首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.  相似文献   

2.
Magnetic resonance elastography (MRE) is a non-invasive imaging technique used to visualise and quantify mechanical properties of tissue, providing information beyond what can be currently achieved with standard MR sequences and could, for instance, provide new insight into pathological processes in the brain. This study uses the MRE technique at 3 T to extract the complex shear modulus for in vivo brain tissue utilizing a full three-dimensional approach to reconstruction, removing contributions of the dilatational wave by application of the curl operator. A calibrated phantom is used to benchmark the MRE measurements, and in vivo results are presented for healthy volunteers. The results provide data for in vivo brain storage modulus (G'), finding grey matter (3.1 kPa) to be significantly stiffer than white matter (2.7 kPa). The first in vivo loss modulus (G') measurements show no significant difference between grey matter (2.5 kPa) and white matter (2.5 kPa).  相似文献   

3.
The purpose of this work was to develop magnetic resonance elastography (MRE) for the fast and reproducible measurement of spatially averaged viscoelastic constants of living human brain. The technique was based on a phase-sensitive echo planar imaging acquisition. Motion encoding was orthogonal to the image plane and synchronized to intracranial shear vibrations at driving frequencies of 25 and 50 Hz induced by a head-rocker actuator. Ten time-resolved phase-difference wave images were recorded within 60 s and analyzed for shear stiffness and shear viscosity. Six healthy volunteers (six men; mean age 34.5 years; age range 25-44 years) underwent 23-39 follow-up MRE studies over a period of 6 months. Interindividual mean +/- SD shear moduli and shear viscosities were found to be 1.17 +/- 0.03 kPa and 3.1 +/- 0.4 Pas for 25 Hz and 1.56 +/- 0.07 kPa and 3.4 +/- 0.2 Pas for 50 Hz, respectively (P < or = 0.01). The intraindividual range of shear modulus data was 1.01-1.31 kPa (25 Hz) and 1.33-1.77 kPa (50 Hz). The observed modulus dispersion indicates a limited applicability of Voigt's model to explain viscoelastic behavior of brain parenchyma within the applied frequency range. The narrow distribution of data within small confidence intervals demonstrates excellent reproducibility of the experimental protocol. The results are necessary as reference data for future comparisons between healthy and pathological human brain viscoelastic data.  相似文献   

4.
MR elastography (MRE) enables the noninvasive determination of the viscoelastic behavior of human internal organs based on their response to oscillatory shear stress. An experiment was developed that combines multifrequency shear wave actuation with broad-band motion sensitization to extend the dynamic range of a single MRE examination. With this strategy, multiple wave images corresponding to different driving frequencies are simultaneously received and can be analyzed by evaluating the dispersion of the complex modulus over frequency. The technique was applied on the brain and liver of five healthy volunteers. Its repeatability was tested by four follow-up studies in each volunteer. Five standard rheological models (Maxwell, Voigt, Zener, Jeffreys and fractional Zener model) were assessed for their ability to reproduce the observed dispersion curves. The three-parameter Zener model was found to yield the most consistent results with two shear moduli mu(1) = 0.84 +/- 0.22 (1.36 +/- 0.31) kPa, mu(2) = 2.03 +/- 0.19 (1.86 +/- 0.34) kPa and one shear viscosity of eta = 6.7 +/- 1.3 (5.5 +/- 1.6) Pa s (interindividual mean +/- SD) in brain (liver) experiments. Significant differences between the rheological parameters of brain and liver were found for mu(1) and eta (P < 0.05), indicating that human brain is softer and possesses a higher viscosity than liver.  相似文献   

