首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Autosomal-inherited progressive external ophthalmoplegia (PEO) is an adult-onset disease characterized by the accumulation of multiple mitochondrial DNA (mtDNA) deletions in post-mitotic tissues. Mutations in six different genes have been described to cause the autosomal dominant form of the disease, but only mutations in the DNA polymerase gamma gene are known to cause autosomal recessive PEO (arPEO), leaving the genetic background of arPEO mostly unknown. Here we used whole-exome sequencing and identified compound heterozygous mutations, leading to two amino acid alterations R225W and a novel T230A in thymidine kinase 2 (TK2) in arPEO patients. TK2 is an enzyme of the mitochondrial nucleotide salvage pathway and its loss-of-function mutations have previously been shown to underlie the early-infantile myopathic form of mtDNA depletion syndrome (MDS). Our TK2 activity measurements of patient fibroblasts and mutant recombinant proteins show that the combination of the identified arPEO variants, R225W and T230A, leads to a significant reduction in TK2 activity, consistent with the late-onset phenotype, whereas homozygosity for R225W, previously associated with MDS, leads to near-total loss of activity. Our finding identifies a new genetic cause of arPEO with multiple mtDNA deletions. Furthermore, MDS and multiple mtDNA deletion disorders are manifestations of the same pathogenic pathways affecting mtDNA replication and repair, indicating that MDS-associated genes should be studied when searching for genetic background of PEO disorders.  相似文献   

2.
Defects of Intergenomic Communication: Where Do We Stand?   总被引:3,自引:0,他引:3  
An expanding number of autosomal diseases has been associated with mitochondrial DNA (mtDNA) depletion and multiple deletions. These disorders have been classified as defects of intergenomic communication because mutations of the nuclear DNA are thought to disrupt the normal cross-talk that regulates the integrity and quantity of mtDNA. In 1989, autosomal dominant progressive external ophthalmoplegia with multiple deletions of mitochondrial DNA was the first of these disorders to be identified.Two years later, mtDNA depletion syndrome was initially reported in infants with severe hepatopathy or myopathy. The causes of these diseases are still unclear, but genetic linkage studies have identified three chromosomal loci for AD-PEO. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an autosomal recessive disorder associated with both mtDNA depletion and multiple deletions, is now known to be due to loss-of-function mutations in the gene encoding thymidine phosphorylase. Increased plasma thymidine levels in MNGIE patients suggest that imbalanced nucleoside and nucleotide pools in mitochondria may lead to impaired replication of mtDNA. Future research will certainly lead to the identification of additional genetic causes of intergenomic communication defects and will likely provide insight into the normal "dialogue" between the two genomes.  相似文献   

3.
Diseases caused by nuclear genes affecting mtDNA stability   总被引:10,自引:0,他引:10  
Diseases caused by nuclear genes that affect mitochondrial DNA (mtDNA) stability are an interesting group of mitochondrial disorders, involving both cellular genomes. In these disorders, a primary nuclear gene defect causes secondary mtDNA loss or deletion formation, which leads to tissue dysfunction. Therefore, the diseases clinically resemble those caused by mtDNA mutations, but follow a Mendelian inheritance pattern. Several clinical entities associated with multiple mtDNA deletions have been characterized, the most frequently described being autosomal dominant progressive external ophthalmoplegia (adPEO). MtDNA depletion syndrome (MDS) is a severe disease of childhood, in which tissue-specific loss of mtDNA is seen. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients may have multiple mtDNA deletions and/or mtDNA depletion. Recent reports of thymidine phosphorylase mutations in MNGIE and adenine nucleotide translocator mutations in adPEO have given new insights into the mechanisms of mtDNA maintenance in mammals. The common mechanism underlying both of these gene defects could be disturbed mitochondrial nucleoside pools, the building blocks of mtDNA. Future studies on MNGIE and adPEO pathogenesis, and identification of additional gene defects in adPEO and MDS will provide further understanding about the mammalian mtDNA maintenance and the crosstalk between the nuclear and mitochondrial genomes.  相似文献   

