首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
引论1940年由 Abraham 和 Chain 首先叙述了破坏青霉素的细菌酶,他们称它为青霉素酶。从那时起,所叙述的能水解β-内酰胺类化合物的酶,其数目和复杂性都已增加。随着连续对这种水解有拮抗作用或者是对β-内酰胺酶稳定的新化合物的研究,又出现了新的破坏药物的酶。因此,已经在平行进行着的研究,是从对β-内酰胺酶的底物β-内酰胺类抗生素所起的作用来考查抑制β-内酰胺酶的方法。虽然,企图用抗β-内酰胺酶的血清和某些化学药品抑制这些酶,但主要的进展则是用β-内酰胺类化合物自身作为酶抑制剂。  相似文献   

2.
早在1940年,Abraham和Chain就发现在对青霉素不敏感的大肠杆菌提取物中,含有青霉素酶。此酶能打开青霉素分子中的β-内酰胺环,命名为β-内酰胺酶,它能转化青霉素形成相应的青霉噻唑酸,使青霉素完全失去抗菌活性。β-内酰胺酶对头孢菌素也是敏感的,可使头孢菌素无效。故β-内酰胺酶的定义为凡能催化6-氨基青霉烷酸(6-APA)或7-氨基头孢烷酸(7-ACA)及其酰基衍生物的β-内酰胺环中酰胺键使之水解裂环的  相似文献   

3.
β-内酰胺类抗生素包括青霉素类、头孢菌素类以及非典型β-内酰胺类等,为品种最多、研究进展最快、临床应用最广泛的一大类药物.在世界抗生素市场中β-内酰胺类抗生素占主导地位.从第一个β-内酰胺类抗生素——青霉素G上市至今将近60年的历史,由于长期大量的应用,细菌对这类药物的耐药性比较严重.细菌产生耐药性机制很多,包括靶位结构或亲和力改变、细菌细胞膜通透住改变、细胞膜主动外排系统及细菌产生灭活酶等.而产生β-内酰胺酶是细菌对β-内酰胺类药物的主要耐药机制.为了解决产酶耐药问题,近年来通过研制耐酶的药物及β-内酰胺酶抑制剂等途径为β-内酰胺类抗生素在临床的应用开创了广阔前景.本文论述了β-内酰胺酶分类、生物活性及各种β-内酰胺酶抑制剂的抑酶作用特点和β-内酰胺类抗生素与β-内酰胺酶抑制剂复合制剂的主要品种及临床应用.  相似文献   

4.
β-内酰胺抗生素(如青霉素类和头孢菌素类等)可以专一性与细菌细胞膜上的靶位点结合,干扰细胞壁肽聚糖合成而导致细胞死亡。由于靶位点能与同位素标记的青霉素G进行共价结合,因此将这些靶位点称之为青霉素结合蛋白(Penicillin binding pro-teins,PBP’s)。一些革蓝氏阴性细菌和少数革蓝氏阳性菌能够产生多种β-内酰胺酶,这些酶可以水解青霉素和头孢菌素等抗生素,而使细胞具有抵抗这类β-内酰胺抗生素的杀伤能力。已经证明β-内酰胺酶产生与质粒和染色体基因有关。对于不产生β-内酰胺  相似文献   

5.
β—内酰胺酶抑制剂与抗生素耐药性的逆转   总被引:4,自引:0,他引:4  
细菌对β—内酰胺类抗生素(青霉素类、头孢菌素类及其相关抗生素如头霉素类、青霉烯类、碳青霉烯类和单酰胺菌素类)产生耐药性的最重要机理是产生β—内酰胺酶。该酶能水解药物分子中的β—内酰胺键而使其失活。对于青霉素类,反应产物是青霉噻唑酸。头孢菌素类等则分解为较小分子产物。许多细菌产生β—内酰胺酶,一些细菌编码酶的基因位于染色体上,其余的则由染色体外成份介导,或由质粒介导,或由转座子介导。  相似文献   

6.
现在对感染症最广泛使用β-内酰胺类抗生素的主要耐药性机理,是由于细胞外膜的非通透性和细菌产生的钝化酶(主要是β-内酰胺酶)而失去活性的。所以新的β-内酰胺药物研制的方向主要是对各种菌种的细胞外膜通透性要好,抗菌谱要广,并对细菌产生的β-内酰胺酶有耐酶性,保持β-内酰胺环,其目的是增强抗菌活性。在β-内酰胺酶中,分解青霉素类的为青霉素酶,分解头孢菌素的为头孢菌素酶。  相似文献   

