首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ sensitizers like EMD 57033 (EMD) and CGP 48506 (CGP) may be advantageous for the treatment of human heart failure, as they increase force of contraction without increasing the intracellular Ca2+ transients or energy consumption. However, whether or not Ca2+ sensitizers differ in their mode of action in human myocardium is not fully understood. The present study investigates the influence of EMD and CGP on force of contraction (FOC) and the intracellular Ca2+ transient (fura-2 ratio method) in left ventricular papillary muscle strips from left ventricular failing human myocardium (DCM, n = 28) as well as in right atrial trabeculae (RA, n = 21) obtained from patients undergoing cardiac bypass surgery. In isolated trabeculae of DCM, FOC was more efficacious and potently increased after application of EMD (EC50 EMD: 4.7 +/- 1.0 mumol/l, max. PIE EMD: + 12.0 +/- 2.0 mN/mm2) than CGP (EC50: 16.9 +/- 7.6 mumol/l, max. PIE: +6.4 +/- 2.8 mN/mm2). Similar results were obtained in RA. Application of carbachol (100 mumol/l) had no effect on the positive inotropic effect of EMD or CGP. Both Ca2+ sensitizers significantly increased time to half peak relaxation as well as diastolic tension in DCM. EMD (10 mumol/l) and CGP (30 mumol/l) did not affect the Ca2+ transients in RA. The Ca2+ sensitizers EMD and CGP increase cAMP and Ca2+ independently from the force of contraction in the human myocardium. However, their therapeutic use in human heart failure may be limited as they impair relaxation.  相似文献   

2.
In heart failure a decreased function of SERCA2 has been demonstrated. The present study aimed at investigating the relation between sarcoplasmic reticulum-Ca2+-load (SR-Ca2+-load) and the activity of the SERCA2. SR-Ca2+ load was evaluated by measuring posttetanic potentiation (PTP) in human nonfailing (NF, n=10) and endstage failing myocardium (DCM, n=11). In addition, the effect of cyclopiazonic acid (CPA), a specific inhibitor of SERCA2, on PTP was studied in both NF and DCM. In crude membrane preparations from the same hearts the maximal SERCA2 activity was determined and correlated with the PTP. In failing myocardium the PTP was significantly reduced compared to nonfailing myocardium (13.7±0.75 mN/mm2 vs. 17.1±1.55 mN/mm2, p<0.05, ±SEM). When PTP was studied in the presence of increased extracellular Ca2+-concentrations, the difference between NF and DCM was further pronounced. CPA decreased PTP in both nonfailing and failing human tissue. The maximal SERCA2 activity was significantly reduced in failing myocardium (NF 267±18.5 nmol ATP/mg protein · min−1 vs. DCM 191±13.4 nmol ATP/mg protein · min−1, p<0.05, ± SEM). Correlation of the PTP and maximal SERCA2 activity revealed a close correlation between both parameters in NF and DCM. In summary, the presented results suggest that reduced SERCA2 activity in DCM influences posttetanic force potentiation probably through a reduced SR-Ca2+-load. Received: 30 July 1999 Returned for 1. revision: 9 September 1999 1. Revision received: 24 November 1999 Returned for 2. revision: 26 January 2000 2. Revision received: 26 April 2000 Accepted: 9 May 2000  相似文献   

3.
BACKGROUND: Failing human myocardium is characterized by a negative force-frequency relationship and impaired beta-adrenergic responsiveness which have been related to alterations of the intracellular Ca2+ homeostasis. Dantrolene sodium is a clinically used drug that modulates myocardial [Ca2+]i handling in animal models. This study investigated the effects of dantrolene sodium on intracellular Ca2+ handling and contractile function in failing human myocardium. METHODS AND RESULTS: Twenty-three muscle strips from human left ventricular trabeculae were obtained from patients undergoing heart transplantation for end-stage heart failure caused by idiopathic dilated cardiomyopathy (n = 15). Isometric contraction and intracellular Ca2+ transients (Ca2+ indicator: aequorin) were recorded simultaneously. The experiments were performed in three separate groups exposed to control condition (n = 8), addition of dantrolene (10 micromol/l; n = 8), or addition of verapamil (1 micromol/l; n = 7). Isoproterenol induced a moderate positive inotropic effect in the control group with a maximal increase of developed tension from 10.8 +/- 2.9 to 23.4 +/- 4.7 mN/mm2 and a parallel rise in peak systolic [Ca2+]i to a maximum of 1.36 +/- 0.20 micromol/l. Dantrolene significantly improved (10.2 +/- 3.8 to 32.4 +/- 0.9 mN/mm2) and verapamil blunted (8.3 +/- 2.8 to 17.1 +/- 4.3 mN/mm2) the inotropic response to isoproterenol. The diastolic and systolic [Ca2+]i during isoproterenol stimulation were slightly lower in the dantrolene group but significantly depressed in the verapamil group as compared to the control group. Similarly, analyses of force-frequency relationships revealed an improvement of developed tension in dantrolene-treated as compared to control preparations whereas the peak systolic [Ca2+]i was almost identical. CONCLUSION: Dantrolene improves the negative force-frequency relationship and beta-adrenergic responsiveness in failing human myocardium. These effects are not accompanied by an additional increase in intracellular [Ca2+]i but might be related to modifications of the diastolic [Ca2+]i homeostasis.  相似文献   

