首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The latest research highlights the role of chemokine signaling pathways in the development of nerve injury-induced pain. Recent studies have provided evidence for the involvement of CCR2 and CCR5 in the pathomechanism underlying neuropathy. Thus, the aim of our study was to compare the effects of a selective CCR2 antagonist (RS504393), selective CCR5 antagonist (maraviroc) and dual CCR2/CCR5 antagonist (cenicriviroc) and determine whether the simultaneous blockade of both receptors is better than blocking only one of them selectively. All experiments were performed using Wistar rats/Swiss albino mice subjected to chronic constriction injury (CCI) of the sciatic nerve. To assess pain-related reactions, the von Frey and cold plate tests were used. The mRNA analysis was performed using RT-qPCR. We demonstrated that repeated intrathecal administration of the examined antagonists attenuated neuropathic pain in rats 7 days post-CCI. mRNA analysis showed that RS504393 did not modulate the spinal expression of the examined chemokines, whereas maraviroc reduced the CCI-induced elevation of CCL4 level. Cenicriviroc significantly lowered the spinal levels of CCL2-4 and CCL7. At the dorsal root ganglia, strong impacts of RS504393 and cenicriviroc on chemokine expression were observed; both reduced the CCI-induced elevation of CCL2-5 and CCL7 levels, whereas maraviroc decreased only the CCL5 level. Importantly, we demonstrated that a single intrathecal/intraperitoneal injection of cenicriviroc had greater analgesic properties than RS504393 or maraviroc in neuropathic mice. Additionally, we demonstrated that cenicriviroc enhanced opioid-induced analgesia. Based on our results, we suggest that targeting CCR2 and CCR5 simultaneously, is an interesting alternative for neuropathic pain pharmacotherapy.  相似文献   

2.
The participation of the chemokine CCL2 (monocyte chemoattractant protein-1) in inflammatory and neuropathic pain is well established. Furthermore, the release of CCL2 from a NCTC 2472 cells-evoked tumor and its involvement in the upregulation of calcium channel α2δ1 subunit of nociceptors was demonstrated. In the present experiments, we have tried to determine whether the increase in CCL2 levels is a common property of painful tumors and, in consequence, the administration of a chemokine receptor type 2 (CCR2) antagonist can inhibit tumoral hypernociception. CCL2 levels were measured by ELISA in the tumoral region of mice intratibially inoculated with NCTC 2472 or B16-F10 cells, and the antihyperalgesic and antiallodynic effects evoked by the administration of the selective CCR2 antagonist RS 504393 were assessed. Cultured NCTC 2472 cells release CCL2 and their intratibial inoculation evokes the development of a tumor in which CCL2 levels are increased. Moreover, the systemic or peritumoral administration of RS 504393 inhibited thermal and mechanical hyperalgesia, but not mechanical allodynia evoked after the inoculation of these cells. Thermal hyperalgesia was also inhibited by the peritumoral administration of a neutralizing CCL2 antibody. In contrast, no change in CCL2 levels was observed in mice inoculated with B16-F10 cells, and RS 504393 did not inhibit the hypernociceptive reactions evoked by their intratibial inoculation. The peripheral release of CCL2 is involved in the development of thermal and mechanical hyperalgesia, but not mechanical allodynia evoked by the inoculation of NCTC 2472 cells, whereas this chemokine seems unrelated to the hypernociception induced by B16-F10 cells.  相似文献   

3.
BACKGROUND AND OBJECTIVE: Treatment of neuropathic pain remains a challenge and the role of various analgesics in this setting is still debated. The effects of tramadol, an atypically acting analgesic with a combined opioid and monoaminergic mechanism of action, and morphine, a prototypical opioid, were tested in rat models of neuropathic and nociceptive pain. METHODS: Cold allodynia and mechanical hypersensitivity, symptoms of neuropathic pain, were studied in rat models of mononeuropathic pain. Cold allodynia was analyzed in the chronic constriction injury (CCI) model and mechanical hypersensitivity was analyzed in the spinal nerve ligation (SNL) model. Heat-induced rat tail-flick latencies were determined as measure for nociceptive pain. RESULTS: Cold allodynia and mechanical hypersensitivity were strongly attenuated with similar absolute potency after intravenous administration of tramadol and morphine. The doses of drug that were calculated to result in 50% pain inhibition (ED(50)) for tramadol and morphine were 2.1 and 0.9 mg/kg, respectively, in CCI rats and 4.3 and 3.7 mg/kg, respectively, in SNL rats. In the tail-flick assay of acute nociception, the potency of the two drugs differed markedly, as seen by ED(50) values of 5.5 and 0.7 mg/kg intravenously for tramadol and morphine, respectively. Accordingly, the analgesic potency ratio (ED(50) tramadol/ED(50) morphine) of both compounds differed in neuropathic (potency ratio 2.3 in CCI and 1.2 in SNL) and nociceptive pain models (potency ratio 7.8), suggesting a relative increase in potency of tramadol in neuropathic pain compared with nociceptive pain. CONCLUSION: The results of this study are consistent with clinical data supporting the efficacy of opioids in neuropathic pain conditions, and furthermore suggest an additional contribution of the monoaminergic mechanism of tramadol in the treatment of neuropathic pain states.  相似文献   