5.
Muscle stiffness has been reported to increase following eccentric muscle exercise, but to date only indirect methods have been used to measure it. This study aimed to use Magnetic Resonance Elastography (MRE), a noninvasive imaging technique, to assess the time‐course of passive elasticity changes in the medial gastrocnemius and soleus muscles before and after a bout of eccentric exercise. Shear storage modulus (G′) and loss modulus (G′′) measurements were made in eight healthy subjects for both muscles in vivo before, one hour after, 48 hours after and 1 week after eccentric exercise. The results show a 21% increase in medial gastrocnemius storage modulus following eccentric exercise with a peak occurring ~48 hours after exercise (before exercise 1.15 ± 0.23 kPa, 48 hours after 1.38 ± 0.27 kPa). No significant changes in soleus muscle storage modulus were measured for the exercise protocol used in this study, and no significant changes in loss modulus were observed. This study provides the first direct measurements in skeletal muscle before and after eccentric exercise damage and suggests that MRE can be used to detect the time course of changes to muscle properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle.  相似文献   

7.
The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for noninvasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has been called magnetic resonance elastography (MRE). The purpose of this work was to conduct preliminary studies to define methods for using MRE as a tool for addressing the paucity of quantitative tissue mechanical property data in the literature. Fresh animal liver and kidney tissue specimens were evaluated with MRE at multiple shear wave frequencies. The influence of specimen temperature and orientation on measurements of stiffness was studied in skeletal muscle. The results demonstrated that all of the materials tested (liver, kidney, muscle and tissue-simulating gel) exhibit systematic dependence of shear stiffness on shear rate. These data are consistent with a viscoelastic model of tissue mechanical properties, allowing calculation of two independent tissue properties from multiple-frequency MRE data: shear modulus and shear viscosity. The shear stiffness of tissue can be substantially affected by specimen temperature. The results also demonstrated evidence of shear anisotropy in skeletal muscle but not liver tissue. The measured shear stiffness in skeletal muscle was found to depend on both the direction of propagation and polarization of the shear waves.  相似文献   

8.
Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ =0.86 ± 0.15 kPa; μ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ = 0.83 ± 0.22 kPa; μ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ = 0.78 ± 0.24 kPa; μ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Dynamic magnetic resonance elastography (MRE) is a non-invasive method for the quantitative determination of the mechanical properties of soft tissues in vivo. In MRE, shear waves are generated in the tissue and visualized using phase-sensitive MR imaging methods. The resulting two-dimensional (2-D) wave images can reveal in-plane elastic properties when possible geometrical biases of the wave patterns are taken into account. In this study, 3-D MRE experiments of in vivo human brain are analyzed to gain knowledge about the direction of wave propagation and to deduce in-plane elastic properties. The direction of wave propagation was determined using a new algorithm which identifies minimal wave velocities along rays from the surface into the brain. It was possible to quantify biases of the elastic parameters due to projections onto coronal, sagittal and transversal image planes in 2-D MRE. It was found that the in-plane shear modulus is increasingly overestimated when the image slice is displaced from narrow slabs of 2-5cm through the center of the brain. The mean shear modulus of the brain was deduced from 4-D wave data with about 3.5kPa. Using the proposed slice positions in 2-D MRE, this shear modulus can be reproduced with an acceptable error within a fraction of the full 3-D examination time.  相似文献   

10.
Time-harmonic shear wave elastography is capable of measuring viscoelastic parameters in living tissue. However, finite tissue boundaries and waveguide effects give rise to wave interferences which are not accounted for by standard elasticity reconstruction methods. Furthermore, the viscoelasticity of tissue causes dispersion of the complex shear modulus, rendering the recovered moduli frequency dependent. Therefore, we here propose the use of multifrequency wave data from magnetic resonance elastography (MRE) for solving the inverse problem of viscoelasticity reconstruction by an algebraic least-squares solution based on the springpot model. Advantages of the method are twofold: (i) amplitude nulls appearing in single-frequency standing wave patterns are mitigated and (ii) the dispersion of storage and loss modulus with drive frequency is taken into account by the inversion procedure, thereby avoiding subsequent model fitting. As a result, multifrequency inversion produces fewer artifacts in the viscoelastic parameter map than standard single-frequency parameter recovery and may thus support image-based viscoelasticity measurement. The feasibility of the method is demonstrated by simulated wave data and MRE experiments on a phantom and in vivo human brain. Implemented as a clinical method, multifrequency inversion may improve the diagnostic value of time-harmonic MRE in a large variety of applications.  相似文献   

