首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the genesis of various neuronal classes and subclasses in the ganglion cell layer of the primate retina. Neurons were classified according to their size and the time of their origin was determined by pulse labeling with 3H-thymidine administered to female monkeys 38 to 70 days pregnant. All offspring were sacrificed postnatally, and their retinas processed for autoradiography. The somata of cells in the retinal ganglion cell layer generated on embryonic day (E) 38 ranged from 9 to 14 microns in diameter. Between E40 and E56, the minimum soma diameter remained around 8-9 microns, while the maximum gradually increased to 22 microns. As a consequence, the means of the distributions of labeled cells also increased with age, from 11.8 microns diameter for cells generated on E38 to 14.6 microns diameter at E56. Over this period the percentage of labeled cells in the 10.5-16.5 microns and greater than 16.5 microns diameter range gradually increased. The proportion of the labeled cells in the less than 10.5 microns diameter range decreased from E38 to E45, but subsequently increased rapidly. At the end of neurogenesis in the retinal ganglion cell layer, around E70, most labeled cells were considerably smaller (7-9 microns) than those generated earlier. Our results indicate that within the ganglion cell layer of the macaque, neurons of small caliber are generated first, followed successively by medium sized cells. Large, putative P alpha cells are generated late. The production between E56 and E70 of cells with the smallest somata suggests that the last-generated neurons in the ganglion cell layer are predominantly displaced amacrine cells. Within the same sector of retina, different classes of neurons in the ganglion cell layer of the rhesus monkey appear to have a sequential schedule of production.  相似文献   

2.
An improved flat-mount procedure demonstrates that the developing ganglion cell layer of the cat retina contains two morphologically distinct populations of presumed neurons at all ages between embryonic day 36 (E36) and adulthood. One population resembles the adult "classical neurons" composing the ganglion cells and bar-cells of Hughes, while the remaining cells, which are smaller and possess much less Nissl substance, presumably correspond to precursors of the adult microneurons. Although the total neuron population of the retinal ganglion cell layer remains quite constant at all studied ages, its component subpopulations alter significantly during prenatal development; some 50% of classical neurons disappear before birth and the microneuron population doubles during the same period. An obvious centroperipheral gradient exists for classical neurons by stage E47, but the microneuron density gradient only becomes apparent at birth. A 2:1 centroperipheral ratio for the total neuron population is also apparent at E47. Centroperipheral neuronal density gradients continue to increase during postnatal growth. Loss of classical neurons during prenatal life as a result of cell death or transformation into microneurons, has been postulated as a mechanism for determining neuron density gradients. Cell death does occur in the ganglion cell population but it is not yet established whether microneurons of the ganglion cell layer originate from ganglion cell transformation or migrate as a differentiated class from the ventricular layer. However, it can be concluded that not all microneurons originate from ganglion cell transformation, because the total loss of classical neurons is less than the increase in microneuron numbers during development. The population magnitudes of both neuronal classes in the ganglion cell layer stabilise after birth. However, it is during the postnatal period that the adult cruciate density topography is achieved by both populations. It is concluded that differential areal growth is the prime mechanism for postnatal cell redistribution.  相似文献   

3.
Here we describe quantitatively the birth and death of the two separate populations of neurons, ganglion cells and displaced amacrine cells, in the mouse retinal ganglion cell layer (GCL). The two cell types, which are roughly equally numerous, were distinguished pre- and postnatally by labeling the ganglion cells retrogradely with fluorescent dye. Embryos were labeled cumulatively with bromodeoxyuridine (BrdU) delivered by an osmotic minipump implanted in the mother; cell birth dates were established as having occurred before or after pump implantation. Early cohorts (GCL cells born before embryonic day [E] 11.8 and E12.8) were 98+/-1.1% and 99+/-0.2% ganglion cells (mean+/-SEM), respectively, and a late cohort (born after E15.8) was 97+/-1.2% displaced amacrines. Thus birth date was a strong predictor of a GCL cell's ultimate identity. Cell death in each cohort was estimated by counting cells at different time points (soon after the cohort was produced and later) and subtracting the later from the earlier number. This method avoids the problem of simultaneous birth and death that has plagued many of the earlier attempts to assess cell death. Negligible numbers died during the first week after a cell's birthday. The amount of cell death differed in the two cohorts; 48.5+/-15% and 29.0+/-12.4% in early and late, respectively, and most of it was postnatal. These findings disagree sharply with an earlier conclusion that ganglion cells die within 5 days of their birthdays or not at all.  相似文献   

