首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The factors that are responsible for trabecular bone loss in aging women are not completely understood. To evaluate declining renal function as a possible factor, we studied 19 Caucasian women (average age 67) who were from 6 to 41 years postmenopausal. Trabecular bone density was quantitated by computerized tomography of the spine. Serum calcium, phosphorus, and creatinine were normal in all subjects. Creatinine clearance averaged 74 ml/min (range 38–122), decreased with age (r=−0.60,P=0.003), and was inversely related to serum creatinine (r=−0.51,P=0.01). Bivariate regression demonstrated that bone density decreased with age (r=−0.59,P=0.004); controlling for the effect of creatinine clearance weakened this correlation to r=−0.45 (P=0.03); controlling additionally for 1,25-dihydroxyvitamin D [1,25(OH)2D] and parathyroid hormone (PTH) reduced the correlation coefficient to r=−0.34 (P=0.11). Bone density also decreased in direct proportion to the decrement in creatinine clearance (r=0.44,P=0.03); controlling for the effects of 1,25(OH)2D and PTH reduced this correlation coefficient to r=0.34 (P=0.11). These results suggest that occult renal insufficiency may contribute to bone loss in aging women, and that this effect may be mediated in part by 1,25(OH)2D and PTH. In this age group renal function should be assessed by measuring creatinine clearance rather than the serum creatinine concentration since renal insufficiency can be masked by apparently normal circulating creatinine levels.  相似文献   

2.
Ultrasound analysis of the calcaneus and serum markers of bone turnover were used to examine the bone status of healthy Nigerian women who reside in an area of the world where dietary calcium intake is generally low and estrogen replacement therapy is not widely available. A total of 218 women (108 premenopausal and 110 postmenopausal) between the ages of 16 and 95 years were enrolled in the study. Broadband ultrasound attenuation (BUA) and speed of sound velocity (SOS) were measured and used to calculate the stiffness index (SI) of the calcaneus. In this cross-sectional study, the Nigerian women exhibited a marked age-dependent decline in SI that was defined by the regression equation SI=105.9–6.62E-3×Age2. SI was significantly correlated with age (r=−0.41,P<0.001) and with serum NTx concentrations (r=−0.26,P<0.001), but not with serum levels of bone specific alkaline phosphatase (BSAP). Years since menopause was also significantly correlated with SI (r=0.40,P<0.001). A significant increase in serum NTx concentration occurred at least a decade before a significant decline in SI was evident. In the total study group, 24% of the women had T-scores indicative of osteopenia and 9% had T-scores indicative of osteoporosis, based on US reference data. Although the reported current incidence of fracture is low in women in sub-Saharan West Africa, these data show that after menopause Nigerian women have a decline in bone quality and increase in bone turnover similar to North American Caucasian women.  相似文献   

3.
Mineral metabolism was studied in 99 premenopausal and 80 postmenopausal women both before and after 9–14 months of treatment with 50 µg/day transdermal estradiol. In estrogen-repleted subjects (premenopausal women and postmenopausal women on estrogen replacement therapy) total serum calcium was significantly lower (0.065 mmol/l;p<0.001) than in those who were estrogen-depleted (untreated postmenopausal women). This difference was smaller but still significant for calculated ultrafiltrable calcium (UFCa: 0.02–0.03 mmol/l;p<0.001). However, ionized calcium (both calculated and measured) was not different in the two groups of women. This finding explains why estrogen repletion does not induce changes in the serum level of intact parathyroid hormone (PTH), despite lower total or ultrafiltrable serum calcium. In a parallel study we have shown that intravenous administration of aminobutane bisphosphonate, a powerful inhibitor of bone resorption, produces similar decreases in serum calcium which were associated with significant increases in intact PTH.Estrogen-depleted women had, on the one hand, significantly higher serum levels of bicarbonate, anion gap, complexed calcium, pH, phosphate and alkaline phosphatase, and higher rates of tubular reabsorption of phosphate and urinary excretion of calcium and hydroxyproline. On the other hand they had lower serum chloride levels and lower rates of tubular reabsorption of calcium.Altogether these findings might indicate that estrogen deficiency decreases renal sensitivity to PTH. This is responsible for the higher serum phosphate and bicarbonate levels, the resulting mild metabolic alkalosis leading to higher serum levels of complexed ultrafiltrable calcium and higher rates of urinary excretion of calcium, but unchanged serum levels of ionized calcium and PTH.  相似文献   