4.
5.
Numerous studies revealed that spinal inflammation and immune response play an important role in neuropathic pain. In this study, we investigated the effects of intrathecal injection of a Toll-like receptor (TLR4) inhibitor epigallocatechin gallate (EGCG) on neuropathic pain induced by chronic constriction injury of the sciatic nerve (CCI). A total of 120 rats were randomly assigned into 4 groups: sham-operated group, CCI group, CCI plus normal saline group and CCI plus EGCG group. CCI and sham surgeries were performed and both thermal hyperalgesia and mechanical allodynia were tested. Lumbar spinal cord was sampled and the mRNA and protein expressions of TLR4 and High Mobility Group 1 protein (HMGB1) were detected, the contents of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-10 (IL-10) were measured by ELISA, and immunohistochemistry for nuclear factor kappa B (NF-κB) was also carried out. When compared with the sham group, both mechanical and heat pain thresholds were significantly decreased, and the mRNA and protein expressions of TLR4 and HMGB1, the contents of TNF-α, IL-1β and IL-10 in the spinal cords and NF-κB expression in the spinal dorsal horn were markedly increased in CCI rats (P<0.05). After intrathecal injection of EGCG (1mg/kg) once daily from 1day before to 3days after CCI surgery, the expressions of TLR4, NF-κB, HMGB1, TNF-α and IL-1β were markedly decreased while the content of IL-10 in the spinal cord increased significantly accompanied by dramatical improvement of pain behaviors in CCI rats (P<0.05). These results show that the TLR4 signaling pathway plays an important role in the occurrence and development of neuropathic pain, and the therapy targeting TLR4 might be a novel strategy in the treatment of neuropathic pain.  相似文献   

6.
Crude alkaloidal extraction from Gelsemium elegans Benth. produces analgesic property. However, its clinical utility has been obstructed by its narrow therapeutic index. Here, we investigated the potential of koumine, a monomer of Gelsemium alkaloids, to reduce both inflammatory and neuropathic pain. Interestingly, allopregnanolone, a neurosteroid, appeared to mediate the reduction of neuropathic pain. The potential anti-inflammatory pain effects of koumine were evaluated by acetic acid-, formalin- and complete Freund's adjuvant (CFA) -induced nociceptive behaviors in mice. Chronic constriction injury (CCI) and L5 spinal nerve ligation (L5 SNL), inducing thermal hyperalgesia and mechanical allodynia in rats, were used to test whether repeated treatment of koumine ameliorated neuropathic pain. Finally, we explored if koumine altered the level of neurosteroids in rat spinal cord of CCI neuropathy using liquid chromatography-tandem mass spectrometry. Koumine dose-dependently reduced the acetic acid-induced writhes and formalin-induced licking/biting time of Phase II in mice. Repeated administrations of koumine also dose-dependently reversed the CFA-, CCI- and L5 SNL-induced thermal hyperalgesia, as well as, CCI- and L5 SNL-induced mechanical allodynia in rats. The level of allopregnanolone, but not pregnenolone, in the L5-6 spinal cord was elevated by repeated treatment of koumine in CCI-induced neuropathic rats. These results demonstrate that koumine has a significant analgesic effect in rodent behavioral models of inflammatory and neuropathic pain, and that the reduction in neuropathic pain may be associated with the upregulation of allopregnanolone in the spinal cord.  相似文献   