4.
Thornbills, honeyeaters, and silvereyes represent an abundant group of Australian passerines, whose diversity in niche differentiation suggests a pivotal role for vision. Using stereological methods and retinal wholemounts, we studied the topographic distribution of neurons in the ganglion cell layer of insectivorous, nectarivorous, and frugivorous species occupying terrestrial and arboreal microhabitats. All species studied have a central convexiclivate fovea (peak densities from 130,000 to 160,000 cells/mm2), which is shallow in the terrestrial/insectivorous yellow‐rumped thornbill and deep in the arboreal/nectarivorous honeyeaters and frugivorous silvereye. Surrounding the fovea, neuronal densities in the ganglion cell layer form a broadly ovoid and asymmetric plateau in the yellow‐rumped thornbill and a more restricted, circular and symmetric plateau in the other species. These differences in the plateau organization may reflect specific needs to locate food on the ground or among dense vegetation. We also found a temporal area (peak densities from 43,000 to 54,000 cells/mm2) across species, which increases spatial resolution in the frontal visual field and assists with foraging. Using microtubule‐associated protein 2 (MAP2) immunohistochemistry, we detected a higher concentration of giant ganglion cells forming an area gigantocellularis in the temporal retina of all species. Giant ganglion cell densities also form a horizontal streak in all species, except in the yellow‐rumped thornbill, which has an unusual increase toward the retinal periphery. In the yellow‐rumped thornbill and silvereye, giant ganglion cells also peak in the nasal retina. We suggest that these topographic variations afford differential sampling of motion signals for the detection of predators. J. Comp. Neurol. 522:3609–3628, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The present study determined the temporal and spatial patterns of genesis for neurons of different sizes in the retinal ganglion cell layer of the ferret. Fetal ferrets were exposed to tritiated thymidine on embryonic days E-22 through E-36. One to 3 months after birth, they were perfused and their retinae dissected, and autoradiographs were prepared from resinembedded sections throughout the entire flattened retinal ganglion cell layer. Soma size differences in conjunction with separate retrograde labeling and calbindin immunocytochemical studies were used as criteria for identifying different retinal ganglion cell subtypes in juvenile and adult ferrets. Neurons of different sizes in the ganglion cell layer were generated at different stages during development. Medium sized cells were generated primarily between E-22 and E-26; the largest cells were generated between E-24 and E-29; small cells were generated between E-26 and E-32; and very small cells were generated between E-29 and E-36. The former three groups were interpreted to be three subtypes of retinal ganglion cells, while the latter group was interpreted to be displaced amacrine cells. This temporal order of the genesis of ganglion cell classes is consistent with the spatial ordering of their fibers in the mature optic chiasm and tract, and it is consistent with the developmental change in decussation pattern recently shown in the optic pathway of embryonic ferrets. The spatial pattern of genesis suggests that ganglion cells of a particular class are added to the ganglion cell layer in a centroperipheral fashion initiated in the dorsocentral retina nasal to the area centralis. No evidence was found for a wave of ganglion cell addition that proceeded in a spiralling pattern around the area centralis, as has been reported in the cat.  相似文献   