4.
Summary  LCT 13910 CC genotype is associated with lactose intolerance, a condition often resulting in reduced milk intake. Women with the CC genotype were found to have decreased serum calcium and reduced bone mineral density. Introduction  The CC genotype of the 13910 C/T polymorphism of the LCT gene is linked to lactose intolerance and low calcium intake. Methods  We studied 595 postmenopausal women, including 267 osteoporotic, 200 osteopenic, and 128 healthy subjects. Genotyping, osteodensitometry, and laboratory measurements were carried out. Results  Frequency of aversion to milk consumption was 20% for CC genotype and 10% for TT + TC genotypes (p = 0.03). The albumin-adjusted serum calcium was 2.325 ± 0.09 mmol/L for CC genotype and 2.360 ± 0.16 mmol/L for TT + TC genotypes (p = 0.031). Bone mineral density (BMD; Z score) was lower in the CC than TT + TC genotypes, respectively, at the radius (0.105 ± 1.42 vs 0.406 ± 1.32; p = 0.038), at the total hip (−0.471 ± 1.08 vs −0.170 ± 1.09; p = 0.041), and at the Ward’s triangle (−0.334 ± 0.87 vs −0.123 ± 0.82; p = 0.044). Conclusion  LCT 13910 C/T polymorphism is associated with decreased serum calcium level and lower BMD in postmenopausal women. Péter Lakatos and Gábor Speer contributed equally to this work.  相似文献   

5.
Summary We studied 20 healthy premenopausal women aged 36.5±4.0 years (mean±1 SD), 123 healthy postmenopausal women aged 50.0±2.4 years, and 103 postmenopausal women aged 65.1±5.6 years with symptomatic osteoporosis (forearm and spinal fracture). Serum levels of vitamin D metabolites [25(OH)D, 24,25(OH)2D3, and 1,25(OH)2D] were compared with (1) bone mass in the forearm (single photon absorptiometry) and in the spine (dual photon absorptiometry); (2) biochemical indices of bone formation (serum alkaline phosphatase, plasma bone Gla protien), and bone resorption (fasting urinary hydroxyproline); and (3) other biochemical estimates of calcium metabolism (serum calcium, serum phosphate, 24-hour urinary calcium, intestinal absorption of calcium). The present study revealed no difference in any of the vitamin D metabolites between the premenopausal women, the healthy postmenopausal women and the osteoporotic women as a group. The concentrations of 1,25(OH)2D and 25(OH)D were significantly lower in patients with spinal fracture than in those with forearm fracture. In the early postmenopausal women, serum 1,25(OH)2D was related to forearm bone mass (r=−0.20;P<0.05), intestinal calcium absorption (r=0.18;P<0.05), and 24-hour urinary calcium (r=0.21;P<0.05); serum 25(OH)D was related to spinal bone mass (r=0.23;P<0.01). In the osteoporotic women, serum vitamin D metabolites were not related to bone mass, but 1,25(OH)2D was related to bone Gla protein (r=0.33;P<0.001), serum phosphate (r=−0.27;P<0.01), and 24-hour urinary calcium (r=0.43;P<0.001). The present study demonstrates that in a population that is apparently not deficient in vitamin D, a disturbance of the vitamin D metabolism is not likely to play a pathogenetic role in early postmenopausal bone loss. Patients with spinal fractures have low levels of vitamin D metabolites, which may aggravate their osteoporosis.  相似文献   