7.
华蟾素具有抗炎镇痛的作用,在治疗骨癌痛方面具有重要价值,但其机制尚不清楚。本实验将4×105个Walker-256细胞接种于SD大鼠左后肢,构建乳腺癌骨转移模型。实验方案经三峡大学医学院医学实验动物伦理委员会审议同意并批准。将大鼠随机分成假手术组、模型组、华蟾素组、吗啡组、生理盐水组、米诺环素组、小胶质细胞抑制剂(RS102895)组和联合用药(华蟾素+米诺环素)组。华蟾素组(5 mL·kg-1)、吗啡组(8 mg·kg-1)及联合用药组(含华蟾素5 mL·kg-1)于造模第9天开始连续静脉注射给药至21天;生理盐水组、米诺环素组(2.5μg·μL-1, 20μL)、RS102895组(1.5μg·μL-1, 20μL)、联合用药组(含米诺环素2.5μg·μL-1, 20μL)在造模第12天开始连续鞘内插管给药至21天,然后处理大鼠。利用苏木精-伊红(H&E)染色法检测大鼠左后肢骨质破坏情况;通过行为学指标观察大鼠造模前、造模第2、5、7、9、12、14、17和20天痛阈值变化;通过免疫荧光...  相似文献   

8.
Dong ZQ  Wang YQ  Ma F  Xie H  Wu GC 《Neuropharmacology》2006,50(4):393-403
Glial cell line-derived neurotrophic factor (GDNF) has been hypothesized to play an important role in the modulation of nociceptive signals especially during neuropathic pain. The present study examined the expression of GDNF and GFRalpha-1 (the high-affinity receptor of GDNF) in dorsal root ganglions (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. In order to address the role of GDNF and GFRalpha-1 in neuropathic pain, antisense oligodeoxynucleotide (ODN) specifically against GFRalpha-1 was intrathecally administered to result in down-regulation of GFRalpha-1 expression. The results showed that both the protein and mRNA levels of GDNF and GFRalpha-1 were significantly increased after CCI, while the thermal hyperalgesia of neuropathic pain rats could be significantly aggravated by antisense ODN treatment, but not by normal saline (NS) or mismatch ODN treatment. The present study demonstrated that endogenous GDNF and GFRalpha-1 might play an anti-hyperalgesic role in neuropathic pain of rats. In addition, we found a down-regulation of somatostatin (SOM) in DRG and spinal dorsal horn after expression of GFRalpha-1 was knocked down, which suggested the possible relationship between the anti-hyperalgesic effect of GDNF and GFRalpha-1 on neuropathic pain and endogenous SOM.  相似文献   

9.
Background and PurposeThe cytokine activin C is mainly expressed in small‐diameter dorsal root ganglion (DRG) neurons and suppresses inflammatory pain. However, the effects of activin C in neuropathic pain remain elusive.Experimental ApproachMale rats and wild‐type and TRPV1 knockout mice with peripheral nerve injury ‐ sciatic nerve axotomy and spinal nerve ligation in rats; chronic constriction injury (CCI) in mice – provided models of chronic neuropathic pain. Ipsilateral lumbar (L)4–5 DRGs were assayed for activin C expression. Chronic neuropathic pain animals were treated with intrathecal or locally pre‐administered activin C or the vehicle. Nociceptive behaviours and pain‐related markers in L4–5 DRGs and spinal cord were evaluated. TRPV1 channel modulation by activin C was measured.Key ResultsFollowing peripheral nerve injury, expression of activin βC subunit mRNA and activin C protein was markedly up‐regulated in L4–5 DRGs of animals with axotomy, SNL or CCI. [Correction added on 26 November 2020, after first online publication: The preceding sentence has been corrected in this current version.] Intrathecal activin C dose‐dependently inhibited neuropathic pain in spinal nerve ligated rats. Local pre‐administration of activin C decreased neuropathic pain, macrophage infiltration into ipsilateral L4–5 DRGs and microglial reaction in L4–5 spinal cords of mice with CCI. In rat DRG neurons, activin C enhanced capsaicin‐induced TRPV1 currents. Pre‐treatment with activin C reduced capsaicin‐evoked acute hyperalgesia and normalized capsaicin‐evoked persistent hypothermia in mice. Finally, the analgesic effect of activin C was abolished in TRPV1 knockout mice with CCI.Conclusion and ImplicationsActivin C inhibits neuropathic pain by modulating TRPV1 channels, revealing potential analgesic applications in chronic neuropathic pain therapy.  相似文献   

