首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Aging-associated nitro-oxidative stress causes tissue injury and activates proinflammatory pathways that play an important role in the pathogenesis of aging-associated cardiovascular dysfunction. It has been recently reported, that the copper(II)-aspirinate complex (CuAsp) exerts not only the well-known anti-inflammatory and platelet antiaggregating effects of aspirin, but, due to its superoxide dismutase mimetic activity, it acts as a potent antioxidant as well. In this study we investigated the effects of CuAsp on aging-associated myocardial and endothelial dysfunction. METHODS AND RESULTS: Aging and young rats were treated for 3 weeks with vehicle, or with CuAsp (200 mg/kg per day per os). Left ventricular pressure-volume relations were measured by using a microtip pressure-volume conductance catheter, and indexes of contractility (e.g., slope of end-systolic pressure-volume relationships [ESPVR] [E(es)], and dP/dt(max) - end-diastolic volume [EDV]) were calculated. In organ bath experiments for isometric tension with isolated aortic rings, endothelium-dependent and -independent vasorelaxation were investigated by using acetylcholine and sodium nitroprusside. When compared to the young controls, aging rats showed impaired left ventricular contractility (E(es), 0.51 +/- 0.04 vs. 2.16 +/- 0.28 mmHg/microL; dP/dt(max) - EDV, 10.71 +/- 2.02 vs. 37.23 +/- 4.18 mmHg/sec per microL; p < 0.05) and a marked endothelial dysfunction (maximal relaxation to acetylcholine: 66.66 +/- 1.30 vs. 87.09 +/- 1.35%; p < 0.05). Treatment with CuAsp resulted in reduced nitro-oxidative stress, improved cardiac function (E(es), 1.21 +/- 0.17 vs. 0.51 +/- 0.04 mmHg/microL; dP/dt(max) - EDV, 23.40 +/- 3.34 vs. 10.71 +/- 2.02 mmHg/sec per microL; p < 0.05) and higher vasorelaxation to acetylcholine in aging animals (94.83 +/- 0.73 vs. 66.66 +/- 1.30%; p < 0.05). The treatment did not influence the cardiovascular functions of young rats. CONCLUSIONS: Our results demonstrate that oxidative stress and inflammatory pathways contribute to the pathogenesis of cardiovascular dysfunction in the aging organism, which can be reversed by CuAsp.  相似文献   

2.
Background Reperfusion injury is a significant complication of the management of ST-elevation MI (STEMI). INO-1001 is a potent inhibitor of poly(ADP-ribose) polymerase (PARP), a mediator of oxidant-induced myocyte dysfunction during reperfusion. Methods & results We assessed the safety and pharmacokinetics of INO-1001 in a randomized, placebo-controlled, single-blind, dose-escalating trial in 40 patients with STEMI undergoing primary percutaneous coronary intervention within 24 h of onset. INO-1001 was well-tolerated. A trend toward more frequent transaminitis was observed with 800 mg. Plasma from INO1001-treated patients reduced in vitro PARP activity >90% at all doses. Serial C-reactive protein and IL-6 levels showed a trend toward blunting of inflammation with INO-1001. The apparent median terminal half-life (t1/2) of INO-1001 was 7.5 (25th, 75th: 5.9, 10.2) h. Conclusions The results from this first trial of INO-1001 in STEMI support future investigation of INO-1001 as a novel treatment for reperfusion injury. Clinical trial registration: NCT 00271765 at .  相似文献   

3.
OBJECTIVES: We investigated the effects of a novel ultrapotent poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor, PJ34, on cardiac and endothelial dysfunction in a rat model of chronic heart failure (CHF). BACKGROUND: Overactivation of the nuclear enzyme PARP importantly contributes to the development of cell dysfunction and tissue injury in various pathophysiologic conditions associated with oxidative stress, including myocardial reperfusion injury, heart transplantation, stroke, shock, and diabetes. METHODS: Chronic heart failure was induced in Wistar rats by chronic ligation of the left anterior descending coronary artery. Left ventricular (LV) function and ex vivo vascular contractility and relaxation were measured 10 weeks after the surgery. Nitrotyrosine (NT) formation and PARP activation were detected by immunohistochemistry. RESULTS: Chronic heart failure induced increased NT formation and PARP activation in the myocardium and intramural vasculature, depressed LV performance, and impaired vascular relaxation of aortic rings. PJ34 significantly decreased myocardial PARP activation but not NT formation, and improved both cardiac dysfunction and vascular relaxation. CONCLUSIONS: Poly(ADP-ribose) polymerase inhibition represents a novel approach for the experimental treatment of CHF.  相似文献   