6.
The purpose of this study was to measure pyridinium crosslinks in serum by high performance liquid chromatography (HPLC) and to correlate levels with urinary excretion in patients with different osteometabolic conditions. Blood and spot urine samples were collected between 9 and 11 A.M. in 92 early postmenopausal, untreated women (age 52.3 ± 2.6 years, months since menopause 20.4 ± 9.6), 17 patients with active Paget's disease (10 males, aged 65.1 ± 12.6) and 24 healthy premenopausal women (aged 28.4 ± 4.2). Urinary excretion of the total fraction (free + peptide bound) of pyridinolines (Pyr, Dpyr) was measured by HPLC. Before HPLC analysis, serum samples were submitted to a clean-up procedure by ultrafiltration. In 42 postmenopausal women, bone loss was calculated from two bone mass measurements (L2–L4, DXA), performed at study entry and after 12 months. Statistical analysis was performed by Student's t test for independent samples and linear regression analysis. In pagetic patients' serum levels of Pyr and Dpyr were more than threefold increased over the mean observed in healthy controls and were closely correlated with total alkaline phosphatase levels (Pyr: r = 0.73; Dpyr: r = 0.72, P < 0.0005). Compared with controls, postmenopausal women had significantly increased levels of both urinary and serum Pyr and Dpyr (P < 0.003). In pagetic patients and postmenopausal women, crosslinks serum levels were correlated with their urinary excretion with r values ranging from 0.46 to 0.84. In postmenopausal women, only serum Dpyr correlated with the rate of bone loss (r =−0.36, P= 0.02). The data suggest that serum levels of pyridinium cross-links are correlated with urinary excretion in patients with different osteometabolic conditions. The determination of serum levels prevents limitations related to urinary specimen collection and may be a more practical method for routine application, avoiding corrections for urinary creatinine which could be misleading. Received: 13 August 1996 / Accepted: 25 April 1997  相似文献   

7.
In an epidemiological study, markers of bone formation (serum osteocalcin and C-terminal propeptide of type I collagen) and bone resorption [urinary type I collagen peptides (Crosslaps), urinary total pyridinoline (TPYRI), urinary deoxypyridinoline (DPYRI) as well as female sex hormones (serum estradiol)], follicle-stimulating hormone (FSH) and luteinizing hormone were measured in 237 women. This cohort aged 44–66 years, came for their first medical examination since menopause to the outpatient menopause clinic at the Kaiser-Franz-Josef-Hospital, Vienna. The women were all 0.5–5.0 years since cessation of menses and were not taking medications other than hormone replacement therapy [52 cases, 21.9%)] and had no diseases known to affect bone and mineral metabolism. The best correlation was found between urinary DPYRI and urinary TPYRI (r = 0.63, P= 0.0001), followed by urinary Crosslaps and urinary DPYRI (r = 0.47, p = 0.0001). Only weak but significant correlations between E2 and urinary Crosslaps (r =−0.21, P < 0.0001) as well as serum E2 and serum osteocalcin (r =−0.16, P= 0.0007), were observed. Of the 237 women 53% suffered from a severe E2 deficiency (E2 < 10.0 ng/liter). In these patients, urinary Crosslaps (+48%) and serum osteocalcin (+22%) were significantly higher (P < 0.0001) compared with those patients with E2 levels > 10 ng/liter. Women with E2 levels >10 ng/liter were further subdivided into those with and without sex hormone replacement therapy, whereby no statistical differences in any of the biochemical markers could be observed between these groups. We could clearly demonstrate that in postmenopausal women suffering from severe E2 deficiency (E2 < 10 ng/liter), urinary Crosslaps and serum osteocalcin are significantly increased, indicating in principle a clear correlation between E2 deficiency and these markers of bone turnover. Received: 3 February 1997 / Accepted: 15 October 1997  相似文献   

