motion and maintained effective orifice area throughout the duration of the 6-month implant, with no calcification. After 24 weeks implantation (over 17 million cycles), the valves showed no change in tensile mechanical properties. In addition, histology and DNA quantitation showed repopulation of the engineered matrix with interstitial-like cells and endothelialization. New extracellular matrix deposition, including elastin, further demonstrates positive tissue remodeling in addition to recellularization and valve function. Long-term implantation in the sheep model resulted in functionality, matrix remodeling, and recellularization, unprecedented results for a tissue-engineered aortic valve.  相似文献   

16.
Hemodynamic stresses are presumed to play an important role in the development of calcific aortic valve disease (CAVD). The elucidation of the shear stress mechanisms involved in the pathogenesis of CAVD has been hampered by the complexity of the native unsteady and side-specific valvular flow environment. To address this gap, this article describes the design and validation of a novel device to expose leaflet samples to time-dependent side-specific shear stress. The device built on a double cone-and-plate geometry was dimensioned based on our previous single-sided shear stress device that minimizes secondary flow effects inherent to this geometry. A fluid–structure interaction (FSI) model was designed to predict the actual shear stress produced on a tissue sample mounted in the new device. Staining was performed on porcine leaflets conditioned in the new bioreactor to assess endothelial integrity and cellular apoptosis. The FSI results demonstrated good agreement between the target (native) and the actual side-specific shear stress produced on a tissue sample. No significant difference in endothelial integrity and cellular apoptosis was detected between samples conditioned for 96 h and fresh controls. This new device will enable the investigation of valvular response to normal and pathologic hemodynamics and the potential mechano-etiology of CAVD.  相似文献   

17.
Two potential obstacles to the creation of implantable tissue engineered heart valves are inadequate mechanical properties (ability to withstand hemodynamic stresses) and adverse host-tissue reactions due to the presence of residual nondegraded polymer scaffold. In an attempt to address these problems, we developed an in vitro cell culture system that provides physiological pressure and flow of nutrient medium to the developing valve constructs. It is anticipated that in vitro physical stress will stimulate the tissue engineered heart valve construct to develop adequate strength prior to a possible implantation. Long-term in vitro development will be realized by an isolated and thereby contamination-resistant system. Longer in vitro development will potentially enable more complete biodegradation of the polymeric scaffold during in vitro cultivation. This new dynamic bioreactor allows for adjustable pulsatile flow and varying levels of pressure. The system is compact and easily fits into a standard cell incubator, representing a highly isolated dynamic cell culture setting with maximum sterility, optimal gas supply and stable temperature conditions especially suited for long-term experiments.  相似文献   

18.
《Acta biomaterialia》2014,10(8):3563-3570
The aortic heart valve is constantly subjected to pulsatile flow and pressure gradients which, associated with cardiovascular risk factors and abnormal hemodynamics (i.e. altered wall shear stress), can cause stenosis and calcification of the leaflets and result in valve malfunction and impaired circulation. Available options for valve replacement include homograft, allogenic or xenogenic graft as well as the implantation of a mechanical valve. A tissue-engineered heart valve containing living autologous cells would represent an alternative option, particularly for pediatric patients, but still needs to be developed. The present study was designed to demonstrate the feasibility of using a living tissue sheet produced by the self-assembly method, to replace the bovine pericardium currently used for the reconstruction of a stented human heart valve. In this study, human fibroblasts were cultured in the presence of sodium ascorbate to produce tissue sheets. These sheets were superimposed to create a thick construct. Tissue pieces were cut from these constructs and assembled together on a stent, based on techniques used for commercially available replacement valves. Histology and transmission electron microscopy analysis showed that the fibroblasts were embedded in a dense extracellular matrix produced in vitro. The mechanical properties measured were consistent with the fact that the engineered tissue was resistant and could be cut, sutured and assembled on a wire frame typically used in bioprosthetic valve assembly. After a culture period in vitro, the construct was cohesive and did not disrupt or disassemble. The tissue engineered heart valve was stimulated in a pulsatile flow bioreactor and was able to sustain multiple duty cycles. This prototype of a tissue-engineered heart valve containing cells embedded in their own extracellular matrix and sewn on a wire frame has the potential to be strong enough to support physiological stress. The next step will be to test this valve extensively in a bioreactor and at a later date, in a large animal model in order to assess in vivo patency of the graft.  相似文献   

19.
The wall shear stress induced by the leaflet motion during the valve-closing phase has been implicated with thrombus initiation with prosthetic valves. Detailed flow dynamic analysis in the vicinity of the leaflets and the housing during the valve-closure phase is of interest in understanding this relationship. A three-dimensional unsteady flow analysis past bileaflet valve prosthesis in the mitral position is presented incorporating a fluid-structure interaction algorithm for leaflet motion during the valve-closing phase. Arbitrary Lagrangian-Eulerian method is employed for incorporating the leaflet motion. The forces exerted by the fluid on the leaflets are computed and applied to the leaflet equation of motion to predict the leaflet position. Relatively large velocities are computed in the valve clearance region between the valve housing and the leaflet edge with the resulting relatively large wall shear stresses at the leaflet edge during the impact-rebound duration. Negative pressure transients are computed on the surface of the leaflets on the atrial side of the valve, with larger magnitudes at the leaflet edge during the closing and rebound as well. Vortical flow development is observed on the inflow (atrial) side during the valve impact-rebound phase in a location central to the leaflet and away from the clearance region where cavitation bubbles have been visualized in previously reported experimental studies.  相似文献   

20.
The epidemiology of valvular heart disease has significantly changed in the past few decades with aging as one of the main contributing factors. The available options for replacement of diseased valves are currently limited to mechanical and bioprosthetic valves, while the tissue engineered ones that are under study are currently far from clinical approval. The main problem with the tissue engineered heart valves is their progressive deterioration that leads to regurgitation and/or leaflet thickening a few months after implantation. The use of bioresorbable scaffolds is speculated to be one factor affecting these valves’ failure. We have previously developed a non-degradable superelastic nitinol mesh scaffold concept that can be used for heart valve tissue engineering applications. It is hypothesized that the use of a non-degradable superelastic nitinol mesh may increase the durability of tissue engineered heart valves, avoid their shrinkage, and accordingly prevent regurgitation. The current work aims to study the effects of the design features on mechanical characteristics of this valve scaffold to attain proper function prior to in vivo implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号