4.
Oxygen- and nitrogen-derived free radicals and oxidants play an important role in the pathogenesis of diabetic endothelial dysfunction. Recently we proposed the importance of oxidant-induced DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in the pathogenesis of diabetic endothelial dysfunction. In this study, we tested whether established diabetic endothelial dysfunction is reversible by PARP inhibition. The novel PARP inhibitor PJ34 (10 mg/kg per day PO) was given at various lengths (4 weeks or 3 days) for established streptozotocin-diabetic animals. In addition, we also tested whether incubation of the aortic rings with PJ34 (3 micromol/L) or a variety of other PARP inhibitors for 1 hour affects the diabetic vascular changes. Both 4-week and 3-day PARP-inhibitor treatment of streptozotocin-diabetic mice with established endothelial dysfunction fully reversed the acetylcholine-induced endothelium-dependent relaxations in vitro. Furthermore, 1-hour in vitro incubation of aortae from streptozotocin-diabetic mice with various PARP inhibitors was able to reverse the endothelial dysfunction. ATP, NAD(+), and NADPH levels were markedly reduced in diabetic animals, and PARP-inhibitor treatment was able to restore these alterations. Unexpectedly, pharmacological inhibition of PARP not only prevents the development of the endothelial dysfunction but is also able to rapidly reverse it. Thus, PARP activation and the associated metabolic compromise represent an ongoing process in diabetic blood vessels. Pharmacological inhibition of this process is able to reverse diabetic endothelial dysfunction.  相似文献   

5.
Aim/hypothesis  Postpandrial hyperglycaemia is a significant risk factor for the development of macrovascular diseases. There is no clear agreement in the field whether these alterations result from hyperglycaemic episodes or from exaggerated alterations (‘glycaemic swings’) in blood glucose. We compared the effect of stable high glucose with a model of poorly maintained insulin-controlled diabetes (on average lower glucose, but with large glycaemic swings) on the development of endothelial dysfunction in rats. Methods  Intermediate- or long-acting insulin was used to reduce mean blood glucose levels. One group of animals had stable low glucose levels, while animals in the other group exhibited rapid changes (‘swings’) in their blood glucose concentration. Acetylcholine-induced endothelium-dependent vascular relaxation of the thoracic aorta was measured. Immunohistochemistry, western blot analysis and flow cytometry were used to determine nitrotyrosine formation and poly(ADP-ribose) accumulation in the aorta, in circulating leucocytes and in bone marrow cells. Results  Steady normalisation of blood glucose levels (a model of well-controlled diabetes) protected against the development of endothelial dysfunction, poly(ADP-ribose) polymerase (PARP) activation and nitrotyrosine production. However, impairment of endothelium-dependent relaxation was found in the animals undergoing glycaemic swings, even though the fructosamine levels in these animals were lower than in the untreated diabetic rats. This was associated with elevated PARP activation in the aorta and in bone marrow cells that was similar to or even more pronounced than that seen in the untreated diabetic animals. Conclusions/interpretation  Large glycaemic swings exert deleterious cardiovascular effects in diabetes mellitus, in part via enhanced activation of the PARP pathway.  相似文献   