6.
Cockatoos are a unique avian group inhabiting a diversity of arboreal and terrestrial microhabitats. Most species display strong lateralized visual behaviors using their left eye/foot to assist with food manipulation during foraging. In this study, we used retinal wholemounts and stereological methods to investigate whether the topographic distribution of retinal ganglion cells in cockatoos reflects their lateralized behaviors and microhabitat diversity. We found that all species studied possess a horizontal visual streak and a shallow central fovea that afford increased spatial resolution in the lateral visual field. Arboreal cockatoos have a well‐defined dorsotemporal area, in contrast to terrestrial cockatoos, in which this specialization is inconspicuous or absent. Terrestrial cockatoos also have a triangular extension of increased ganglion cell density directed toward the dorsotemporal retinal periphery. Both the dorsotemporal area and the triangular extension enhance spatial resolution in the frontal and inferior visual fields, which potentially assists with binocular coordination during foraging. We found significantly higher ganglion cell densities in the left (52,000–72,000 cells/mm2) compared with the right (42,500–50,000 cells/mm2) perifoveal region of species that have strong left eye–left foot lateralized behaviors. In contrast, cockatoo species that show no lateralized behaviors have equivalent retinal ganglion cell densities in both left and right perifoveal regions (42,500–52,500 cells/mm2). Retinal ganglion cell peak densities in the dorsotemporal area showed no significant difference between left and right eyes for any species, suggesting that cockatoos use both eyes to extract information in the binocular visual field, independent of the degree of lateralization. J. Comp. Neurol. 522:3363–3385, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
During the early postnatal period in the hamster, the retinal ganglion cell layer grows, establishes its central connections, and undergoes substantial cell loss. In this study, we describe the development of the retinal ganglion cell layer with particular attention to the creation of local specializations in cell density. Changes in the number and spatial distribution of cells identified by a single 3H thymidine injection were examined through the period of maximal cell loss (postnatal days 4-10) and at adulthood. The cells of the retinal ganglion cell layer are generated from embryonic day 10 to postnatal day 3. Overall, cell number in the ganglion cell layer increases by approximately 108,000 cells (223%) from postnatal day 1 to 5, because of continued migration of cells generated prenatally. Cell number decreases from postnatal day 5 to 10 (25%), coincident with the presence of degenerating cells. Cell type is correlated with day of generation: the largest cells, all having retinal ganglion cell morphology, are generated on embryonic days 10 and 11; intermediate-sized cells predominantly of ganglion cell morphology on embryonic day 12; and smaller cells of displaced amacrine or glial cell morphology thereafter. At adulthood, the hamster retina shows a streaklike elevation of cell density through central retina. However, at the time of maximal cell number (postnatal day 5), cell density is uniform across the retina. During the period of cell degeneration, cells are lost in greater relative numbers from the retinal periphery. This cell loss occurs principally from the first-generated cells (embryonic days 10 and 11), as shown by both changes in the distribution of labeled cells and by the spatial pattern of labeled degenerating cells. From postnatal day 10 to adulthood, relative cell density continues to decline in the periphery of the retina, thus suggesting that differential growth completes the production of the adult cell density distribution.  相似文献   

8.
The distribution and number of dying cells in the developing retinal ganglion cell layer of the wallaby Setonix brachyurus were assessed by using cresyl violet stained tissue. The density of dying cells has been expressed per 100 live cells for the entire retinal surface, data being presented as a grid of 500 micron squares. For statistical analysis, retinae were divided into 8 regions; dorsal, ventral, nasal, and temporal quadrants, each further divided into center and periphery. This method allowed comparison of the extent of cell death at different retinal locations as the high density area centralis of live cells developed temporal to the optic disk from 60 days onward. Between 30 and 70 days, dying cells were seen across the entire retina; beyond 100 days very few were seen. Initially, there was a significantly higher incidence of dying cells in the central retina compared to the periphery, whereas from 50 days this situation was reversed. Analysis of the central retina before and during area centralis formation consistently indicated a significantly lower number of dying cells per 100 live cells in temporal compared to other retinal quadrants. This differential pattern suggests that cell death lowers live cell densities less in the emerging area centralis than elsewhere, and therefore must play a part in establishing live cell density gradients. However, we cannot exclude the possibility that other factors are also instrumental. Indeed, factors such as areal growth (Beazley et al., in press) presumably operate at later stages since live cell density gradients continue to be accentuated even after cell death is complete. Numbers of dying cells peaked by 50 days, reaching approximately 1% of the live cell population. At this stage, counts were also maximal for live cells with values up to 30% above the adult range.  相似文献   