8.
The effect of the degree of carboxylation of osteocalcin (OC) on the properties of bone is unclear. The aim of this study was to relate serum concentrations of total OC (tOC) and undercarboxylated OC (ucOC), measured with a two-site immunoassay, to bone mineral density (BMD) at the femoral neck and ultrasonic transmitted velocity (UTV) at the os calcis in 257 women aged 60–99 years, 22 of whom had sustained a hip fracture. There was an increase in tOC (r = 0.19, P= 0.003) and ucOC (r = 0.20, P= 0.002) with age. No significant difference in tOC or ucOC between subjects with and without hip fracture was found. Serum tOC was negatively correlated with femoral neck BMD (r =−0.23, P= 0.0001) and os calcis UTV (r =−0.29, P= 0.0001) and partial correlations indicated that these relationships were independent of age. Serum ucOC also correlated negatively with os calcis UTV (r =−0.21, P= 0.001) and less strongly with femoral neck BMD (r =−0.13, P= 0.052). After adjusting for age, only the relationship between ucOC and os calcis UTV remained significant (r =−0.16, P= 0.017). It is concluded that in women over 60 years, the increase in tOC reflects an age-related rise in bone remodeling, whereas the increase in ucOC reflects an age-related fall in vitamin K status. The stronger relationship of ucOC with UTV than BMD suggests that the rise in ucOC may perhaps relate more to changes in bone quality than mineral content. Higher serum ucOC concentrations in subjects with a history of hip fracture could not be confirmed. Received: 8 January 1997 / Accepted: 29 September 1997  相似文献   

9.
Data from animal and in vitro studies suggest that the growth-promoting effects of the adrenal androgen dehydroepiandrosterone sulfate (DHEAS) may be mediated by stimulation of insulin-like growth factor-I (IGF-I) and/or inhibition of interleukin 6 (IL-6), a cytokine mediator of bone resorption. This study tests the hypotheses that there are effects of age on serum DHEAS, IGF-I, and IL-6 levels, and that levels of IGF-I and IL-6 are related to DHEAS levels. The study included 102 women: 27 premenopausal and 75 postmenopausal, including 35 postmenopausal women with osteoporosis, as defined by bone mineral density scores by dual X-ray energy absorptiometry. DHEAS levels decreased significantly with age (r =−0.52, P < 0.0001) and IGF-I levels decreased significantly with age (r =−0.49, P < 0.0001). IL-6 levels increased significantly with age (r = 0.36, P= 0.008). IGF-I was positively correlated to DHEAS levels (r = 0.43, P < 0.0001, n = 102) and IL-6 levels were negatively correlated to DHEAS levels (r =−0.32, P= 0.021, n = 54). Levels of DHEAS and IGF-I were correlated with T scores of the spine and some hip sites. In a multiple variable model to predict DHEAS, age was an important predictor (P < 0.001), but osteoporosis status, IGF-I, and IL-6 were not. The median DHEAS level was lower in the postmenopausal osteoporotic women (67 μg/dl, n = 35) than in the nonosteoporotic postmenopausal women (106.3 μg/dl, n = 40, P= 0.03), but this was not significant after correction for age. Age accounted for 32% of the variance in DHEAS levels. In summary, DHEAS levels decreased with age and had a positive association with IGF-I levels and a negative association with IL-6 levels. DHEA deficiency may contribute to age-related bone loss through anabolic (IGF-I) and anti-osteolytic (IL-6) mechanisms. Received: 28 June 1999 / Accepted: 11 January 2000  相似文献   

10.
Weight-bearing exercise has been shown to maintain or increase bone mass in younger as well as older individuals but the mechanisms by which mechanical loading affects bone metabolism are not known in detail. Twelve postmenopausal women participated in a single bout of brisk walking (50% of VO2 max) for 90 minuttes. Calciotropic hormones and markers of type I collagen formation (PICP) and degradation (ICTP) were measured before the exercise, and 1, 24, and 72 hours following the exercise. Total body bone mineral content (BMC) and density (BMD) were measured by dual energy X-ray absorptiometry (DXA). Brisk walking did not induce any significant changes in the concentrations of ionized calcium, parathyroid hormone (PTH), calcitonin, or osteocalcin. A significant increase of PICP was noted 24 and 72 hours (P<0.01) after exertion and a significant decrease in the concentration of serum ICTP at 1 hour (P<0.05) was followed by an increase at 72 hours (P<0.001). There was no significant difference between the increases in the concentrations of PICP and ICTP at 72 hours. Strong inverse correlations between the basal levels of PTH and BMD (r=−0.78;P<0.01) as well as between osteocalcin and BMD (r=−0.83;P<0.01) were noticed. The changes in serum levels of bone collagen markers indicate an altered bone collagen turnover due to this moderate endurance exercise. The results also support the fact that serum levels of PTH as well as those of osteocalcin are associated with total body BMD in postmenopausal women.  相似文献   