11.
Lung diseases are one of the leading causes of death worldwide, from which four million people die annually. Lung diseases are associated with changes in the mechanical properties of the lungs. Several studies have shown the feasibility of using magnetic resonance elastography (MRE) to quantify the lungs' shear stiffness. The aim of this study is to investigate the reproducibility and repeatability of lung MRE, and its shear stiffness measurements, obtained using a modified spin echo‐echo planar imaging (SE‐EPI) MRE sequence. In this study, 21 healthy volunteers were scanned twice by repositioning the volunteers to image right lung both at residual volume (RV) and total lung capacity (TLC) to assess the reproducibility of lung shear stiffness measurements. Additionally, 19 out of the 21 volunteers were scanned immediately without moving the volunteers to test the repeatability of the modified SE‐EPI MRE sequence. A paired t‐test was performed to determine the significant difference between stiffness measurements obtained at RV and TLC. Concordance correlation and Bland–Altman's analysis were performed to determine the reproducibility and repeatability of the SE‐EPI MRE‐derived shear stiffness measurements. The SE‐EPI MRE sequence is highly repeatable with a concordance correlation coefficient (CCC) of 0.95 at RV and 0.96 at TLC. Similarly, the stiffness measurements obtained across all volunteers were highly reproducible with a CCC of 0.95 at RV and 0.92 at TLC. The mean shear stiffness of the lung at RV was 0.93 ± 0.22 kPa and at TLC was 1.41 ± 0.41 kPa. TLC showed a significantly higher mean shear stiffness (P = 0.0004) compared with RV. Lung MRE stiffness measurements obtained using the SE‐EPI sequence were reproducible and repeatable, both at RV and TLC. Lung shear stiffness changes across respiratory cycle with significantly higher stiffness at TLC than RV.  相似文献   

12.
Magnetic resonance elastography (MRE) is used to quantify the viscoelastic shear modulus, G*, of human and animal tissues. Previously, values of G* determined by MRE have been compared to values from mechanical tests performed at lower frequencies. In this study, a novel dynamic shear test (DST) was used to measure G* of a tissue-mimicking material at higher frequencies for direct comparison to MRE. A closed-form solution, including inertial effects, was used to extract G* values from DST data obtained between 20 and 200 Hz. MRE was performed using cylindrical 'phantoms' of the same material in an overlapping frequency range of 100-400 Hz. Axial vibrations of a central rod caused radially propagating shear waves in the phantom. Displacement fields were fit to a viscoelastic form of Navier's equation using a total least-squares approach to obtain local estimates of G*. DST estimates of the storage G' (Re[G*]) and loss modulus G″ (Im[G*]) for the tissue-mimicking material increased with frequency from 0.86 to 0.97 kPa (20-200 Hz, n = 16), while MRE estimates of G' increased from 1.06 to 1.15 kPa (100-400 Hz, n = 6). The loss factor (Im[G*]/Re[G*]) also increased with frequency for both test methods: 0.06-0.14 (20-200 Hz, DST) and 0.11-0.23 (100-400 Hz, MRE). Close agreement between MRE and DST results at overlapping frequencies indicates that G* can be locally estimated with MRE over a wide frequency range. Low signal-to-noise ratio, long shear wavelengths and boundary effects were found to increase residual fitting error, reinforcing the use of an error metric to assess confidence in local parameter estimates obtained by MRE.  相似文献   