6.
Accumulating evidence suggests that the reactive oxygen and nitrogen species are generated in cardiomyocytes and endothelial cells during myocardial ischemia/reperfusion injury, various forms of heart failure or cardiomyopathies, circulatory shock, cardiovascular aging, diabetic complications, myocardial hypertrophy, atherosclerosis, and vascular remodeling following injury. These reactive species induce oxidative DNA damage and consequent activation of the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), the most abundant isoform of the PARP enzyme family. PARP overactivation, on the one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport, and ATP formation, eventually leading to the functional impairment or death of the endothelial cells and cardiomyocytes. On the other hand, PARP activation modulates important inflammatory pathways, and PARP-1 activity can also be modulated by several endogenous factors such as various kinases, purines, vitamin D, thyroid hormones, polyamines, and estrogens, just to mention a few. Recent studies have demonstrated that pharmacological inhibition of PARP provides significant benefits in animal models of cardiovascular disorders, and novel PARP inhibitors have entered clinical development for various cardiovascular indications. Because PARP inhibitors can enhance the effect of anticancer drugs and decrease angiogenesis, their therapeutic potential is also being explored for cancer treatment. This review discusses the therapeutic effects of PARP inhibitors in myocardial ischemia/reperfusion injury, various forms of heart failure, cardiomyopathies, circulatory shock, cardiovascular aging, diabetic cardiovascular complications, myocardial hypertrophy, atherosclerosis, vascular remodeling following injury, angiogenesis, and also summarizes our knowledge obtained from the use of PARP-1 knockout mice in the various preclinical models of cardiovascular diseases.  相似文献   

7.
Introduction  We investigated the possible protective effect of poly (ADP-ribose) polymerase (PARP) inhibition in preventing endothelial dysfunction induced by hyperhomocysteinemia (Hhcy). Methods  Sprague–Dawley rats were divided into Hhcy group, Hhcy + 3-aminobenzamide(3-AB) group, control group and control + 3-AB group. A high-methionine diet was given to induce hyperhomocysteinemia. In Hhcy + 3-AB and control + 3-AB groups, rats were injected intraperitoneally with 3-AB (inhibitor of PARP). After 45 days, ultrastructural changes of aortas were observed by transmission electron microscope. Vascular reactivity of thoracic aortic rings was measured in organ chambers. PARP activity was detected. The levels of plasma total homocysteine, nitrite/nitrate, endothelin (ET)-1 and malondialdehyde were assayed. Results  Rats in Hhcy group developed severe hyperhomocysteinemia and significant loss of endothelial function as measured by both vascular rings and levels of nitrite/nitrate and ET-1. Malondialdehyde levels increased significantly in Hhcy rats compared with control rats. 3-AB improved Ach-induced, NO-mediated vascular relaxation and stabilized the level of nitrite/nitrate and ET-1. Obvious improvement of ultrastructure can be observed in Hhcy + 3-AB group. Conclusions  These results suggest that pharmacological inhibition of PARP prevents the development of endothelial dysfunction in rats with hyperhomocysteinemia which may represent a novel approach to improve vascular dysfunction associated with hyperhomocysteinemia. Xian Yu and Xiang Cheng contribute to the work equally. This work was supported by grants from Chenguang plan of Wuhan in China (NO:[2006] 40) and National Basic Research Program of China (973 Program): 2007CB512000;2007CB512005.  相似文献   

8.
Delivery of young bone marrow-derived stem cells offers a novel approach for restoring the impaired senescent cardiac angiogenic function that may underlie the increased morbidity and mortality associated with ischemic heart disease in older individuals. Recently, we reported that alterations in endothelial cells of the aging heart lead to a dysregulation in the cardiac myocyte platelet-derived growth factor (PDGF)-B-induced paracrine pathway, which contributes to impaired cardiac angiogenic function. Based on these results, we hypothesized that cellular restoration of the PDGF pathway by bone marrow-derived endothelial precursor cells (EPCs) could reverse the aging-associated decline in angiogenic activity. In vitro studies revealed that young murine (3-month-old) bone marrow-derived EPCs recapitulated the cardiac myocyte-induced expression of PDGF-B, whereas EPCs from the bone marrow of aging mice (18-month-old) did not express PDGF-B when cultured in the presence of cardiac myocytes. Transplantation of young, but not old, genetically marked syngeneic bone marrow cells into intact, unirradiated aging mice that populated the endogenous senescent murine bone marrow incorporated into the neovasculature of subsequently transplanted syngeneic neonatal myocardium. Moreover, the young bone marrow-derived EPCs restored the senescent host angiogenic PDGF-B induction pathway and cardiac angiogenesis, with graft survival and myocardial activity in the aging murine host (cardiac allograft viability: 3-month-old controls, 8/8; 18-month-old controls, 1/8; 18-month-old donors receiving bone marrow from 3-month-old mice, 15/16; or 18-month-old mice, 0/6; P<0.05). These results may offer a foundation for the development of novel therapies for the prevention and treatment of cardiovascular disease associated with aging.  相似文献   