10.
Treatment of neuropathic pain is problematic; response to current pharmacological interventions is often poor and associated with undesirable side-effects, thus the identification of new targets for treating this condition is needed. Here we collect evidence demonstrating the potential of chemokines as mediators of neuron-glia communication and contributors to pain signalling. The expression of chemokines such as CX3CL1, CCL2 and CCL21 and their receptors CX3CR1, CCR2 and CXCR3 is altered in the spinal cord under neuropathic pain conditions and chemokine receptor antagonists attenuate neuropathic pain behaviour. By understanding the mechanisms of chemokine-mediated communication we may expose glial targets as a novel approach for the treatment of neuropathic pain.  相似文献   

11.
INTRODUCTION The development of animal models of neuropathicpainhas beenof value in characterizingthe neuralmecha-nisms involved in neuropathic pain syndromes and as-sociated processes following peripheral nerve injury.The chronic constriction injury (CCI) model[1], producedby loose ligation of the sciatic nerve with four chromicgut sutures, has been known as one of the most reliablemodels of neuropathic pain. With CCI of the rat sciaticnerve, animals show symptoms similar to the clinic…  相似文献   

12.
The purpose of this review is to summarize the recent studies examining the expression of leukotrienes (LTs) and their receptors in nociceptive pathways, and their crucial roles in pathological pain conditions. LTs belong to a large family of lipid mediators, termed eicosanoids, which are derived from arachidonic acids and released from the cell membrane by phospholipases. LTs are known to be important factors in a variety of local and systemic diseases and allergic/inflammatory diseases. We examined whether LTs were implicated in neuropathic pain following peripheral nerve injury. Using the SNI model in rats, we investigated the expression of LT synthases and receptors mRNAs in the spinal cord and the roles on the pain behaviors. We found the expression of 5-lipoxygenase (5-LO), FLAP and the cysteinyl leukotrienes (CysLT1) mRNAs in spinal microglia, LTA4h and LTC4s mRNAs in both spinal neurons and microglia, and BLT1 mRNA in spinal neurons. Administration of the 5-LO inhibitor or the receptor antagonists suppressed mechanical allodynia. Our findings suggest that the increase of LT synthesis in spinal microglia produced via p38 mitogen-activated protein kinase (MAPK) plays a role in the generation of neuropathic pain. We also examined the expression and roles on pain behaviors of LT receptors in the dorsal root ganglion (DRG) using a peripheral inflammation model. The data indicate CysLT2 expressed in DRG neurons may play a role as a modulator of P2X3, and contribute to the potentiation of the neuronal activity following peripheral inflammation. This review summarizes the hypothesis that LTs might work in the spinal cord and primary afferent in pathological pain conditions.  相似文献   

13.
Our previous study has demonstrated that topical and systemic administration of the 5-HT2A receptor antagonist ketanserin attenuates neuropathic pain. To explore the mechanisms involved, we examined whether ketanserin reversed the plasticity changes associated with calcitonin gene-related peptides (CGRP) and neuropeptide Y (NPY) which may reflect distinct mechanisms: involvement and compensatory protection. Behavioral responses to thermal and tactile stimuli after spinal nerve ligation (SNL) at L5 demonstrated neuropathic pain and its attenuation in the vehicle- and ketanserin-treated groups, respectively. SNL surgery induced an increase in CGRP and NPY immunoreactivity (IR) in laminae I-II of the spinal cord. L5 SNL produced an expression of NPY-IR in large, medium and small diameter neurons in dorsal root ganglion (DRG) only at L5, but not adjacent L4 and L6. Daily injection of ketanserin (0.3 mg/kg, s.c.) for two weeks suppressed the increase in CGRP-IR and NPY-IR in the spinal cord or DRG. The present study demonstrated that: (1) the expression of CGRP was enhanced in the spinal dorsal horn and NPY was expressed in the DRG containing injured neurons, but not in the adjacent DRG containing intact neurons, following L5 SNL; (2) the maladaptive changes in CGRP and NPY expression in the spinal cord and DRG mediated the bioactivity of 5-HT/5-HT2A receptors in neuropathic pain and (3) the blockade of 5-HT2A receptors by ketanserin reversed the evoked upregulation of both CGRP and NPY in the spinal cord and DRG contributing to the inhibition of neuropathic pain.  相似文献   