4.
Isometric force of contraction (DT), peak rate of tension increase (+T), peak rate of tension decrease (-T), time to peak tension (TPT), and time to half-relaxation (T 1/2 T) were measured in electrically driven human papillary muscle strips (New York Heart Association [NYHA] class IV heart transplants, dilated cardiomyopathy; nonfailing (NF) donor hearts, brain dead) (1 Hz, 37 degrees C) under basal conditions (1.8 mmol/L Ca2+) and after stimulation with isoprenaline, ouabain, and Ca2+. There was no difference in the isometric contraction (+T, -T, TPT, and T 1/2 T) between NYHA IV hearts and NF hearts under basal conditions. Inotropic stimulation above 300% of basal DT increased -T significantly more in NF hearts (p less than 0.05) compared with NYHA IV hearts. The effectiveness of ouabain and Ca2+ to increase DT was not significantly changed in NYHA IV hearts compared with NF hearts. The isoprenaline-mediated increase in DT was reduced (p less than 0.05) in NYHA IV hearts to a similar extent (70%) as beta-adrenoceptors were downregulated. When the rate of stimulation was increased to 3 Hz (force-frequency relationship), force of contraction increased only in NF preparations, whereas it decreased in NYHA IV myocardium (p less than 0.05). It was concluded that the contractile apparatus in terminally failing human myocardium is sufficient to maximally increase DT. During inotropic stimulation, abnormalities in diastolic rather than systolic contraction become evident. This may indicate abnormal intracellular Ca2+ handling.  相似文献   

5.
Compromised SERCA 2a activity is a key malfunction leading to the Ca(2+) cycling alterations in failing human myocardium. SERCA 2a activity is regulated by the Ca(2+)/calmodulin-dependent protein kinase (CaM-kinase) but alterations of the CaM-kinase pathway regarding SERCA 2a in heart failure are unresolved. Therefore we investigated the CaM-kinase and phosphatase calcineurin mediated regulation of SERCA 2a in failing and non-failing human myocardium. We studied human myocardial preparations from explanted hearts from non-failing organ donors (NF, n=8) and from patients with terminal heart failure undergoing cardiac transplantation (dilated cardiomyopathy, DCM, n=8). SERCA 2a activity was determined using a NADH-coupled enzyme assay [expressed in nmol ATP/(mg protein x min)] and by(45)Ca(2+) uptake. Protein expression of SERCA 2a, phospholamban, calsequestrin and calcineurin was assessed by Western blotting (expressed as densitometric units/microg protein); phosphorylation of cardiac proteins was detected with specific phospho-antibodies for phospholamban at threonine-17 (PT17) or by incorporation of [gamma -(32)P] (expressed as pmol(32)P/mg). Maximal(45)Ca(2+) uptake (in pmol/mg/min) (NF: 3402+/-174; DCM: 2488+/-189) and maximal SERCA 2a activity were reduced in DCM compared to NF (V(max): NF: 125+/-9; DCM: 98+/-5). The V(max) reduction could be mimicked by calcineurin in vitro in NF (NF(control): 72.1+/-3.7; NF(+calcineurin): 49.8+/-2.9) and restored in DCM by CaM-kinase in vitro (DCM(control): 98+/-5; DCM(+CaM-kinase): 120+/-6). Protein expression of SERCA 2a, phospholamban and calsequestrin remained similar, but calcineurin expression was significantly increased in failing human hearts (NF: 11.6+/-1.5 v DCM: 17.1+/-1.6). Although the capacity of endogenous CaM-kinase to phosphorylate PT17 was significantly higher in DCM (DCM(control): 128+/-36; DCM(+endogenous CaM-kinase): 205+/-20) compared to NF myocardium (NF(control): 273+/-37; NF(+endogenous CaM-kinase): 254+/-31), net phosphorylation at threonine-17 phospholamban was significantly lower in DCM (DCM 130+/-11 v NF 170+/-11). A calcineurin-dependent dephosphorylation of phospholamban could be mimicked in vitro by incubation of NF preparations with calcineurin (NF(control) 80.7+/-4.4 v NF(+calcineurin) 30.7+/-4.1, P<0.05). In human myocardium, the V(max) of SERCA 2a and the phosphorylation of phospholamban is modulated by CaM-kinase and calcineurin, at least in vitro. In failing human myocardium, despite increased CaM-kinase activity, calcineurin dephosphorylation leads to decreased net phosphorylation of threonine-17 phospholamban in vivo. Increased calcineurin activity contributes to the impaired V(max) of SERCA 2a in failing human myocardium and the disorder in Ca(2+)-handling in heart failure.  相似文献   