9.
Hemorrhagic shock (HS) and resuscitation leads to widespread production of oxidant species. Activation of the enzyme poly(ADP-ribose) polymerase (PARP) has been shown to contribute to cell necrosis and organ failure in various disease conditions associated with oxidative stress. We tested the hypothesis whether PARP activation plays a role in the multiple organ dysfunction complicating HS and resuscitation in a murine model of HS and resuscitation by using mice genetically deficient in PARP (PARP(-/-)) and their wild-type littermates (PARP(+/+)). Animals were bled to a mean blood pressure of 45 mmHg (1 mmHg = 133 Pa) and resuscitated after 45 min with isotonic saline (2x volume of shed blood). There was a massive activation of PARP, detected by poly(ADP-ribose) immunohistochemistry, which localized to the areas of the most severe intestinal injury, i.e., the necrotic epithelial cells at the tip of the intestinal villi, and colocalized with tyrosine nitration, an index of peroxynitrite generation. Intestinal PARP activation resulted in gut hyperpermeability, which developed in PARP(+/+) but not PARP(-/-) mice. PARP(-/-) mice were also protected from the rapid decrease in blood pressure after resuscitation and showed an increased survival time, as well as reduced lung neutrophil sequestration. The beneficial effects of PARP suppression were not related to a modulation of the NO pathway nor to a modulation of signaling through IL-6, which similarly increased in both PARP(+/+) and PARP(-/-) mice exposed to HS. We propose that PARP activation and associated cell injury (necrosis) plays a crucial role in the intestinal injury, cardiovascular failure, and multiple organ damage associated with resuscitated HS.  相似文献   

10.
Excessive activation of poly(ADP-ribose) polymerase 1 (PARP1) leads to NAD(+) depletion and cell death during ischemia and other conditions that generate extensive DNA damage. When activated by DNA strand breaks, PARP1 uses NAD(+) as substrate to form ADP-ribose polymers on specific acceptor proteins. These polymers are in turn rapidly degraded by poly(ADP-ribose) glycohydrolase (PARG), a ubiquitously expressed exo- and endoglycohydrolase. In this study, we examined the role of PARG in the PARP1-mediated cell death pathway. Mouse neuron and astrocyte cultures were exposed to hydrogen peroxide, N-methyl-d-aspartate (NMDA), or the DNA alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Cell death in each condition was markedly reduced by the PARP1 inhibitor benzamide and equally reduced by the PARG inhibitors gallotannin and nobotanin B. The PARP1 inhibitor benzamide and the PARG inhibitor gallotannin both prevented the NAD(+) depletion that otherwise results from PARP1 activation by MNNG or H(2)O(2). However, these agents had opposite effects on protein poly(ADP-ribosyl)ation. Immunostaining for poly(ADP-ribose) on Western blots and neuron cultures showed benzamide to decrease and gallotannin to increase poly(ADP-ribose) accumulation during MNNG exposure. These results suggest that PARG inhibitors do not inhibit PARP1 directly, but instead prevent PARP1-mediated cell death by slowing the turnover of poly(ADP-ribose) and thus slowing NAD(+) consumption. PARG appears to be a necessary component of the PARP-mediated cell death pathway, and PARG inhibitors may have promise as neuroprotective agents.  相似文献   