14.
It is believed that neuropathic pain results from aberrant neuronal discharges although some evidence suggests that the activation of glia cells contributes to pain after an injury to the nervous system. This study aimed to evaluate the role of microglial activation on the hyper‐responsiveness of wide dynamic range neurons (WDR) and Toll‐like receptor 4 (TLR4) expressions in a chronic constriction injury (CCI) model of neuropathic pain in rats. Adult male Wistar rats (230 ± 30 g) underwent surgery for induction of CCI neuropathy. Six days after surgery, administration of minocycline (10, 20, and 40 mg/kg, i.p.) was initiated and continued until day 14. After administration of the last dose of minocycline or saline, a behavioral test was conducted, then animals were sacrificed and lumbar segments of the spinal cord were collected for Western blot analysis of TLR4 expression. The electrophysiological properties of WDR neurons were investigated by single unit recordings in separate groups. The findings showed that after CCI, in parallel with thermal hyperalgesia, the expression of TLR4 in the spinal cord and the evoked response of the WDR neurons to electrical, mechanical, and thermal stimulation significantly increased. Post‐injury administration of minocycline effectively decreased thermal hyperalgesia, TLR4 expression, and hyper‐responsiveness of WDR neurons in CCI rats. The results of this study indicate that post‐injury, repeated administration of minocycline attenuated neuropathic pain by suppressing microglia activation and reducing WDR neuron hyper‐responsiveness. This study confirms that post‐injury modulation of microglial activity is a new strategy for treating neuropathic pain.  相似文献   

15.
It is without dispute that the treatment of neuropathic pain is an area of largely unmet medical need. Available analgesics, such as morphine, either have minimal effects in neuropathic pain patients, or are not always well tolerated due to concurrent adverse effects. The chronicity of neuropathic pain is thought to be related to many neurochemical changes in the dorsal root ganglia (DRG) and spinal cord, including a reduction in the retrograde transport of nerve growth factor (NGF). In this study, we have determined the ability of chronic intrathecal (i.t.) infusion of NGF to reverse neuropathic pain symptoms and to restore morphine's effectiveness in an animal model of neuropathic pain. Seven days after sciatic nerve constriction injury, NGF was administered to the spinal cord by continuous infusion (125 ng/microl/h) via osmotic pumps attached to chronically implanted i.t. catheters. Spinal infusion of NGF did not affect the expression of tactile allodynia or thermal (hot) hyperalgesia in neuropathic rats, although it significantly increased cold water responses frequency at day 14. Following infusion of vehicle, i.t. morphine (20 microg) was ineffective in altering somatosensory thresholds in neuropathic rats. In contrast, morphine substantially attenuated the neuropathy-induced warm and cold hyperalgesia, as well as tactile allodynia, in neuropathic rats chronically infused with i.t. NGF. In addition, we demonstrate that i.t. morphine-induced antinociception was augmented by a cholecystokinin (CCK) antagonist in animals chronically infused with i.t. antibodies directed against NGF. We hypothesize that NGF is critical in maintaining neurochemical homeostasis in the spinal cord of nociceptive neurons, and that supplementation may be beneficial in restoring and/or maintaining opioid analgesia in chronic pain conditions resulting from traumatic nerve injury.  相似文献   

16.
17.
Vanilloid receptor 1 (TRPV1) antagonists are known to attenuate the neuropathic pain symptoms in peripheral nerve injury models, but the mechanism(s) of their effect remains unclear. At the same time, the role of spinal TRPV1 in pain transduction system has not been fully understood. In this study, the role of spinal TRPV1 in mechanical allodynia in rat chronic constriction injury (CCI) model was investigated. Intrathecal administration of a selective TRPV1 antagonist, N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropryazine-1(2H)-carbox-amide (BCTC) significantly attenuated mechanical allodynia in CCI rats at 100 and 300 nmol. In vitro, BCTC inhibited capsaicin (300 nM)-induced releases of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) and substance P-like immunoreactivity (SP-LI) from the rat spinal cord slice preparations with IC(50)s of 37.0 and 36.0 nM, respectively, confirming that BCTC potently inhibits TRPV1 function in the rat spinal cord. TRPV1 expression levels in the spinal cord following CCI were quantified in by Western blot analysis. TRPV1 protein levels were significantly increased in the ipsilateral side of the lumbar spinal cord at 7 and 14 days following CCI surgery, but not in the contralateral side. Furthermore, capsaicin (300 nM)-evoked release of CGRP-LI was significantly higher in the ipsilateral spinal cord of CCI rats (14 days after surgery) than that of sham-operated rats. These findings suggest that an increased sensitization of the spinal TRPV1 through its up-regulation is involved in the development and/or maintenance of mechanical allodynia in rat CCI model.  相似文献   