6.
The present study invesitgates the effect of stimulation frequency and external Ca2+-concentration on intracellular systolic and diastolic Ca2+ as well as on the force-frequency relationship (FFR, 0.5 to 3.0 Hz, 1.0 mmol/l extracellular Ca2+) in human myocardium using fura-2 AM loaded electrically stimulated right atrial muscle strips (coronary bypass surgery, n = 15, age: 60.0 ± 1.9 years). The FFR was positive (3.0 vs. 0.5 Hz: 184 ± 43 % of basal value) and linked to an increase in peak systolic (R340/380 sys, 119 ± 7 %) as well as diastolic Ca2+ (R340/380ED, Δ fura-2 ratio +0.20 ± 0.02). After elevating the extracellular Ca2+ concentration from 1.0 to 2.4 mmol/l, force of contraction (FOC) increased from 0.5 up to 1.0 Hz (128 ± 8 %) and declined after further augmentation of stimulation frequency (3.0 Hz: 87 ± 15 %). However, this decrease in FOC was accompanied by an increase in diastolic Ca2+ (Δ fura-2 ratio +0.45 ± 0.08), while systolic Ca2+ declined at high stimulation frequencies. In conclusion, the frequency-dependent force generation is accompanied by an increase in both systolic and diastolic Ca2+ levels. Thus, especially at high stimulation frequencies the Ca2+-lowering mechanisms may become crucial and may be responsible for the blunted force-frequency relationship in failing human myocardium. Received: 2 November 1998, Returned for revision: 30 November 1998, Revision received: 3 February 1999, Accepted: 10 February 1999  相似文献   

7.
The present study aimed to investigate the hypothesis that the function of the Na,Ca-exchanger (NCX) is of higher importance for contractility and Ca(2+)-homeostasis in left ventricle from terminally failing than from nonfailing human hearts. The effect of decreasing extracellular [Na](e) (140 to 25 mmol/L) on force of contraction in isolated left ventricular papillary muscle strips was studied as a reflection of NCX function in multicellular preparations (terminally failing, DCM, dilated cardiomyopathy, NYHA IV, n = 13; nonfailing, NF, donor hearts, n = 10). Decreasing [Na](e) has previously been shown to increase contractility in vitro secondary to a decreased Ca(2+)-extrusion by the NCX. In addition, the NCX activity was measured as Na(+)-dependent (45)Ca(2+)-uptake into isolated myocardial vesicles as a function of time and Ca(2+)-concentration (DCM n = 8, NF n = 8). Decreasing [Na](e) enhanced the contractility of papillary muscle strips in both DCM and NF, but the contractility of DCM was increased at smaller reductions of [Na](e) than NF. The NCX activity in isolated myocardial vesicles was unchanged as a function of time (T(1/2): DCM 2.4 +/- 0.3 s versus NF 2.5 +/- 0.3 s) and as a function of Ca(2+) (DCM 0.99 +/- 0.08 versus NF 0.96 +/- 0.07 nmol/mg protein x 3 s, K(1/2): DCM 39.2 microM versus NF 38.3 microM). These results demonstrate a higher sensitivity of the failing human myocardium towards Na,Ca-exchanger mediated positive inotropic effects, suggesting a higher significance of the Na,Ca-exchanger for the extrusion of Ca(2+)-ions in intact failing versus nonfailing human myocardium. Since the activity and the Ca (2+)-affinity of the Na,Ca-exchanger in isolated vesicles was unchanged, we propose that alterations in Ca(2+)-and Na(+)-homeostasis (due to impaired function of the sarcoplasmic reticulum and the Na(+), K(+)-ATPase) or the prolonged action potential are the reason for this observation.  相似文献   