7.
CEFTAZIDIME耐药细菌的β-内酰胺酶研究   总被引:5,自引:3,他引:2  
应用药物梯度琼脂筛选法获得绿脓杆菌和阴沟杆菌的Ceftazidime耐药菌株(MIC≥64μg/ml)。采用紫外分光光度法检测了耐药菌的β-内酰胺酶活性,酶对12种β-内酰胺抗生素水解的“底物轮廓”以及抑酶活性;应用超薄层分析等电聚焦电泳技术检测了β-内酰胺酶的等电点(pI),并与标准产酶菌株的β-内酰胺酶进行了比较。结果提示:细菌对Ceftazidime耐药后,β-内酰胺酶活性增加13~107倍;这类β-内酰胺酶具有如下特点:(1)水解头孢菌素类强于水解青霉素类;(2)舒巴克坦(5μg/ml)对这类酶无抑制作用,而同等剂量的邻氯青霉素却能明显抑制,(3)pI均≥8.0,与标准质粒介导的β-内酰胺酶的性质不同,符合染色体介导的头孢菌素酶的性质。此外,作者发现pI为8.2或8.4的4株耐药菌的β-内酰胺酶尚未见文献报道。  相似文献   

8.
微生物细胞能产生破坏青霉素及头孢菌素的β-内酰胺酶,是对该类抗生素耐药的主要原因之一。如果弄清该过程的机理及β-内酰胺酶作为催化剂水解β-内酰胺环的CO-N键的作用,那么,就不难找到可以抑制这些酶活性,并免受其破坏的化合物。目前,根据β-内酰胺梅与其底物分布的关系,可将它们分成三大类,即:青霉素-β-内酰胺酶,头孢菌素-β-内酰胺酶和呋肟头孢菌素-β-内酰胺酶。大肠杆菌、肠杆菌、柠檬酸杆菌、粘质沙雷氏菌、雷氏变形菌、绿脓杆菌所产生的β-内酰胺酶,可以水解苄青霉素、噻孢霉素、唑啉头孢菌素、头孢菌素Ⅳ;与此  相似文献   

9.
钟小斌  杨玉芳  温燕 《中国药房》2009,(20):1589-1591
β-内酰胺类抗生素是目前临床上应用最多的一类抗菌药物之一,为临床治疗感染性疾病提供了有力的保障。但细菌对其产生耐药的现象逐渐加重,甚至出现同时对多种β-内酰胺类品种耐药的现象,如耐甲氧西林金黄色葡萄球菌(MRSA)、超广谱β-内酰胺酶(ESBLs)菌株等。细菌对β-内酰胺类抗生素产生耐药的机制有细菌细胞膜通透性改变、青霉素结合蛋白的改变、产生口一内酰胺酶以及主动外排机制,其中细菌产生β-内酰胺酶、使β-内酰胺类抗生素水解而失去活性是最主要的耐药机制。β-内酰胺酶抑制剂可抑制β-内酰胺酶,  相似文献   

10.
β-内酰胺酶抑制剂 (β- Lactamase inhibitors)是一种新的 β-内酰胺类药物〔1〕。质粒传递产生 β-内酰胺酶 ,致使一些药物β-内酰胺环水解而失活 ,是病原菌对一些常见的 β-内酰胺类抗生素 (青霉素类、头饱菌素类 )耐药的主要方式。为了克服这种耐药性 ,除了研制具有耐酶性能的新抗生素外 ,还要不断寻找新的β-内酰胺酶抑制剂。目前对竞争型抑制剂的开发已有一些进展。竞争型抑制剂按其作用性质分为可逆性与不可逆性两类。耐酶青霉素 (甲氧西林、苯唑西林钠等 )属可逆性竞争型 β-内酰胺酶抑制剂。它们可与一些细菌的 β-内酰胺酶活性部…  相似文献   

11.
随着β—内酰胺抗生素的广泛应用,许多微生物产生的各种β—内酰胺酶已形成一个酶系家族。它们水解β—内酰胺类抗生素的内酰胶环,使之丧失活性,而且随着新β—内酰类抗生素的开发和应用,总是伴随着新的β—内酰胶酶的产生和发展。目前全球有90%金葡菌对青霉素耐药,因此由细菌产生β—内酰胶酶而导致的耐药问题日趋严重。对付细菌β—内酰胶酶主要从发展相对或绝对抵抗β—内酰胺酶水解作用的新抗生素、使用能使细菌停止合成β—内酰胺酶的联合治疗、合并使用对β—内酰胶酶敏感的化合物与对β—内酰胺酶相对稳定的青霉素类,发展特异…  相似文献   

12.
青霉素属β-内酰胺类抗生素,作用机理是抑制细菌细胞壁的合成,对没有细胞壁的人体细胞不起作用。青霉素的广泛应用导致耐药菌的出现和扩散,对临床治疗威胁很大,产生耐药性的主要原因是β-内酰胺酶的形成,因而促使了耐酶β-内酰胺类抗生素以及β-内酰胺酶抑制剂的研究。  相似文献   

13.
棒酸(Clavulanic acid)是由Str.clavuligerus 产生的β-内酰胺酶抑制剂。细菌对青霉素类和头孢菌素类耐药最主要原因之一,就是通过产生β-内酰胺酶破坏上述抗生素的β-内酰胺环,使药物失活。棒酸能渗入到细菌的胞壁与胞内和胞外的β-内酰胺酶相结合,形成一种无活性的非可逆性的酶产物。棒酸单独使用时,对大多数细菌只有较弱的抗菌活性,而与羟氨苄青霉素(Amoxicillin,下简称AM)联用  相似文献   