18.
Opioids in neuropathic pain   总被引:1,自引:0,他引:1  
Opiates lack potent analgesic efficacy in neuropathic pain although it is now generally accepted that the poor effect of these drugs reflects a reduction in their potency. Reduction of morphine antinociceptive potency was postulated to be due to the fact that nerve injury altered the activity of opioid systems or opioid specific signaling. Endogenous opioid systems were found to be represented in the regions involved in the nociception and are implicated in chronic pain. Opioid peptides biosynthesis and opioid receptors density in the nociceptive pathways and their functions change under various conditions associated with neuropathic pain following damage to the spinal cord and injury of peripheral nerves. Identification of a role of opioid systems in neuropathic pain and molecular and cellular mechanisms underlying these processes are of importance to understanding of the opioid action in neuropathic pain that will hopefully facilitate development of therapeutic strategies in which effectiveness of opioids in alleviation neuropathic pain is increased.  相似文献   

19.
Aim: To investigate whether activation and translocation of extracellular signalregulated kinase (ERK) is involved in the induction and maintenance of neuropathic pain, and effects of activation and translocation of ERK on expression of pCREB and Fos in the chronic neuropathic pain. Methods: Lumbar intrathecal catheters were chronically implanted in male Sprague-Dawley rats. The left sciatic nerve was loosely ligated proximal to the sciatica‘s trifurcation at approximately 1.0 mm intervals with 4-0 silk sutures. The mitogen-activated protein kinase kinase (MEK) inhibitor U0126 or phosphorothioate-modified antisense oligonucleotides (ODN) were intrathecally administered every 12 h, 1 d pre-chronic constriction injury (CCI) and 3 d post-CCI. Thermal and mechanical nociceptive thresholds were assessed with the paw withdrawal latency (PWL) to radiant heat and von Frey filaments. The expression of pERK, pCREB, and Fos were assessed by both Western blotting and immunohistochemical analysis. Results: Intrathecal injection of U0126 or ERK antisense ODN significantly attenuated CCI-induced mechanical allodynia and thermal hyperalgesia. CCI significantly increased the expression of p-ERK-IR neurons in the ipsilateral spinal dorsal horn to injury, not in the contralateral spinal dorsal horn. The time courses of pERK expression showed that the levels of both cytosol and nuclear pERK, but not total ERK, were increased at all points after CCI and reached a peak level on postoperative d 5. CCI also significantly increased the expression of pCREB and Fos. Phospho-CREB-positive neurons were distributed in all laminae of the bilateral spinal cord and Fos was expressed in laminae I and II of the ipsilateral spinal dorsal horn. Intrathecal injection of U0126 or ERK antisense ODN markedly suppressed the increase of CCI-induced pERK, pCREB and c-Fos expression in the spinal cord. Conclusion:The activation of ERK pathways contributes to neuropathic pain in CCI rats, and the function of pERK may partly be accomplished via the cAMP response element binding protein (CREB)-dependent gene expression.  相似文献   

20.
The development of neuropathic pain is associated with multiple changes in gene expression occurring in the dorsal root ganglia (DRG) and spinal cord. The goal of this study was to evaluate whether the disruption of CB1 cannabinoid receptor gene modulates the changes induced by neuropathic pain in the expression of mu- (MOR), delta- (DOR) and kappa-opioid receptors (KOR) mRNA levels in the DRG and spinal cord. The induction of c-fos expression in the lumbar and sacral regions of the spinal cord was also evaluated in these animals. Opioid receptors mRNA levels were determined by using real-time PCR and Fos protein levels by immunohistochemistry. Nerve injury significantly reduced the expression of MOR in the DRG and the lumbar section of the spinal cord from CB1 cannabinoid knockout (KO) mice and wild-type littermates (WT). In contrast, mRNA levels of DOR and KOR were not significantly changed in any of the different sections analysed. Furthermore, sciatic nerve injury evoked a similar increase of c-fos expression in lumbar and sacral regions of the spinal cord of both KO and WT. In all instances, no significant differences were observed between WT and KO mice. These data revealed specific changes induced by neuropathic pain in MOR expression and c-fos levels in the DRG and/or spinal cord that were not modified by the genetic disruption of CB1 cannabinoid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号