11.
In old animals a marked reduction in endothelium-dependent relaxation occurs. Since there is evidence that the endothelial dysfunction associated with aging may be partly related to the local formation of reactive oxygen species, the purpose of this study was to examine the effect of the natural antioxidant melatonin (10(-5)mol/l) on in vitro contractility of aged aortic rings under conditions of increased oxidative stress (40 m mol/l glucose concentration in medium). Experiments were carried out in 18-20 months old, Wistar male rats, using adult (6-7 months old) animals as controls. A higher plasma lipid peroxidation was found in aged rats as compared to the younger ones. In a first experiment, dose-response curves for acetylcholine-induced relaxation of aortic rings were conducted. Analyzed as a main factor in a factorial ANOVA, age decreased and melatonin augmented the relaxing response to acetylcholine. melatonin's restoring effect on aortic ring relaxation was found in aged aortic rings only and was more pronounced in the presence of a high glucose medium. In a second experiment, the effect of melatonin on the contractility response to phenylephrine of intact or endothelium-denuded aortic rings obtained from aged or control rats was examined in normal or high glucose medium. A main factor analysis in the factorial ANOVA indicated that age and operation augmented, and melatonin decreased, aortic ring contractility response to phenylephrine. Melatonin's restoring effect on aortic contractility was seen in aged aortic rings. The effect of age or a high glucose medium on phenylephrine-induced contractility was more pronounced in the absence of an intact endothelium. Aging did not affect the relaxant response of intact or endothelium-denuded rings to sodium nitroprusside. The results support the improvement by melatonin of vascular response in aging rats, presumably via its antioxidant activity.  相似文献   

12.
OBJECTIVE: Oxidant stress-induced activation of poly(ADP-ribose) polymerase (PARP) plays a role in the pathogenesis of various cardiovascular diseases. We have now investigated the role of PARP in the death of cardiac myocytes in response to oxidant stress induced by hydrogen peroxide, with focus on the mitochondrial function. METHODS AND RESULTS: Using wild-type and PARP-1-deficient murine myocytes challenged with hydrogen peroxide, we found that mitochondrial respiration and mitochondrial membrane potential were better preserved in PARP-deficient myocytes and cellular NAD+ levels were maintained. The release of the mitochondrial cell death factor cytochrome c, and the mitochondrial-to-nuclear translocation of apoptosis-inducing factor (AIF) were also attenuated in the PARP-deficient myocytes. CONCLUSION: PARP-1, directly or indirectly, regulates the translocation of AIF in myocytes subjected to oxidative stress. The current results are consistent with the view that PARP-1 activation, via induction of mitochondrial dysfunction and promotion of mitochondrial cell death pathways, plays a deleterious pathophysiological role under conditions of oxidative stress.  相似文献   

13.
Type 2 diabetes mellitus (T2DM) is associated with microvascular dysfunction. We hypothesized that increased poly(ADP-ribose) polymerase 1 (PARP-1) activity contributes to microvascular dysfunction in T2DM. T2DM (db(-)/db(-)) and nondiabetic control (db(-)/db(+)) mice were treated with 2 different PARP-1 inhibitors (INO-1001, 5 mg/kg per day and ABT-888, 15 mg/kg per day) for 2 weeks. Isolated coronary arterioles were mounted in an arteriograph. Pressure-induced myogenic tone was significantly potentiated, whereas endothelium-dependent relaxation was significantly attenuated in diabetic mice compared with control mice. These results were associated with decreased endothelial NO synthase phosphorylation and cGMP level and increased PARP-1 activity in coronary arterioles from diabetic mice compared with control mice. Interestingly, PARP-1 inhibitors significantly reduced the potentiation of myogenic tone, improved endothelium-dependent relaxation, restored endothelial NO synthase phosphorylation and cGMP, and attenuated cleaved PARP-1. These results were supported by in vitro studies indicating that downregulation of PARP-1 in mesenteric resistance arteries using PARP-1 short hairpin RNA lentiviral particles significantly improved endothelium-dependent relaxation in mesenteric resistance arteries from diabetic mice compared with control mice. The inhibition of NO synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the endothelium-dependent relaxation in coronary arterioles and mesenteric resistance arteries from control and diabetic mice treated with PARP-1 inhibitors and PARP-1 short hairpin RNA lentiviral particles. In addition, we demonstrated that enhanced cleaved PARP-1, its binding to DNA, and DNA damage were reduced after PARP-1 inhibition in cultured endothelial cells stimulated with high glucose. We provide evidence that T2DM impairs microvascular function by an enhanced PARP-1 activity-dependent mechanism. Therefore, PARP-1 could be a potential target for overcoming diabetic microvascular complications.  相似文献   