8.
Cardiomyocytes isolated from failing human hearts are characterized by contractile dysfunction including prolonged relaxation, reduced systolic force and elevated diastolic force. These contractile abnormalities are paralleled by abnormal Ca 2+ homeostasis such as reduced sarcoplasmic reticulum (SR) Ca 2+ release, elevated diastolic Ca 2+ and reduced rate of Ca 2+ removal. In addition, failing human myocardium is characterized by a frequency-dependent decrease in systolic force and Ca 2+ as opposed to normal myocardium where an increase in pacing rate results in potentiation of contractility and an increase in SR Ca 2+ release. In the failing heart, the decrease in SR Ca 2+ load has been linked to a decrease in SR Ca 2+ ATPase (SERCA2a) function. We have recently shown that overexpression of SERCA2a by adenoviral gene transfer restores contractile function in cardiac myocytes from failing human hearts. In addition, we have shown that overexpression of SERCA2a in a model of pressure-overload hypertrophy in transition to failure improves contractile function and reserve in these animals. We are currently exploring the effect of long-term expression of SERCA2a in failing animals along with the energy cost of SERCA2a expression using NMR methods. We are also using a different strategy to improve SR Ca 2+ ATPase activity which involves decreasing the expression of phospholamban by antisense strategies to enhance SR Ca 2+ ATPase activity. The Na/Ca exchanger is also being targeted to enhance calcium removal in failing hearts. Action potential prolongation is attributed to reductions in transient outward current (Ito) density in human heart failure. This prolongation can alter contractility but can also cause afterdepolarization. Using gene transfer of various K channels responsible for Ito, we are investigating the molecular and the ionic basis of action potential prolongation in cardiac hypertrophy and failure and we are examining how intracellular calcium handling changes in response to alterations in action potential duration. Gene transfer, which serves initially as an experimental tool, may provide a novel therapeutic approach.  相似文献   

9.
In human failing myocardium, an increased Ca 2+-sensitivity of myofilament tension development has been described in Triton X skinned cardiac myocytes compared to cardiomyocytes obtained from non-failing human donor hearts. The present study aimed to investigate whether there are functional implications of the increased Ca 2+-sensitivity in heart failure and whether alterations of myofilament function are already obvious at earlier stages of heart failure, such as in cardiac hypertrophy or whether alterations of the intracellular Ca 2+-homeostasis are able to induce alterations in myofilament function. Ca 2+-activated tension development was measured in Triton X-skinned fibers from human failing and non-failing myocardium. Ca 2+-sensitivity of myofilament tension development was significantly shifted to the left in human failing myocardium. Plots of diastolic free Ca 2+ versus diastolic tension development showed that in a range of similar diastolic Ca 2+-concentrations, diastolic tension was significantly enhanced in the failing hearts. The Ca 2+/tension relationship was shifted to the right in Triton X-skinned fiber preparations from transgenic renin overexpressing rats (TG(mREN2)27), shown to have concentric hypertrophy. In addition, the Ca 2+/tension relationship was unchanged in phospholamban knock-out mice with an increased systolic Ca 2+ (and enhanced diastolic Ca 2+-load). It is concluded that the increased Ca 2+-sensitivity of myofilament tension observed in single cardiomyocytes from failing human myocardium may be a phenomenon also present in multicellular preparations and may contribute to the diastolic dysfunction observed in human heart failure. Alterations of myofilament function occur at very early stages of heart failure and may be species dependent, or dependent on intracellular free Ca 2+-levels.  相似文献   

10.
Intracellular Ca2+ release and reuptake are essential for contraction and relaxation of normal heart muscle. Intracellular Ca2+ transients were recorded with aequorin during isometric contraction of myocardium from patients with end-stage heart failure. In contrast to controls, contractions and Ca2+ transients of muscles from failing hearts were markedly prolonged, and the Ca2+ transients exhibited 2 distinct components. Muscles from failing hearts showed a diminished capacity to restore low resting Ca2+ levels during diastole. These experiments provide the first direct evidence from actively contracting human myocardium that intracellular Ca2+ handling is abnormal and may cause systolic and diastolic dysfunction in heart failure.  相似文献   