4.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive multisystem disorder associated with depletion, multiple deletions and site-specific point mutations of mitochondrial DNA (mtDNA). MNGIE is caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP; endothelial cell growth factor 1). Deficiency of TP leads to dramatically elevated levels of circulating thymidine and deoxyuridine. The alterations of pyrimidine nucleoside metabolism are hypothesized to cause imbalances of mitochondrial nucleotide pools that, in turn, may cause somatic alterations of mtDNA. We have now identified five major forms of mtDNA deletions in the skeletal muscle of MNGIE patients. While direct repeats and imperfectly homologous sequences appear to mediate the formation of mtDNA deletions, the nicotinamide adenine dinucleotide dehydrogenase 5 gene is a hot-spot for these rearrangements. A novel aspect of the mtDNA deletions in MNGIE is the presence of microdeletions at the imperfectly homologous breakpoints.  相似文献   

5.
Defects in mtDNA maintenance range from fatal multisystem childhood diseases, such as Alpers syndrome, to milder diseases in adults, including mtDNA depletion syndromes (MDS) and familial progressive external ophthalmoplegia (AdPEO). Most are associated with defects in genes involved in mitochondrial deoxynucleotide metabolism or utilization, such as mutations in thymidine kinase 2 (TK2) as well as the mtDNA replicative helicase, Twinkle and gamma polymerase (POLG). We have developed an in vitro system to measure incorporation of radiolabelled dNTPs into mitochondria of saponin permeabilized cells. We used this to compare the rates of mtDNA synthesis in cells from 12 patients with diseases of mtDNA maintenance. We observed reduced incorporation of exogenous alpha (32)P-dTTP in fibroblasts from a patient with Alpers syndrome associated with the A467T substitution in POLG, a patient with dGK mutations, and a patient with mtDNA depletion of unknown origin compared to controls. However, incorporation of alpha (32)P-dTTP relative to either cell doubling time or alpha (32)P-dCTP incorporation was increased in patients with thymidine kinase deficiency or PEO as the result of TWINKLE mutations compared with controls. The specific activity of newly synthesized mtDNA depends on the size of the endogenous pool diluting the exogenous labelled nucleotide. Our result is consistent with a deficiency in the intramitochondrial pool of dTTP relative to dCTP in cells from patients with TK2 deficiency and TWINKLE mutations. Such DNA precursor asymmetry could cause pausing of the replication complex and hence exacerbate the propensity for age-related mtDNA mutations. Because deviations from the normal concentrations of dNTPs are known to be mutagenic, we suggest that intramitochondrial nucleotide imbalance could underlie the multiple mtDNA mutations observed in these patients.  相似文献   

6.
7.
The mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndrome is characterized by the association of gastrointestinal and neurological symptoms. It is a rare autosomal recessive mitochondrial disorder with multiple mitochondrial DNA deletions and/or depletion. It is caused by thymidine phosphorylase (TP) gene mutations resulting in a complete abolition of TP activity. We tested 31 unrelated patients presenting either with a complete MNGIE syndrome (8 patients), a severe intestinal pseudo-obstruction (10 patients), and multiple deletions and/or depletion of mitochondrial DNA (13 patients). All the tested patients presenting with a complete MNGIE had increased thymidine levels in plasma and urine, and no TP activity. The group with pseudo-obstruction syndrome had normal or partial reduction of TP activity. We found pathogenic mutations on TP gene only in the MNGIE syndrome group: all the MNGIE patients were compound heterozygous or homozygous for mutations in the TP gene. Eight of these mutations are yet unreported, confirming the lack of genotype/phenotype correlation in this syndrome. Enzymatic activity and thymidine level are thus rapid diagnosis tests to detect MNGIE affected patients prior to genetic testing for patients with gastrointestinal symptoms.  相似文献   

8.
Mitochondrial neurogastrointestinal encephalomyopathy syndrome (MNGIE) is a rare autosomal recessive neurologic disorder characterised by multiple mitochondrial DNA deletions. In this study, five Turkish MNGIE patients are investigated for mtDNA deletions and TP gene mutations. The probands presented all the clinical criteria of the typical MNGIE phenotype; the muscle biopsy specimens also confirmed the diagnosis with ragged red fibres and cytochrome C oxidase (COX) negative fibres. The mitochondrial DNA analysis revealed no deletions in the probands' skeletal muscle samples. We have identified four novel mutations in the TP gene while one of the patients also harboured a nucleotide change, which was previously reported as a mutation.  相似文献   