11.
Serum levels of cross-linked N-telopeptides (NTx) of bone collagen, alkaline phosphatase (ALP), and intact parathyroid hormone (PTH) were determined in 64 premenopausal (PRM) and 86 postmenopausal (PSM) women living in northern Nigeria. Serum NTx values were correlated with ALP activity (r = 0.31–0.58, P < 0.01) and PTH (0.32–0.35, P < 0.01)) in all of the subjects studied, and were also related to age (−0.47, P < 0.001) and body mass index (−0.45, P < 0.001) in PRM women. Menopause had the effect of increasing the circulating concentrations of NTx and ALP activity by 15% (P= 0.001) and 11% (P= 0.02), respectively; however, serum levels of PTH were not different between these two groups of women. Compared with Caucasian counterparts matched for age and body mass index, PSM Nigerian women had significantly increased circulating concentrations of NTx (21.7 versus 16.2 nmol BCE/liter, P= 0.01) and demonstrated a trend towards higher ALP activities and PTH levels. These results indicate that (1) discrete reference intervals should be defined for biochemical markers of bone metabolism in African populations, (2) Nigerian women have relatively higher rates of bone turnover, and (3) further investigation of the implications of increased serum NTx should be undertaken using physical methods such as dual X-ray absorptiometry (DXA) and bone ultrasound attenuation. Received: 16 September 1998 / Accepted: 10 January 1999  相似文献   

12.
The correlations between the serum levels of OPG, RANKL with age, menopause, bone markers, and bone mineral densities (BMDs) at the lumbar spine and proximal femur were studied in 504 pre- and postmenopausal Chinese women aged 20–75 years. We found that age was positively and negatively correlated with serum concentrations of OPG (r = 0.442, P < 0.001) and RANKL (r = –0.263, P < 0.001), respectively. Compared with premenopausal women, postmenopausal women showed higher serum OPG levels (107.6 ± 3.0 vs 72.0 ± 1.8 pg/ml, P < 0.001), lower serum RANKL concentrations (4.7 ± 0.4 vs. 5.8 ± 0.3 pg/ml, P < 0.001) and RANKL/OPG ratios (0.045 ± 0. 004 vs. 0.099 ± 0.008, P < 0.001). Neither serum levels of OPG nor RANKL or RANKL/OPG ratio correlated with BMDs after adjustment of age and menopause. They also showed no differences among normal, osteopenic and osteoporotic postmenopausal women. Serum levels of OPG were positively correlated with urinary excretion of NTx (r = 0.1453, P = 0.006). Serum levels of RANKL (r = –0.1928, P < 0.001) and RANKL/OPG ratio (r = –0.1303, P = 0.013) were inversely correlated with serum concentrations of OC. In multiple regression analysis, up to 20% variance (R2 = 0.106–0.224) of the OPG-RANKL system in peripheral circulation can be explained by age, menopause and bone markers.These results suggest that although serum OPG and RANKL concentrations were unrelated with BMDs, the age– and menopause– dependent changes of serum OPG and RANKL might be a protective mechanism against the accelerated bone loss in postmenopausal women.  相似文献   