11.
Targeted deletion of cytoskeletal muscle LIM protein (MLP) in mice consistently leads to dilated cardiomyopathy (DCM) after one or more months. However, next to nothing is known at present about the mechanisms of this process. We investigated whether diastolic performance including passive mechanics and systolic behavior are altered in 2-week-old MLP knockout (MLPKO) mice, in which heart size, fractional shortening and ejection fraction are still normal. Right ventricular trabeculae were isolated from 2-week-old MLPKO and wildtype mice and placed in an apparatus that allowed force measurements and sarcomere length measurements using laser diffraction. During a twitch from the unloaded state at 1 Hz, MLPKO muscles relengthened to slack length more slowly than controls, although the corresponding force relaxation time was unchanged. Active developed stress at a diastolic sarcomere length of 2.00 microm was preserved in MLPKO trabeculae over a wide range of pacing frequencies. Force relaxation under the same conditions was consistently prolonged compared with wildtype controls, whereas time to peak and maximum rate of force generation were not significantly altered. Ca2+ content of the sarcoplasmic reticulum (SR) and the quantities of Ca2+ handling proteins were similar in both genotypes. In summary, young MLPKO mice revealed substantial alterations in passive myocardial properties and relaxation time, but not in most systolic characteristics. These results indicate that the progression to heart failure in the MLPKO model may be driven by diastolic myocardial dysfunction and abnormal passive properties rather than systolic dysfunction.  相似文献   

12.
OBJECTIVE: Xanthine oxidase (XO) inhibitors enhance myofilament Ca(2+) responsiveness of normal rat myocardium. We examined whether this inotropic action is preserved or magnified in failing rat myocardium and whether the magnitude of this effect correlates with tissue xanthine-oxidoreductase (XOR) activity. METHODS: Hearts of 18-20 month-old SHHF (spontaneous hypertensive/heart failure) rats with end-stage heart failure, as well as of normal control rats, were perfused with the XO inhibitor oxypurinol. Afterwards, [Ca(2+)](i) and tension were measured simultaneously in fura-2-loaded intact isolated right ventricular trabeculae. XOR activity was determined fluorometrically in myocardial homogenates. RESULTS: In failing myocardium, 100 microM oxypurinol significantly increased systolic twitch tension (by 87 and 92% at 1.0 and 1.5 mM extracellular [Ca(2+)], respectively), without altering [Ca(2+)](i) transient amplitude. Oxypurinol did not alter the midpoint or cooperativity of the steady-state tension-[Ca(2+)](i) relationship, but significantly enhanced maximum Ca(2+)-activated tension by 75% in failing myocardium. Oxypurinol also exerted a positive inotropic effect in failing myocardium, which was, however, of significantly smaller relative magnitude. Failing rat myocardium exhibited higher XOR activity than nonfailing myocardium, and this activity was largely suppressed in oxypurinol-treated preparations. CONCLUSIONS: The magnitude of functional improvement with XOR inhibitors depends on the initial level of XOR activity. Specifically, the inotropic actions of oxypurinol are more pronounced in failing rat myocardium, a tissue that exhibits enhanced XOR activity. Our findings rationalize how XO inhibitors boost cardiac contractility and improve mechanoenergetic coupling, and why the effects might be relatively 'selective' for heart failure.  相似文献   

13.
14.
Despite the fact that the mouse has become a common tool to study cardiac dysfunction, little is known regarding the regulation of murine cardiac contractility. We have investigated the three main mechanisms that regulate cardiac output (frequency-dependent activation, length-dependent activation, and beta-adrenergic stimulation) in ultra-thin right ventricular (RV) trabeculae from the mouse heart at body temperature (37 degrees C). [Ca(2+)](i) was recorded in a subset of trabeculae iontophoretically loaded with fura-2, and rapid cooling contractures were performed to estimate the sarcoplasmic reticulum (SR) calcium load. The force-frequency relationship was positive (2-12Hz); force increased, albeit slightly, while relaxation timing decreased. As expected, in response to beta-adrenergic stimulation, force development increased while contractile duration decreased, and increased muscle length led to increased force generation. Changes in SR calcium load and the calcium transient amplitude paralleled effects on active force generation. Despite several qualitative similarities with other mammalian species, the reserve for augmentation of force via either increased frequency or beta-adrenergic stimulation was considerably smaller in mouse than in other animals. Therefore, changes in preload, as opposed to increased HR or adrenergic tone, appears to be a much more important determinant of cardiac performance in the mouse than in larger mammals.  相似文献   