14.
OBJECTIVE: The autonomous proliferative response of endothelial cells to hypoxia has been shown to be dependent on activation of NAD(P)H oxidase, on the cytosolic Ca2+ load, and, consequently, on nuclear translocation of extracellular signal-regulated kinase (ERK)1/2 during transient hypoxia. The aim of the present study was to investigate whether poly(ADP-ribose) polymerase (PARP) is a downstream signal of NAD(P)H oxidase, mediating cytosolic Ca2+ load and hence nuclear translocation of ERK1/2 and endothelial cell proliferation. METHODS: Porcine aortic endothelial cells were incubated under hypoxic conditions for 40 min. Cytosolic [Ca2+] and reactive oxygen species (ROS) formation were measured in fura-2- and DCF-loaded cells, respectively. PARP activation was detected by immunocytochemistry, and endothelial cell proliferation was determined 24 h after 60 min of transient hypoxia. RESULTS: Inhibition of NAD(P)H oxidase with antisense oligonucleotide against the p22(phox) subunit, MEK/ERK signalling with UO 126 (30 microM), or PARP with PJ 34 (10 microM) leads to a marked reduction in hypoxia-induced cytosolic Ca2+ load and activation of PARP. Hypoxia-induced translocation of ERK1/2 and endothelial cell proliferation were also prevented when NAD(P)H oxidase or PARP were inhibited; however, hypoxic ROS formation was not affected in the presence of PARP inhibitor. CONCLUSION: PARP represents a downstream effector of NADP(H) oxidase and acts as a necessary intermediate step for the hypoxic proliferative response of endothelial cells.  相似文献   

15.
Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and in cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity, and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (eg, renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics, and exercise training.  相似文献   

16.
Overactivation of poly(adenosine diphosphate-ribose) polymerase (PARP), an enzyme involved in cellular response to DNA injury resulting from oxidative and nitrosative stress, is considered to play a key role in the pathogenesis of diabetes complications by promoting numerous vascular dysfunctions. In this study, we examined the ability of metformin, which was reported to possess intrinsic vasculoprotective properties independently of its antihyperglycemic effects, to inhibit PARP activation induced by high glucose concentrations in bovine aortic endothelial cells; and we investigated the potential mechanisms involved in this inhibition. The PARP activity was measured by cellular enzyme-linked immuno-specific assay (CELISA) method; cell poly(ribosyl)ated protein polymer accumulation was evaluated by immunofluorescence. Peroxynitrite anion productions were determined using dihydrorhodamine 123 fluoroprobe; and expression of p47phox subunit of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase was analyzed by Western blot in the absence and presence of protein kinase C and NAD(P)H oxidase inhibitors (calphostin and diphenyleneiodonium chloride, respectively). Our data showed that a therapeutically relevant concentration of metformin (5.10−5 mol/L) was able to abolish PARP activation, to reduce poly(ribosyl)ated protein polymer accumulation, to decrease intracellular peroxynitrite anion level, and to reverse the overexpression of p47phox in bovine aortic endothelial cells stimulated by 25 mmol/L glucose in a similar manner to that of calphostin or diphenyleneiodonium chloride. Taken together, these results suggest that metformin could inhibit glucose-induced PARP activation through blockade of a protein kinase C-dependent NAD(P)H oxidase activation pathway. We propose that some of the beneficial effects of metformin on vascular endothelial cell functions in diabetes may be related to its inhibitory effect on PARP overactivation and its deleterious consequences.  相似文献   