13.
 The aim of this study was to clarify the relationship between endogenous estrogen, sex hormone-binding globulin (SHBG), and bone loss in pre-, peri-, and postmenopausal female residents of Taiji, a rural Japanese community. From a list of inhabitants aged 40 to 79 years, 200 participants—50 women in each of four age decades—were randomly selected, and baseline bone mineral density (BMD) at the lumbar spine and proximal femur were measured by dual-energy X-ray absorptiometry in 1993. Total estradiol (total E2) and SHBG were measured, and SHBG-unbound E2 (UBE2) was calculated using SHBG and the percent SHBG-unbound fraction ratio. BMD was measured again 3 years later, in 1996. Participants with ovariectomy or hysterectomy were excluded, and the remaining participants were categorized into four groups: premenopausal (n= 38), perimenopausal (n= 14), postmenopausal group 1 (5 years or less since menopause; n= 18), and postmenopausal group 2 (6 years or more since menopause; n= 74). The mean value of total E2 was highest in the premenopausal group (49.1 pg/ml), followed by the perimenopausal group (26.4 pg/ml), and the postmenopausal groups (0.83 pg/ml in postmenopausal group 1 and 0.96 pg/ml in postmenopausal group 2). The means for UBE2 showed the same pattern across the groups. After the multiple regression analysis of BMD at follow-up and endogenous estrogens, in premenopausal women, there were no significant associations between BMD at follow-up and serum total E2 and UBE2. In perimenopausal women, however, serum total E2 and UBE2 were significantly correlated with trochanteric BMD at follow-up (P < 0.05); and in postmenopausal group 2, they were significantly correlated with lumbar spine and Ward's triangle BMD at follow-up (P < 0.001 at lumbar spine, P < 0.05 at Ward's triangle). Concerning the association between BMD at follow-up and SHBG, in the premenopausal group, serum levels of SHBG were negatively correlated with BMD at the femoral neck (P < 0.05). In regard to partial regression coefficients for the change rates of BMD over 3 years and serum estrogens and SHBG concentrations, in perimenopausal women, UBE2 was correlated with the change rate of BMD at Ward's triangle (P < 0.05), and in postmenopausal group 1, serum levels of SHBG were significantly negatively related to change in BMD at the trochanter (P < 0.01). No other relationships with change in BMD were observed at any sites. These findings suggest that serum E2, UBE2, and SHBG levels differentially predict BMD levels in groups of differing menstrual status. It would, however, be difficult to predict bone loss in middle-aged and elderly Japanese women over a 3-year period using these indices alone. Received: November 29, 2001 / Accepted: February 28, 2002  相似文献   

14.
Most published studies on the role of muscle strength in the maintenance of bone mineral density (BMD) focused on the relationship between specific muscle groups and adjacent bones, mostly in young and premenopausal women. This study examined the influence of grip strength on BMD of the metacarpal index in postmenopausal Japanese women. Subjects included 1168 postmenopausal women aged 40–70 years. BMD measurement was done with computed X-ray densitometry (CXD) by analyzing X-ray films of the right second metacarpal index. Grip strength was measured in both the dominant and nondominant hands using a squeeze dynamometer. Grip strength (r = 0.2474; P= 0.0001) and age (r =−0.5443; P= 0.0001) significantly correlated positively and negatively, respectively, with BMD. Physical activity (r = 0.1318; P= 0.0001) also correlated positively with BMD. Breastfeeding (r =−0.1658; P= 0.0001), however, correlated negatively with BMD. Subjects with a history of regular physical activity had higher grip strengths and BMD, than those with no physical activity. Adjustment for age, physical activity, calcium intake, BMI, breastfeeding, testing site, and menopausal type indicated a significant (P for trend = 0.0013) positive association of grip strength with BMD. Subjects with stronger grip strengths had a decreased risk for low BMD. Received: 24 February 1998 / Accepted: 7 August 1998  相似文献   

15.
The objective of this study was to examine the value of NTx, a urinary cross-linked N-telopeptides of type I collagen, as a marker of bone resorption. We assessed changes in pre- and postmenopausal bone resorption by evaluating the correlation of NTx with L2–4 bone mineral density (BMD) in a total of 1100 Japanese women, aged 19–80 years [272 premenopausal (45.2 ± 6.2 years) and 828 postmenopausal (59.5 ± 6.2 years)]. Postmenopausal women were divided into three groups based on the range of BMD (normal, osteopenic, and osteoporotic). Within each group, subjects were further segregated according to years since menopause (YSM). NTx values were then evaluated for each group. Our results showed that BMD was significantly decreased (P < 0.05) and NTx was significantly increased (P < 0.01) after menopause in age-matched analysis. Consistent with a previous report, NTx was inversely correlated with BMD for the entire cohort of study subjects (r =−0.299), although NTx correlated better with premenopausal than postmenopausal BMD (r =−0.240 versus r =−0.086). This may have been due to the fact that elevated values of NTx were exhibited over the entire range of BMD present in the postmenopausal women, suggesting that NTx might respond faster to the estrogen withdrawal than BMD. In all postmenopausal women, regardless of the range of BMD, the increase in NTx reached a peak within 5 YSM. After 11 YSM, however, NTx remained elevated in the osteoporotic group but it decreased in the osteopenic group, and showed no significant change in the group of postmenopausal women with normal BMD. These findings suggest that bone resorption is dramatically increased within 5 years after menopause but remains increased only in osteoporotic women. Received: 29 April 1997 / Accepted: 12 August 1997  相似文献   