15.
Previous studies have shown reduced effects of cAMP-dependent positive inotropic agents in the failing human myocardium; thus other cAMP-independent mechanisms of action may be useful to increase force of contraction in this condition. The purpose of this investigation was to determine whether a positive inotropic effect of the cAMP-phosphodiesterase (PDE) inhibitor pimobendan is observed in the failing human myocardium and to study whether other factors, such as an increase in the Ca2+ sensitivity of myofilaments, play a functional role in the increase in force of contraction. Pimobendan produced a positive inotropic effect in isolated preparations from nonfailing donor hearts; however, in moderately (New York Heart Association class II-III, NYHA II-III) and severely (NYHA IV) failing myocardium, this effect was reduced. In addition, in NYHA IV specimens pimobendan inhibited the crude cAMP-PDE (crude PDE) and the isoenzymes I-III (PDE I-III) in a concentration-dependent way. As judged from the IC50 values found in this tissue for the inhibition of PDE III and of crude PDE, the potency of the compound was 18.1 times greater on PDE III. Consistent with a cAMP-PDE-dependent mechanism of action, the positive inotropic effect was potentiated by isoproterenol and inhibited by adenosine in failing myocardium. In failing myocardium, pimobendan also increased the sensitivity of skinned cardiac fibers to Ca2+ and shifted the Ca(2+)-tension relation to the left. This sensitizing effect began at 0.01 mumol/l in NYHA II-III and NYHA IV and rose to about 200% at 300 mumol/l in both groups. In contrast, the demethylated metabolite UD-CG 212 Cl failed to produce positive inotropic effects in failing myocardium alone, but in the presence of isoproterenol, it exerted an increase in force of contraction. The potency of UD-CG 212 Cl for PDE III inhibition in NYHA IV was greater than that of pimobendan. The metabolite pronouncedly decreased the sensitivity of skinned cardiac fibers to Ca2+ at 30-300 mumol/l in NYHA II-III and NYHA IV. It is concluded that in the failing human heart pimobendan inhibited PDE III and sensitized contractile proteins for Ca2+. Both effects appear to be involved in the positive inotropic effect of the compound, because its metabolite, UD-CG 212 Cl, had no effect on force of contraction and on the Ca2+ sensitivity of skinned cardiac fibers but inhibited PDE III even more potently than pimobendan.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
BACKGROUND: Cardiac glycosides are characterized by a narrow therapeutic range with Ca2+-overload and arrhythmias occurring at higher concentrations. Data on cardiac glycosides in isolated failing human myocardium are scarce and the frequency-dependent actions and toxicity of Strophanthidin have not yet been characterized. AIMS: To determine inotropic responses and toxicity of Strophanthidin in failing human myocardium. METHODS AND RESULTS: Experiments were performed in trabeculae from 64 end-stage failing hearts. Developed force, and intracellular [Ca2+]i and [Na+]i were recorded with Strophanthidin (0.01 to 1 micromol/L; 37 degrees C, 1 Hz) and compared to interventions with distinct mechanisms of action (elevated [Ca2+]o, Isoproterenol, and EMD57033). The effects of Strophanthidin on force-frequency behaviour were also assessed. Strophanthidin exerted concentration-dependent positive inotropic effects. These were paralleled by increases in intracellular [Na+] as well as increasing [Ca2+]i-transients and SR-Ca2+-load. At high concentrations (>0.5 micromol/L), Strophanthidin caused afterglimmers and aftercontractions, with declining developed force despite further increasing [Ca2+]i-transients. The force-frequency-relationship and diastolic function at higher pacing rates was worsened by Strophanthidin in a concentration-dependent manner. CONCLUSIONS: Strophanthidin toxicity was dependent on concentration, calcium load, beating rate and beta-adrenergic receptor activation. Our data support the view that low doses, heart rate control and additional beta-adrenergic receptor blockade are essential in the use of cardiac glycosides in heart failure.  相似文献   