13.
The current state‐of‐the‐art diagnosis method for deep tissue injury in muscle, a subcategory of pressure ulcers, is palpation. It is recognized that deep tissue injury is frequently preceded by altered biomechanical properties. A quantitative understanding of the changes in biomechanical properties preceding and during deep tissue injury development is therefore highly desired. In this paper we quantified the spatial–temporal changes in mechanical properties upon damage development and recovery in a rat model of deep tissue injury. Deep tissue injury was induced in nine rats by two hours of sustained deformation of the tibialis anterior muscle. Magnetic resonance elastography (MRE), T2‐weighted, and T2‐mapping measurements were performed before, directly after indentation, and at several timepoints during a 14‐day follow‐up. The results revealed a local hotspot of elevated shear modulus (from 3.30 ± 0.14 kPa before to 4.22 ± 0.90 kPa after) near the center of deformation at Day 0, whereas the T2 was elevated in a larger area. During recovery there was a clear difference in the time course of the shear modulus and T2. Whereas T2 showed a gradual normalization towards baseline, the shear modulus dropped below baseline from Day 3 up to Day 10 (from 3.29 ± 0.07 kPa before to 2.68 ± 0.23 kPa at Day 10, P < 0.001), followed by a normalization at Day 14. In conclusion, we found an initial increase in shear modulus directly after two hours of damage‐inducing deformation, which was followed by decreased shear modulus from Day 3 up to Day 10, and subsequent normalization. The lower shear modulus originates from the moderate to severe degeneration of the muscle. MRE stiffness values were affected in a smaller area as compared with T2. Since T2 elevation is related to edema, distributing along the muscle fibers proximally and distally from the injury, we suggest that MRE is more specific than T2 for localization of the actual damaged area.  相似文献   

14.
Back pain is associated with increased lumbar paraspinal muscle (LPM) stiffness identified by manual palpation and strain elastography. Recently, magnetic resonance elastography (MRE) has allowed the stiffness of muscle to be characterized noninvasively in vivo, providing quantitative 3D stiffness maps (elastograms). The aim of this study was to characterize the stiffness (shear modulus, SM) of the LPM (multifidus and erector spinae) using MRE. MRE of the lumbar region was performed on seven adults in supine position. MRE was acquired in three muscular states: relaxed with outstretched legs, stretched with passive pelvis flexion, and contracted with outstretched legs and tightened trunk muscles. The mean SM was measured within a region of interest manually defined in the multifidus, erector spinae, and the entire paraspinal compartment. The intermuscular difference and the effects of stretching and contraction were assessed by ANOVA and t‐tests. At rest, the mean SM of the paraspinal compartment was 1.6 ± 0.2 kPa. It increased significantly with stretching to 1.65 ± 0.3 kPa, and with contraction to 2.0 ± 0.7 kPa. Irrespective of muscular state, the erector spinae was significantly stiffer than the multifidus. The multifidus underwent proportionally higher stiffness changes from rest to contraction and stretching. MRE can be used to measure the stiffness of the LPM in different muscular states. We hypothesize that, irrespective of posture, the erector spinae behaves as semi‐rigid beam, and ensures permanent stiffness of the spine. The multifidus behaves as an adaptable muscle that provides segmental flexibility to the spine and tunes the spine stiffness. Clin. Anat. 31:514–520, 2018. © 2018 Wiley Periodicals, Inc.  相似文献   

15.
A method for direct determination of anisotropic elastic coefficients using two-dimensional shear wave patterns is introduced. Thereby, the symmetry of the wave patterns is approximated by a squared elliptic equation yielding an explicit relation between waveform and elasticity. The method is used to analyse MR elastography wave images of the biceps acquired by a continuous harmonic excitation at the distal tendon of the muscle. Typically V-shaped wave patterns were observed in this type of tissue, which could be well reproduced by the proposed elliptic approximation of the waveform assuming incompressibility and a transverse isotropic model of elasticity. Without additional experiments, the analysis of straightness, slope and interferences of the wave fronts enabled us to deduce two Young's moduli and one shear modulus, which fully describe the anisotropy of the elasticity of muscles. The results suggest strong anisotropy of the living human biceps causing a shear wave speed parallel to the muscle fibres that is approximately four times faster than the perpendicular shear wave speed.  相似文献   