16.
The oophorectomized (OOX) rat has been proposed as a good model of postmenopausal osteroporosis in women. The aim of this study was to compare the effect of OOX in 6-month-old rats to the effects of menopause in women with respect to bone mass, the renal handling of calcium and phosphorus, and calcitropic hormones. To more closely replicate the human situation the rats were pair fed a 0.1% calcium diet. Thirty four, 6-month-old rats were randomized to sham operation or OOX. Whole body and regional bone density was performed at baseline and 6 weeks postoperation. Blood and 24-hour urine samples were obtained at baseline, 1, 3, and 6 weeks and assayed for various biochemical variables, parathyroid hormone (PTH), and calcitriol. The OOX rats lost significantly more bone than the sham-operated rats (change in global bone mineral density, sham −1.7 ± 2.0%, OOX −3.9 ± 2.6%, P < 0.001). In the OOX animals, an increase in the 24-hour urine calcium was observed at 1 and 3 weeks, which had returned to sham-operated levels by 6 weeks. In the whole group, the increase in urine calcium at 1 week was negatively correlated with the change in bone mass at 6 weeks (r =−0.39, P= 0.029). OOX resulted in an increased filtered load of calcium and phosphorus. There was an increase in the maximal renal tubular reabsorption of phosphorus (TmP-GFR) but no clear change in renal calcium handling. Neither calcitriol nor parathyroid hormone showed a significant change as a result of OOX. As in postmenopausal women, following oophorectomy in the rat, there was significant generalized bone loss and a negative calcium balance. This was associated with an initial rise in urine calcium due to a rise in the filtered calcium load; plasma phosphorus and TmP-GFR also rose. The rat model may differ from postmenopausal bone loss in that the initial rise in urine calcium was not present at later time points as occurs in natural menopause in women. Calcitropic hormone levels did not change. This study has shown that the 6-month-old OOX rat fed a 0.1% calcium diet has many similarities of calcium and phosphorus homeostasis to that seen at menopause in women. Received: 14 August, 1995 / Accepted: 8 March 1996  相似文献   

17.
Summary The relationship between acid base status and mineral metabolism after heavy exercise has been examined in 12 healthy subjects. Following burst exercise (duration 60–130 sec) to the point of exhaustion, blood pH had decreased (7.42±0.01 vs. 7.18±0.02,P<0.001) and plasma ionized calcium had increased (1.09±0.01 vs. 1.22±0.02 mmol/liter,P<0.001). Log ionized calcium concentration showed a significant negative correlation with pH (r=−0.90). Although plasma total calcium increased after exercise (2.47±0.05 vs. 2.67±0.04 mmol/liter,P<0.001), this change was not seen if the observed values were corrected for the accompanying increase in plasma protein concentration, suggesting that hemoconcentration accounted for these increments. Significant increases were also seen in plasma inorganic phosphate concentration, though not in plasma magnesium. Radioimmunoassay of parathyroid hormone using two different region-specific assays, one directed at the mid-region/carboxy-terminal and the other at the amino-terminal portion of the molecule, and of calcitonin, showed no change during exercise-induced hypercalcemia. The results do not suggest significant skeletal buffering of this type of acidosis and indicate that the changes in ionized calcium associated with short bursts of intense exercise are directly related to acidosis and that those in total calcium are a consequence of hemoconcentration.  相似文献   