9.
The total number, distribution and peak density of ganglion cells were evaluated in the Nissl-stained retina of the ostrich (Struthio camelus). The mean (n = 4) total number of retinal ganglion cells (RGC) was estimated at 2,274,128 (s.d. = 273, 152). The ostrich retina exhibited a prominent horizontal visual streak along which a central area located nasal to the pecten had a peak density of 9,500 cells/mm2. A high concentration of cells with a peak density of 2,646 cells/mm2 was also observed in the temporal retina, slightly dorsal to the visual streak. The results further showed that the ostrich eye has a 15-mm pupil entrance diameter, its mean axial length is 39.81 mm, the estimated retinal magnification factor is 0.4075 mm/deg and the maximum visual acuity along the well-defined visual streak was estimated to be 19.32 cycles/deg. The latter component of the retina might subserve vision along the horizon while the temporal region mediates binocular processing. The data also showed that the degree of retinal illumination in this bird could be comparable to that noted in some nocturnal species. The findings in this study suggest that the ostrich might not be restricted to diurnal activity.  相似文献   

10.
The aim of this study was to investigate retinal nerve fiber layer (RNFL), ganglion cell layer (GCL) thickness, macular changes (central subfield thickness (CST), cube average thickness (CAT), cube volume (CV) in patients with migraine using spectral-domain optical coherence tomography (OCT) and to assess if there was any correlation with white matter lesions (WML). In this prospective case–control study, RNFL, GCL thickness and macular changes of 19 migraine patients with aura (MA), 41 migraine without aura (MO) and 60 age- and gender-matched healthy subjects were measured using OCT device. OCT measurements were taken at the same time of the day to minimize the effects of diurnal variation. The average, inferior and superior quadrant RNFL thickness were significantly thinner in patients with migraine (p = 0.017, p = 0.010, p = 0.048). There was also a significant difference between patients with and without aura in the mean and superior quadrant RNFL thickness (p = 0.02, p = 0.043).While there was a significant thinning in CST and CAT in patients with migraine (p = 0.020), there were no significant difference in GCL measurements (p = 0.184). When the groups were compared to the control group, there were significant differences between MA and the control group regarding average, superior and inferior quadrant RNLF thickness (p < 0.001, p = 0.025, p < 0.001). On the other hand, there were significant differences between MO and the control group regarding average and inferior faces (p = 0.037, p = 0.04). When OCT measurements were evaluated according to the frequency of attacks, CST and GCL thickness were significantly thinner in patients who had more than four attacks a month (p = 0.024, p = 0.014). In patients with WML, only CV measurements were significantly thinner than migraine patients without WML (p = 0.014). The decreased RNFL, CST, CAT and CV of the migraine patients might be related to the vascular pathology of the disease. Because WML was not correlated with the same measurements except CV, we think that further studies are needed to evaluate the etiopathologic relationship between OCT measurements and WML in migraine patients.  相似文献   

11.
We have assessed the effects of 15 pigmentation mutations on the development of retinal ganglion cell projections in mice in two ways: (1) by analyzing the pattern of innervation of the ipsilateral lateral geniculate nucleus as mapped in autoradiograms of brains of animals killed 12 days after intravitreal injection of 3H-proline into one eye and (2) by determining the ratio of axonally transported radioactive protein in the contralateral and ipsilateral optic tracts after similar intravitreal injections. Analysis of the ratio of transported protein in the two optic tracts provides a new and useful assay of the degree of decussation in experimental animals. The effects of the mutations on eye pigmentation, whole eye melanin content and relative tyrosinase activity also were examined. The degree of ipsilateral innervation generally correlates with the degree of pigmentation of the retinal pigment epithelium and with tyrosinase activity. However, discrepancies have been found in ch and ce mutants. In these animals the pigment epithelium is well pigmented, and the area of ipsilateral innervation in the lateral geniculate nucleus is extensive, despite a high ratio of label in contralateral to ipsilateral optic tracts and low tyrosinase activity. Furthermore, mice heterozygous for the c2J allele have pigmentation and optic projections that are normal even though tyrosinase is reduced to 40% of normal. The few anomalous results suggest that alternative or additional factors may control optic axon projections.  相似文献   