9.
Deoxyguanosine kinase is a constitutively expressed, mitochondrial enzyme of the deoxyribonucleoside salvage pathway. Deficiency of deoxyguanosine kinase causes early-onset, hepatocerebral mitochondrial DNA (mtDNA) depletion syndrome. To clarify the molecular mechanism of the disease, a skin fibroblast culture was studied from a patient carrying a homozygous nonsense mutation in the gene for deoxyguanosine kinase. In situ examination of DNA synthesis demonstrated that, although mtDNA synthesis is cell cycle independent in control fibroblasts, mtDNA synthesis occurs mainly during the S-phase in deoxyguanosine kinase-deficient cells. Consistent with this observation, it was found that the mtDNA content of exponentially growing, deoxyguanosine kinase-deficient cells is only mildly affected. When cycling is inhibited by serum-deprivation and cells are in a resting state, however, the mtDNA content drops considerably in deoxyguanosine kinase-deficient cells, yet remains stable in control fibroblasts. The decline in mtDNA content in resting, deoxyguanosine kinase-deficient cells can be prevented by dGMP and dAMP supplementation, providing conclusive evidence that substrate limitation triggers mtDNA depletion in deoxyguanosine kinase-deficient cells.  相似文献   

10.
Mouse models for mitochondrial disease   总被引:9,自引:0,他引:9  
  相似文献   

11.
Infantile-onset spinocerebellar ataxia (IOSCA) is a severe neurodegenerative disorder caused by the recessive mutation in PEO1, leading to an Y508C change in the mitochondrial helicase Twinkle, in its helicase domain. However, no mitochondrial dysfunction has been found in this disease. We studied here the consequences of IOSCA for the central nervous system, as well as the in vitro performance of the IOSCA mutant protein. The results of the mtDNA analyses were compared to findings in a similar juvenile or adult-onset ataxia syndrome, mitochondrial recessive ataxia syndrome (MIRAS), caused by the W748S mutation in the mitochondrial DNA polymerase (POLG). We show here that IOSCA brain does not harbor mtDNA deletions or increased amount of mtDNA point mutations, whereas MIRAS brain shows multiple deletions of mtDNA. However, IOSCA, and to a lesser extent also MIRAS, show mtDNA depletion in the brain and the liver. In both diseases, especially large neurons show respiratory chain complex I (CI) deficiency, but also CIV is decreased in IOSCA. Helicase activity, hexamerization and nucleoid structure of the IOSCA mutant were, however, unaffected. The lack of in vitro helicase defect or cell culture phenotype suggest that Twinkle-Y508C dysfunction affects mtDNA maintenance in a highly context and cell-type specific manner. Our results indicate that IOSCA is a new member of the mitochondrial DNA depletion syndromes.  相似文献   

12.
Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile‐onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17‐related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early‐onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late‐onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.  相似文献   

13.
Deficient enzymatic activity of the mitochondrial deoxyribonucleoside kinases deoxyguanosine kinase (DGUOK) or thymidine kinase 2 (TK2) cause mitochondrial DNA (mtDNA)-depletion syndromes in humans. Here we report the generation of a Tk2-deficient mouse strain and show that the mice develop essentially normally for the first week but from then on exhibit growth retardation and die within 2-4 weeks of life. Several organs including skeletal muscle, heart, liver and spleen showed progressive loss of mtDNA without increased mtDNA mutations or structural alterations. There were no major histological changes in skeletal muscle, but heart muscle showed disorganized and damaged muscle fibers. Electron microscopy showed mitochondria with distorted cristae. The Tk2-deficient mice exhibited pronounced hypothermia and showed loss of hypodermal fat and abnormal brown adipose tissue. We conclude that Tk2 has a major role in supplying deoxyribonucleotides for mtDNA replication and that other pathways of deoxyribonucleotide synthesis cannot compensate for loss of this enzyme.  相似文献   

14.
Chronic intestinal pseudo-obstruction is a life-threatening condition of unknown pathogenic mechanisms. Chronic intestinal pseudo-obstruction can be a feature of mitochondrial disorders, such as mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a rare autosomal-recessive syndrome, resulting from mutations in the thymidine phosphorylase gene. MNGIE patients show elevated circulating levels of thymidine and deoxyuridine, and accumulate somatic mitochondrial DNA (mtDNA) defects. The present study aimed to clarify the molecular basis of chronic intestinal pseudo-obstruction in MNGIE. Using laser capture microdissection, we correlated the histopathological features with mtDNA defects in different tissues from the gastrointestinal wall of five MNGIE and ten control patients. We found mtDNA depletion, mitochondrial proliferation, and smooth cell atrophy in the external layer of the muscularis propria, in the stomach and in the small intestine of MNGIE patients. In controls, the lowest amounts of mtDNA were present at the same sites, as compared with other layers of the gastrointestinal wall. We also observed mitochondrial proliferation and mtDNA depletion in small vessel endothelial and smooth muscle cells. Thus, visceral mitochondrial myopathy likely causes gastrointestinal dysmotility in MNGIE patients. The low baseline abundance of mtDNA molecules may predispose smooth muscle cells of the muscularis propria external layer to the toxic effects of thymidine and deoxyuridine, and exposure to high circulating levels of nucleosides may account for the mtDNA depletion observed in the small vessel wall.  相似文献   