14.
随着β-内酰胺类抗生素的广泛应用,耐药菌株比例逐渐增多,耐青霉素的菌株最初仅为0.55%,到1965年为16.6%,1970年则超过80%。细菌对β-内酰胺类抗生素的耐药性,是由于某些耐药菌株产生β-内酰胺酶水解抗生素所致。将对青霉素活性较强的称为青霉素酶,  相似文献   

15.
β—内酰胺酶抑制剂的进展   总被引:1,自引:1,他引:0  
方红 《上海医药》1995,(5):32-34
近年来,β-内酰胺类抗生素已成为抗生素大家族中的重要成员,它包括青霉素类、头孢菌素类及其它β-内酰胺类(如:头霉素类、碳青霉烯类、单环β-内酰胺类及氧头孢烯类等)。随着临床上β-内酰胺类抗生素的不断应用,细菌对β-内酰胺类抗生素的耐药亦呈增长的趋势。此类耐药的一个最重要机理是产生β-内酰酶。β-内酰胺酶能够水解β-内酰胺类抗生素的内酰胺环,从而使这类抗生素失去抗菌活性。  相似文献   

16.
新酶抑制剂Tazobactam的特性及其与哌拉西林的复合制剂   总被引:10,自引:0,他引:10  
随着β-内酰胺类抗生素的广泛应用,许多微生物产生的各种β-内酰胺酶已形成了一个酶系家族,它们水解β-内酰胺类的内酰胺环使之丧失活性。而且,新β-内酰胺类的开发和应用,总是伴随着新β-内酰胺酶的产生和发展。目前全球有90%以上金葡菌对青霉素耐药。因此,由细菌产生β-内酰胺酶类导致耐药问题日趋严重。目前采取对付此类酶的  相似文献   

17.
金属—β—内酰胺酶研究进展   总被引:25,自引:0,他引:25  
细菌产生的β-内酰胺酶大部分系活性部位带丝氨酸残基的酶类,但也有一小部份活性部位为金属离子的酶类.第一个以金属离子为活性中心的酶是因蜡样芽孢杆菌产生的头孢菌素酶能被EDTA抑制而被发现.之后,世界各地相继发现了能产生这类酶的各种细菌.1988年Bush首次将该类酶定为金属-β-内本酰胺酶(metallo-β-lactamase),简称金属酶,归于β-内酰胺酶第Ⅱ类.金属酶不仅对β-内酰胺酶抑制剂敏感性差,而且能水解包括碳青霉烯类(carbopenems)在内的一大类β-内酰胺类抗生素.  相似文献   

18.
AmpC酶和超广谱β-内酰胺酶研究进展及临床治疗对策   总被引:6,自引:2,他引:4  
方平  余鑫之 《安徽医药》2005,9(8):564-567
产超广谱β-内酰胺酶(ESBLs)和头孢菌素酶(AmpC酶)是革兰阴性杆菌对β-内酰胺类抗生素耐药的主要机制.AmpC酶是对第三代头孢菌素耐药而不能被β-内酰胺酶抑制剂所抑制,有染色体介导的AmpC酶和质粒介导AmpC酶,前者分诱导表达和非诱导表达,后者可随耐药质粒复制、接合、转化及转座子移位,在革兰阴性杆菌内或种间传播.ESBLs是由质粒介导的能水解大多数青霉素、头孢菌素和氨曲南等β-内酰胺类抗生素且活性能被酶抑制剂抑制的一类β-内酰胺酶,主要由肺炎克雷伯菌和大肠埃希菌产生,也可由其它肠杆菌科细菌、不动杆菌属、铜绿假单胞菌产生.碳青霉烯类抗生素是治疗产AmpC酶和ES-BLs革兰阴性杆菌感染的首选药物.  相似文献   

19.
最近几年发现细菌能产生一系列的新的单环β-内酰胺抗生素(单酰胺菌素),碳青霉烯和一系列的头孢菌素。在作者开始研究时,仅仅知道β-内酰胺酶的作用物是β-内酰胺抗生素。这些分子除了作为酶作用物外,也具有在革蓝氏阳性菌和革蓝氏阴性菌的某些菌株内诱发β-内酰胺酶产生的能力。作者充分认识到青霉素和头孢菌素能增加象金葡菌、杆菌、肠道菌和绿脓杆菌这些菌株的β-内酰胺酶产生量。  相似文献   

20.
金属β-内酰胺酶的研究进展   总被引:1,自引:0,他引:1  
金属β-内酰胺类酶是一类需要金属离子协助才能发挥催化活性的一类广谱β-内酰胺酶,它能水解包括碳青霉烯在内的几乎所有的β-内酰胺类抗生素,且不被临床所用的β-内酰胺类抗生素所抑制。由于该酶位于质粒(整合子)上,极易在细菌中扩散,近期发现的携带NDM-1金属β-内酰胺酶超级细菌证实了这一担忧。因此,本文从分类、结构、催化机制以及进化等方面对金属β-内酰胺酶的研究进展进行了综述,希望对抗菌治疗的研究提供帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号