16.
Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo, using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive properties of induced shear waves. Key features of this study include (i) the development and application of a novel MR-compatible actuation system which transmits vibratory motion into the brain through an incisor bar, and (ii) the investigation of the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600-1800 Hz. Displacement fields due to propagating shear waves were measured during continuous, harmonic excitation of the skull. This protocol enabled characterization of the true steady-state patterns of shear wave propagation. Analysis of displacement fields obtained at different frequencies indicates that the viscoelastic properties of mouse brain tissue depend strongly on frequency. The average storage modulus (G') increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G″) increased from approximately 1 to 3 kPa. Both moduli were well approximated by a power-law relationship over this frequency range. MRE may be a valuable addition to studies of disease in murine models, and to pre-clinical evaluations of therapies. Quantitative measurements of the viscoelastic parameters of brain tissue at high frequencies are also valuable for modeling and simulation of traumatic brain injury.  相似文献   

17.
目的 探讨剪切波弹性成像(SWE)技术定量评估肩胛动力障碍(SD)患者与健康成人肩胛带肌厚度与弹性模量的应用价值。方法 前瞻性病例对照研究。纳入2019年3-9月中国康复研究中心北京博爱医院骨科33例(33肩)SD患者为SD组,其中男10例、女23例,年龄35~71岁;另招募同期健康志愿者32例(61肩)为对照组,其中男10例、女22例,年龄22~74岁。采用二维灰阶超声和SWE测量两组受试者的上斜方肌(UT)、肩胛提肌(LS)、中斜方肌(MT)、菱形肌(RM)、下斜方肌(LT)、前锯肌(SA)的厚度、剪切波速度,并计算弹性模量值。比较SD患者与健康成人的肩胛带肌厚度与弹性模量变化,分析年龄、性别对肩胛带肌厚度与弹性模量的影响。结果 SD患者的LS厚度、UT弹性模量、UT与MT弹性模量比和UT与LT弹性模量比分别为(0.40±0.11)cm、(44.42±29.17)kPa(1 mmHg= 0.133 kPa)、1.59±0.56、1.56±0.63,健康成人分别为(0.47±0.17)cm、(31.00±12.68)kPa、1.30±0.30、1.30±0.30,SD患者LS厚度小于健康成人,UT弹性模量、UT与MT弹性模量比、UT与LT弹性模量比均大于健康成人,差异均具有统计学意义(P值均<0.05)。同年龄段的SD患者与健康成人比较:青年(18~40岁)SD患者的RM弹性模量为(31.14±3.93)kPa大于健康青年人(23.30±8.24)kPa,中年(41~60岁)SD患者的UT与SA弹性模量比为1.57±0.38大于健康中年人1.30±0.33,老年(61~80岁)SD患者的UT与MT弹性模量比、UT、LS和SA弹性模量分别为1.81±0.68、(53.59±36.99)kPa、(36.54±11.41)kPa、(18.51±8.05)kPa,健康老年人分别为1.40±0.39、(32.01±11.93)kPa、(28.82±9.42)kPa、(13.04±7.23)kPa,老年SD患者均大于健康老年人,差异均有统计学意义(P值均<0.05)。在SD患者和健康成人中,男性的SA厚度分别为(0.82±0.24) cm和(0.80±0.17)cm,女性分别为(0.63±0.15)cm和(0.69±0.17)cm,男性SA厚度均大于女性;而且在健康成人中,女性的UT弹性模量为(32.91±13.87)kPa,大于男性的(26.77±8.37)kPa:差异均有统计学意义(P值均<0.05)。在健康成人中,SA厚度、LT弹性模量、SA弹性模量均与年龄增长呈负相关(r= -0.334、-0.416、-0.431),而UT与LT弹性模量比、UT与SA弹性模量比均与年龄增长呈正相关(r=0.317、0.300);在SD患者中,UT与MT弹性模量比、LS弹性模量均与年龄增长呈正相关(r= 0.410 、0.399),而RM弹性模量与年龄增长呈负相关(r=-0.402):差异均具有统计学意义(P值均<0.05)。结论 SWE可用于定量评估肩胛带肌弹性模量,可反映SD患者肩胛带肌力偶失衡的特点,对SD的预防、早期诊断与精准化康复治疗具有一定的指导意义。  相似文献   