17.
陈继业  史航  王俊平  黄震  修金 《心脏杂志》2018,30(2):146-149
目的 应用超声心动图来检测外源重组过氧化物还原酶(rePrx)-2对糖尿病心肌病(DCM)大鼠心功能的影响。方法 30只SD雄性大鼠分为对照组(n=10),单纯DCM模型组(单纯模型组,n=10),干预组(DCM+rePrx-2,n=10只)。干预组于糖尿病模型构建成功后通过腹部皮下植入微渗透泵方法给予rePrx-2蛋白。于DCM大鼠模型建立后第12周检测各组的心脏超声心动图结果,并应用HE及Masson染色对大鼠心肌组织进行病理检查。结果 与单纯模型组相比较,干预组大鼠心脏收缩期室间隔厚度(IVSs),舒张期室间隔厚度(IVSd),收缩期左心室内径(LVIDs),舒张期左心室内径(LVIDd),舒张期左室后壁厚度(LVPWd)和收缩期左室后壁厚度(LVPWs)显著降低,差异均具有统计学意义(均P<0.05);同时干预组心功能指标左室射血分数(LVEF)和缩短分数(LVFS)显著增高,差异具有统计学意义(均P<0.05),Masson及HE染色可见干预组明显改善单纯模型组心肌纤维化损伤程度。结论 通过超声心动图检查,能有效证实rePrx-2对DCM大鼠心肌重构及心功能有明显改善作用。  相似文献   

18.
Elevation of cytosolic sodium is thought to be correlated with an increase in force of contraction due to an activation of sodium-calcium exchange. We investigated the inotropic response mediated by the new sodium-channel activator BDF 9148 (0.01-100 mumol/l) on failing human myocardium. Force of contraction was studied using electrically driven human papillary muscle strips from moderately (NYHA II-III, mitral valve replacement) and terminally (NYHA IV, heart transplantation) failing hearts. We also investigated the effects in auricular trabeculae from non-failing hearts (aortocoronary bypass operation). Results were compared with inotropic responses to DPI 201-106 (DPI, 0.1-3 mumol/l), Ca2+ (1.8-15 mmol/l) and isoprenaline (0.001-1 mumol/l). Carbachol (100 mumol/l) and adenosine (1000 mumol/l) were examined in the presence of BDF 9148 and isoprenaline. Both sodium-channel activators, BDF 9148 and DPI 201-106, increased force of contraction in a dose-dependent manner in papillary muscle strips as well as in auricular trabeculae. BDF 9148 and DPI 201-106 were more effective (max. PIE NYHA II-III 1.6 +/- 0.2 mN, NYHA IV 5.9 +/- 0.7 mN, P less than 0.05) and more potent (EC50 (in mumol/l): NYHA IV 0.35, 0.19-0.66; NYHA II-III 1.85, 1.37-2.41) in terminally failing as compared to moderately failing left ventricular myocardium. Moreover, the positive inotropic effects of BDF 9148 were greater than those of DPI 201-106 in NYHA IV (max. PIE 2.7 +/- 0.3 mN, P less than 0.05). In NYHA IV, BDF 9148 was as effective as CA2+ (max. PIE 5.1 +/- 0.4 mN). In the same hearts, the positive inotropic effects of isoprenaline were reduced in NYHA IV (max. PIE 2.1 +/- 0.3 mN) compared to NYHA II-III (max. PIE 3.4 +/- 0.4 mN, P less than 0.05). Adenosine as well as carbachol did not affect the positive inotropic response of BDF 9148 or DPI 201-106 but reduced the effectiveness of isoprenaline (P less than 0.05). In myocardial membranes, BDF 9148 was 1000-fold less effective in competition experiments with 3H-ouabain than ouabain. We conclude that (1) sodium-channel activators may produce a significant cAMP-independent positive inotropic effect in left ventricular myocardium from failing human hearts; (2) the inotropic effect of sodium-channel activators were more potent and more effective in NYHA IV as compared to NYHA II-III. The degree of myocardial failure does not reduce the effectiveness of the sodium-channel activator BDF 9148.  相似文献   