15.
16.
Autosomal recessive progressive external ophthalmoplegia (PEO) is one clinical disorder associated with multiple mitochondrial DNA deletions and can be caused by missense mutations in POLG, the gene encoding the mitochondrial DNA polymerase gamma. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is another autosomal recessive disorder associated with PEO and multiple deletions of mitochondrial DNA in skeletal muscle. In several patients this disorder is caused by loss of function mutations in the gene encoding thymidine phosphorylase (TP). We report a recessive family with features of MNGIE but no leukoencephalopathy in which two patients carry three missense mutations in POLG, of which two are novel mutations (N846S and P587L). The third mutation was previously reported as a recessive POLG mutation (T251I). This finding indicates the need for POLG sequencing in patients with features of MNGIE without TP mutations.  相似文献   

17.
18.
Deoxyguanosine kinase (DGUOK) (MIM#601465) deficiency was originally described as the cause of an infantile onset hepatocerebral mitochondrial disease [1]. The classic features of this disorder include significant hepatic failure with nystagmus and hypotonia. Mitochondrial DNA studies reveal significant mitochondrial DNA depletion in the affected tissues. Subsequently it has been shown that the same mutations in this gene may present with isolated acute liver failure without cerebral involvement. In this paper we studied the mitochondrial DNA depletion in cells from a patient presenting with mitochondrial myopathy caused by a novel mutation in DGUOK. Subsequently we developed the method to diagnose this condition using MyoD induced fibroblasts to study the muscle specific phenotype. In addition, supplementation of MyoD induced fibroblasts with dAMP and dGMP resulted in a restoration of mtDNA quantity.  相似文献   

19.
The human nuclear gene (POLG) for the catalytic subunit of mitochondrial DNA polymerase (DNA polymerase gamma) contains a trinucleotide CAG microsatellite repeat within the coding sequence. We have investigated the frequency of different repeat-length alleles in populations of diseased and healthy individuals. The predominant allele of 10 CAG repeats was found at a very similar frequency (approximately 88%) in both Finnish and ethnically mixed population samples, with homozygosity close to the equilibrium prediction. Other alleles of between 5 and 13 repeat units were detected, but no larger, expanded alleles were found. A series of 51 British myotonic dystrophy patients showed no significant variation from controls, indicating an absence of generalised CAG repeat instability. Patients with a variety of molecular lesions in mtDNA, including sporadic, clonal deletions, maternally inherited point mutations, autosomally transmitted mtDNA depletion and autosomal dominant multiple deletions showed no differences in POLG trinucleotide repeat-length distribution from controls. These findings rule out POLG repeat expansion as a common pathogenic mechanism in disorders characterised by mitochondrial genome instability.  相似文献   

20.
The activity of deoxyguanosine kinase (DGUOK), a mitochondrial enzyme involved in the anabolism of mitochondrial (mt) deoxyribonucleotides, governs the maintenance of the mtDNA. Deleterious mutations of the DGUOK gene are thus associated with mtDNA depletion and result in combined deficiencies of mtDNA-encoded respiratory chain enzymes. With the aim to estimate the prevalence of DGUOK mutations in a cohort of 30 patients with hepatocerebral disease and combined respiratory chain deficiencies, we studied the DGUOK gene and identified previously unreported mutations in five families. Two patients and their affected sibs, born to non-consanguineous parents, were homozygous for a missense mutation (M1T, and L250S, respectively). One patient presented a homozygous 4 pb insertion (796 insTGAT) and two other patients, and their affected sibs, were compound heterozygous (E165V/L266R and E211G/L266R, respectively). These findings allowed us to propose prenatal diagnosis in two families. In conclusion, we observed a high prevalence of DGUOK mutations (17%) in patients with hepatic involvement and combined respiratory chain deficiencies with hepatic involvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号