18.
磁共振弹性成像的初步实验研究   总被引:1,自引:0,他引:1  
目的:研究磁共振弹性成像(MRE)技术。方法:研制外部激发装置,设计成像脉冲序列,制作模拟人体软组织的体模。激发装置由序列控制,于体模表面产生低频率剪切波。脉冲序列采用梯度回波序列,在x、y或z轴上施加运动敏感梯度(MSG)。剪切波导致的介质内的周期性移位可使接收信号产生周期性相位位移,从测得的相位位移就能计算出每个体素的移位值,直接显示介质内剪切波的传播。通过调整相位偏置,获得一个完整周期内剪切波的动态传播图像。相位图经局部频率估算法(LFE)处理后计算出量化的弹性模景图。实验采用浓度为1.0%和1.5%不同弹性的琼脂凝胶体模,激发频率分别采用150Hz、200Hz、250Hz和300Hz。结果:MRE的相位图显示了剪切波在体模内的传播,剪切波的波长随激发频率和体模弹性变化。波长与激发频率呈反比,与体模弹性呈正比。剪切波的波长在不同激发频率和不同浓度体模之间呈严格的比例关系。计算出的弹性模量图清楚显示了两种浓度介质的弹性对比。结论:MRE的相位图可显示剪切波在介质内的传播,弹性图可量化和显示介质的弹性模量。  相似文献   

19.
Magnetic resonance elastography (MRE) is an important new method used to measure the elasticity or stiffness of tissues in vivo. While there are many possible applications of MRE, breast cancer detection and classification is currently the most common. Several groups have been developing methods based on MR and ultrasound (US). MR or US is used to estimate the displacements produced by either quasi-static compression or dynamic vibration of the tissue. An important advantage of MRE is the possibility of measuring displacements accurately in all three directions. The central problem in most versions of MRE is recovering elasticity information from the measured displacements. In previous work, we have presented simulation results in two and three dimensions that were promising. In this article, accurate reconstructions of elasticity images from 3D, steady-state experimental data are reported. These results are significant because they demonstrate that the process is truly three-dimensional even for relatively simple geometries and phantoms. Further, they show that the integration of displacement data acquisition and elastic property reconstruction has been successfully achieved in the experimental setting. This process involves acquiring volumetric MR phase images with prescribed phase offsets between the induced mechanical motion and the motion-encoding gradients, converting this information into a corresponding 3D displacement field and estimating the concomitant 3D elastic property distribution through model-based image reconstruction. Fully 3D displacement fields and resulting elasticity images are presented for single and multiple inclusion gel phantoms.  相似文献   

20.
A quasistatic magnetic resonance elastography (MRE) method for the evaluation of breast cancer is proposed. Using a phase contrast, stimulated echo MRI approach, strain imaging in phantoms and volunteers is presented. First-order assessment of tissue biomechanical properties based on inverse strain mapping is outlined and demonstrated. The accuracy of inverse strain imaging is studied through simulations in a two-dimensional model and in an anthropomorphic, three-dimensional finite-element model of the breast. To improve the accuracy of modulus assessment by elastography, inverse methods are discussed as an extension to strain imaging, and simulations quantify MRE in terms of displacement signal/noise required for robust inversion. A direct inversion strategy providing information on tissue modulus and pressure distribution is described along with a novel iterative method utilizing a priori knowledge of tissue geometry. It is shown that through the judicious choice of information from previous contrast-enhanced MRI breast images, MRE data acquisition requirements can be significantly reduced while maintaining robust modulus reconstruction in the presence of strain noise. An experimental apparatus for clinical breast MRE and preliminary images of a normal volunteer are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号