19.
Zusammenfassung Ca2+-Sensitizer, wie z.B. EMD 57033 (EMD) und CGP 48506 (CGP) erhöhen die Kontraktionskraft ohne dabei den intrazellulären Ca2+-Transienten zu erhöhen und sind somit möglicherweise für die Behandlung der menschlichen Herzinsuffizienz von Bedeutung. Es ist jedoch unklar, ob sich Ca2+-Sensitizer in ihrem pharmakokinetischen Wirkprinzip am menschlichen Myokard unterscheiden. Daher wurde der Einfluss von EMD und CGP auf die Kontraktionskraft und den intrazellulären Ca2+-Transienten (Fura 2) an linksventrikulären Papillarmuskelstreifen (PAP) von menschlichem insuffizientem Myokard sowie in rechtsatrialen Trabekeln (RA) von Patienten untersucht, die sich einer aortokoronaren Bypass-Operation unterziehen mussten. In PAP wurde die Kraft effizienter und stärker nach Applikation von EMD (EC50 EMD: 4,7ǃ,0 7mol/l, max. PIE EMD: +12,0DŽ,0 mN/mm2) erhöht als nach CGP (EC50: 16,9lj,6 7mol/l, max. PIE: +6,4DŽ,8 mN/mm2). Ähnliche Ergebnisse wurden an RA erhalten. Carbachol (100 7mol/l) hatte keinen Einfluss auf die positiv inotrope Wirkung von EMD und CGP. Beide Ca2+-Sensitizer erhöhten signifikant die Relaxationszeit und die diastolischen Spannung. EMD und CGP veränderten den intrazellulären Ca2+-Transienten nicht. Schlussfolgerung Die Ca2+-Sensitizer EMD und CGP erhöhen cAMP- und Ca2+-unabhängig die Kontraktionskraft am menschlichen Myokard. Da sie die Relaxation beeinträchtigen, ist ihr therapeutischer Nutzen für die Herzinsuffizienz begrenzt. Summary Ca2+ sensitizers like EMD 57033 (EMD) and CGP 48506 (CGP) may be advantageous for the treatment of human heart failure, as they increase force of contraction without increasing the intracellular Ca2+ transients or energy consumption. However, whether or not Ca2+ sensitizers differ in their mode of action in human myocardium is not fully understood. The present study investigates the influence of EMD and CGP on force of contraction (FOC) and the intracellular Ca2+ transient (fura-2 ratio method) in left ventricular papillary muscle strips from left ventricular failing human myocardium (DCM, n=28) as well as in right atrial trabeculae (RA, n=21) obtained from patients undergoing cardiac bypass surgery. In isolated trabeculae of DCM, FOC was more efficacious and potently increased after application of EMD (EC50 EMD: 4.7ǃ.0 7mol/l, max. PIE EMD: +12.0DŽ.0 mN/mm2) than CGP (EC50: 16.9lj.6 7mol/l, max. PIE: +6.4DŽ.8 mN/mm2). Similar results were obtained in RA. Application of carbachol (100 7mol/l) had no effect on the positive inotropic effect of EMD or CGP. Both Ca2+ sensitizers significantly increased time to half peak relaxation as well as diastolic tension in DCM. EMD (10 7mol/l) and CGP (30 7mol/l) did not affect the Ca2+ transients in RA. The Ca2+ sensitizers EMD and CGP increase cAMP and Ca2+ independently from the force of contraction in the human myocardium. However, their therapeutic use in human heart failure may be limited as they impair relaxation.  相似文献   

20.
STUDY OBJECTIVE--The aim was to study intracellular calcium dynamics underlying positive or negative tension staircase of mammalian hearts. DESIGN--Changes in cytosolic calcium concentration [( Ca2+]i) in single ventricular myocytes were investigated using a Ca2+ indicator, fura-2. Beat to beat alterations in fura-2 fluorescence and cell edge movement on resumption of stimulation were recorded on video tape, and analysed by a computer based image processing system. EXPERIMENTAL MATERIAL--Single ventricular myocytes were enzymatically isolated from the hearts of 30 adult guinea pigs and 25 adult rats. MEASUREMENTS AND MAIN RESULTS--In guinea pig ventricular myocytes, the positive contractile staircase was associated with ascending staircases of both peak systolic and end diastolic [Ca2+]i because of a cumulative increase in diastolic [Ca2+]i. In rat ventricular myocytes, the negative contractile staircase was accompanied by a descending staircase of peak systolic [Ca2+]i, while end diastolic [Ca2+]i level was unchanged due to the rapid decay of [Ca2+]i transients. Ryanodine (10 microM) reversed the mode of [Ca2+]i and contractile staircases from negative to positive in rat myocytes, whereas it caused minimal alteration in guinea pig myocytes. CONCLUSIONS--Tension staircase of mammalian hearts depends on diastolic Ca2+ level as well as Ca2+ handling by the sarcoplasmic reticulum. The positive staircase may require progressive increase in diastolic [Ca2+]i, while the negative staircase may be mediated by depletion of activator Ca2+ in the sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号