12.
A signature feature of mature ferret retinal ganglion cells (RGCs) is the stratification of their dendrites within either ON or OFF sublayers of the retinal inner plexiform layer (IPL). Dendritic stratification is achieved through the gradual restriction of RGC dendrites which initially ramify throughout the IPL. We examined the time course of stratification by retrogradely labeling ferret retinas with DiI at various postnatal ages. Stratification of beta and alpha RGC dendrites into either the ON or OFF sublayers of the IPL begins around postnatal day 5, when class-specific morphologies begin to emerge, and is largely completed by eye opening, at the end of the first postnatal month. Our results imply that dendritic stratification of ferret ON and OFF RGCs, as in other mammals, occurs independently of visually driven activity.  相似文献   

13.
The neurons of the developing and adult ganglion cell layer of the cat retina may be morphologically divided into two major populations. One population, the classic neurons, is mainly composed of ganglion cells, and of a small percentage of displaced amacrines, the bar cells. The remaining neurons are microneurons, which make up the majority of the displaced amacrine population. The loss of ganglion cells during the development has been attributed to cell death. It has alternatively been suggested that some ganglion cells may lose their axon and be transformed into displaced amacrine cells, without degeneration of the cell soma. Reexamination of foetal and postnatal cat retinas confirms the presence of degenerating cells in the ganglion cell layer. Their number appears to be at a maximum on embryonic day (E) 57 but declines rapidly until birth. The peak of cell death thus coincides with the decline in optic nerve fibre counts and classical neuron or ganglion cell numbers. Some cells in early stages of degeneration resemble classical neurons, but the original morphology of those advanced stages of degeneration could not be identified, nor was it possible to identify pyknotic microneurons at any stage. Substantial degeneration of the microneurons is not suggested but if it occurs, it is masked by an overall increase in the population of these cells before birth. Cell death in the microneuron population thus cannot yet be ruled out. It has been argued in the literature that fragments of degenerating cells in developing neural tissue are cleared by microglia within 10-14 hours. In order to test the hypothesis that operation of cell death can alone account for the observed loss of classical neurons in the foetal cat retina, we have modelled the effect of various presumed clearance times on corresponding neuronal population magnitudes. It is found that a constant clearance time of 10-24 hours would be consistent with the observed loss of classical neurons before birth. If this is true, then no ganglion cells would remain for transformation into amacrine cells. The absolute density of degenerating or pyknotic cells is found to be relatively constant across the retina. However their density expressed as a percentage of the local population of classical neurons is markedly higher in peripheral than central retina. In the former region, they compose more than 10% of classical neurons at stage E57. On the same day, the percentage distribution maps define an elongated central area containing only 3-5% pyknotic profiles. This region corresponds to the location of the future visual streak.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The visual capacity of the common barn owl (Tyto alba) was studied by quantitative analysis of the retina and optic nerve. Cell counts in the ganglion cell layer of the whole-mounted retina revealed a temporal area centralis with peak cell density of 12,500 cells/mm2 and a horizontal streak of high cell density extending from the area centralis into the nasal retina. Integration of the ganglion cell density map gave an estimated total of 1.4 million cells for the ganglion cell layer. Electron microscopy of a single, complete section of the optic nerve revealed a bimodal fiber diameter spectrum (modes at 0.3 and 0.9 microns; bin width = 0.2 microns), with diameters ranging from 0.15 microns (unmyelinated) to 6.05 microns (myelinated, sheath included). The total axon count for the optic nerve was estimated from sample counts to be about 680,000 axons (25% unmyelinated). Therefore, roughly half of the cells in the retinal ganglion cell layer do not send axons into the optic nerve. With certain assumptions, the data predict a visual spatial acuity for barn owls on the order of 8 cycles/degree, a value similar to the known behaviorally measured acuities of masked owls (10 cycles/degree) and domestic cats (6 cycles/degree).  相似文献   