18.
Summary Bone gla protein, the vitamin K-dependent protein synthesized by osteoblasts and measured in blood by radioimmunoassay, has been used as an index of the rate of bone turnover. The relationship of bone gla protein with other markers of bone mineral metabolism was determined in 31 untreated postmenopausal women with the osteoporotic syndrome. In addition to serum osteocalcin (BGP) we measured parathyroid hormone (PTH) (carboxyl and mid-molecule fragments), 25(OH)D, alkaline phosphatase, estradiol (E2), estrone (E1), dietary calcium intake, 24 hour urinary calcium excretion, and bone mineral density by CT scan of the lumbar vertebrae. Significant osteopenia was present on CT in untreated postmenopausal osteoporotic women (bone density in 18 out of 31 was below the critical value of 60 mg/cm3). Serum BGP correlated positively with CT scan (r+0.647,P<0.001). CT and age were negatively correlated (r−0.661,P<0.001) while CT and E2 showed a positive correlation (r+0.554,P<0.01). Unexpectedly, BGP and age revealed a significant negative correlation (r−0.421,P<0.05). These findings suggest a state of low bone turnover in this group with untreated postmenopausal osteoporosis.  相似文献   

19.
In order to establish whether calcium supplementation suppresses bone resorption in early postmenopausal women and whether any response is related to calcium absorption status, we studied 22 healthy women (median age 52 years) all within 5 years of the menopause. Urine was collected between 9.00 p.m. and 9.00 a.m., and 9.00 a.m. and 9.00 p.m., (2 days) and a fasting blood and spot urine sample was obtained at 9 a.m. On the first day, 5 μCi of 45Ca in 250 ml water with 20 mg calcium carrier as the chloride was given at 9.00 a.m. and a further blood sample was obtained at 10.00 a.m. to measure calcium absorption. A 1 g calcium load was given at 9.00 p.m., immediately before the second 24-hour urine collection. There was a rise in plasma ionized calcium (1.18 ± 0.010 mmol/liter versus 1.21 ± 0.011 mmol/liter, P < 0.01) and a fall in plasma PTH (4.2 ± 0.34 pmol/liter versus 3.5 ± 0.31 pmol/liter, P < 0.01) from baseline after the calcium load, and a trend for the magnitude of the change in PTH to be inversely related to calcium absorption (r =−0.33, P= 0.13). In the fasting spot urine samples, there were falls in hydroxyproline (OHPr/Cr; 14.6 ± 0.71 versus 12.6 ± 0.83, P < 0.001), pyridinoline (Pyr/Cr; 75 ± 2.8 versus 70 ± 3.5, P < 0.05), and deoxypyridinoline (Dpd/Cr; 22.7 ± 1.2 versus 19.5 ± 1.1, P < 0.005) after the calcium load. The calcium load suppressed urinary Dpd/Cr between 9.00 p.m. and 9.00 a.m. (P < 0.005), but not between 9.00 a.m. and 9.00 p.m. We conclude that acute administration of a 1 g calcium load suppresses bone resorption in early postmenopausal women, probably by decreasing PTH secretion. Received: 2 December 1996 / Accepted: 21 May 1997  相似文献   

20.
Summary The relationships between nutritional factors, calcium regulating hormones, and bone density were evaluated in three groups of normal subjects in rural southeast Kansas. Dietary intake of calcium (Ca), phosphorous (P), protein, and vitamin D; and serum 25OHD, Ca, P, parathyroid hormone (iPTH), and bone density (distal 1/3 radius) were measured in 29 elderly women, 35 elderly men, and 50 perimenopausal women. Measurements were repeated 5 years and 4 years later respectively in 16 elderly women and 15 elderly men. The r values for significant regression correlations for each group were as follows: perimenopausal: bone density and dietary Ca:P−r=.29, iPTH and 25OHD−r=−.38; elderly women: 25OHD and dietary Vitamin D(D)−r=.58, change in bone density (ΔBD) and initial bone density (BDI)−r=−.71, ΔBD and serum 25OHD−r=−.60, serum calcium and age−r=−.42; elderly men: Serum 25OHD and D−r=.61, iPTH and 25OHD−r=−.43, iPTH and serum phosphorous−r=.59. Conclusions: (1) The more adequate the state of vitamin D nutriture, the lower the serum iPTH in perimenopausal women and elderly men and the less bone loss in elderly women. (2) The Ca:P ratio in the diet may be important in maintaining bone density in perimenopausal women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号