17.
Cardiovascular system changes with aging, and these changes are modified by arteriosclerosis-risk factors, i.e., hypertension and diabetes, as well as arterial-cardiac interactions. Regarding age-related changes in the cardiovascular system, Lakatta et al. reported morphological and functional changes that are specific to the cardiovascular aging and are distinct from arteriosclerotic changes. After then, various studies on the mechanism of aging of the cardiovascular system have been performed from the viewpoint of cellular aging, endothelial or endocardial function, and fibroblast. Aging-related changes in the cardiovascular system include death and dysfunction of cell, and matrix fibrosis, but these can also be induced by various causes other than aging. To elucidate the relationship between aging and remodeling of the cardiovascular system, firstly, it is necessary to clarify the phenomena of cellular aging. Changes also differ between the heart and arteries, and there are time lags between aging and aging-associated morphological and functional changes in the cardiovascular system: some changes appear early (early type) or later (delayed type) and some changes occur at the same speed with aging (linear type). In this report, the latest findings concerning aging-associated functional and morphological changes in the arteries and the heart are reviewed and the studies are summarized. Arteries and the heart change with aging while interacting with each other. These arterial-cardiac interactions are also described.  相似文献   

18.

Background

Fibrosis is one of the major pathological features of hypertensive vascular disease. In this study, we aim to explore the possible protective effects of poly(ADP-ribose) polymerase (PARP) inhibitor on angiotensin II (AngII)-induced aortic fibrosis.

Methods

Sprague–Dawley rats were infused subcutaneously with AngII. PARP inhibitor was intraperitoneally injected once a day. Collagen deposition in thoracic aorta was assayed by Masson tricrome staining. The mRNA and protein expression of TGF-β target genes involved in extracellular matrix (ECM) remodeling in aorta was measured. Plasma level and aortic expression of TGF-β1 was assayed. Correlation of systolic blood pressure (SBP) with plasma level of TGF-β1 was analyzed. In cultured rat vascular smooth muscle cells (VSMCs), effects of PARP inhibition on TGF-β1 expression, Smad3 transactivity, and TGF-β/Smad3 target gene expression were investigated.

Results

Infusion of AngII promoted aortic PARP activation. Treatment with PARP inhibitor alleviated AngII-induced collagen deposition and expression of TGF-β target genes involved in ECM remodeling in aorta of rat. AngII increased plasma level and aortic expression of TGF-β1. A positive correlation between SBP and plasma level of TGF-β1 was revealed. Treatment with PARP inhibitor prevented AngII-induced elevation of SBP. Further experiments uncovered that AngII treatment increased TGF-β dependent gene expression through Smad3 pathway in cultured VSMCs. Inhibition of PARP prevented AngII-induced increases in TGF-β1 expression, Smad3 transactivity and its target gene expression.

Conclusions

These data indicate that inhibition of PARP prevents aortic fibrosis in AngII-induced hypertension in rats. This beneficial effect is mediated by inhibiting TGF-β/Smad3 pathway.  相似文献   

19.
Yang X  Sreejayan N  Ren J 《Endocrine》2005,26(2):127-137
Senescence is associated with enhanced risk of cardiovascular diseases. It is generally considered that decline in growth hormones (such as insulin-like growth factor I), intrinsic myocardial and endothelial functions, as well as accumuation of reactive oxygen species with increased age may contribute to cardiovascular senescence. It is believed that heart function, especially cardiac reserve declines with advanced age. However, most experimental and clinical investigations on ventricluar function only included young or adult subjects and failed to address this important age issue in heart pathophysiology. Although senescent but otherwise healthy hearts may possess normal pumping function at the resting or non-stressed state, some aging-associated factors such as accumulation of reactive oxygen species and activation of selective stress signaling pathways may interact with certain risk factors and compromise overall cardiac function. The precise cause and progression of compromised cardiac function in the elderly remain controversial. This review will focus on senescene-related alterations in cardiac contractile function with a special emphasis on oxidative stress and activation of stress signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号