15.
The morphology of the ganglion cell layer of the adult tammar wallaby has been examined from Nissl-stained retinal flatmounts. From this material, neurons have been classed as ganglion cells or displaced amacrine cells according to the disposition of Nissl substance. A further subdivision of ganglion cells into a separate group of alphalike cells was assisted by determining the range of soma sizes in neurofibrillar-stained flatmounts, a method which, in the cat, has revealed the presence of alpha cells. Isodensity contour maps prepared from the Nissl-stained flatmounts show a well-developed visual streak and an area centralis in the total neuronal population. A similar pattern was also found in the ganglion cells, thus confirming Tancred's (J. Comp. Neurol. 196:585-603, '81) finding, and, as well, in the alphalike ganglion cells and the displaced amacrine cells. The relative proportions of ganglion cells to displaced amacrines (GC:DA) were evaluated from isodensity profiles drawn along and vertical to the visual streak for the two cell types and also from maps showing the variation in the GC:DA ratio throughout the retina. A comparison with results published for other species shows that the visual streak development in the tammar wallaby is consistent with the expectations of the "terrain" theory and that, in its relative proportion of displaced amacrines, the tammar closely resembles the rabbit but contrasts sharply with the cat, which has half as many ganglion cells and three times as many displaced amacrines as the other two species.  相似文献   

16.
A quantitative analysis of the cat retinal ganglion cell topography.   总被引:5,自引:0,他引:5  
A retinal ganglion cell distribution map has been prepared for the cresyl violet stained cat retina. It differs from previously published maps in revealing the visual streak to be more substantial and in showing a higher peak density of 9-10,000 ganglion cells/mm2 at the presumed visual pole. The map was used to obtain a minimum estimate of the retinal ganglion cell population as 217,000 cells, more than double the total previously reported. The problem of classifying the cells of the ganglion cell layer is discussed in detail and examples of criterion cells illustrated. The paper also includes an account of retinal mensuration (dimensions, area, etc.) and a discussion of the visual streak orientation.  相似文献   

17.
To investigate constraints and preferences for synaptogenesis in the injured mammalian CNS, regenerating retinal ganglion cell (RGC) axons of adult hamsters were guided through a peripheral nerve (PN) graft to a target they do not usually innervate: the cerebellum (Cb). When identified by the presence of HRP anterogradely transported from the retina 2-9 months later, such RGC axons were found to have extended into the cerebellar cortex for up to 650 microns. Most of this growth was in the granule cell layer (GCL) and only a few axons entered the molecular layer. The preference for the GCL could not be explained by the position of the PN graft in the Cb, a selective denervation of the GCL, local damage to other neurons, or the distribution of reactive gliosis in the vicinity of the graft. Furthermore, by EM, more than 95% of the labeled retinocerebellar terminals and synapses were in the GCL. Retinocerebellar terminals were larger and contained more synapses than the regenerated RGC terminals previously studied in the superior colliculus. These results indicate that regenerating axons of CNS neurons can form persistent synapses with novel targets. The preferential synaptogenesis in the GCL suggests that such unusual connections are not formed randomly in the CNS of these adult mammals.  相似文献   

18.
Cat retinal ganglion cell dendritic fields   总被引:2,自引:0,他引:2  
  相似文献   

19.
20.
正The prospects of stem cell therapy for retinal ganglion cell(RGC)degeneration in human:RGC degeneration is a common pathologic cause of glaucoma and optic neuropathies,which are the leading cause of irreversible blindness and visual impairment in developed countries,currently affecting more than 100 million people worldwide.Intraocular pressure lowering can slow down glaucoma progression in a proportion of patients.Also,there is still no effective therapy for optic neuropathies.Besides,the degenerated RGCs in glaucoma cannot be  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号