首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study we presents a novel anti-occludin monoclonal antibody that can be used for formalin-fixed, paraffin-embedded tissue sections. The relationships between aberrant localization of carcinoembryonic antigen (CEA) and abnormalities of tight junctions were studied in human colorectal cancers by this antibody. Abnormalities in the cell surface expression of CEA have been shown to be characteristic of human colorectal cancer cells. Cancer cells that participated in the formation of glandular structures expressed occludin at the apical cell border and CEA was expressed more apically than occludin. Where cancer cells showed solid nests without glandular structures, occludin was completely lost and CEA was demonstrated in a diffuse pattern throughout the cells. These findings suggest that the polarized apical expression of CEA in neoplastic glandular structures depends on the expression of occludin and the fence function of tight junctions. During tumour progression, loss of occludin may lead to the loss of membrane polarity and the non-polarized expression of CEA. The antibody described provides a powerful tool for the study of tight junctions in surgically resected human tissue.  相似文献   

2.
3.
Before completion of polarization, Madin-Darby canine kidney (MDCK) cells showed high infectivity and progeny production of herpes simplex virus type 1 infection. After polarization or formation of tight junctions, the infectivity and virus replication in MDCK cells was restricted significantly. The disruption of tight junctions by depletion of Ca2+ resulted in increasing virus infectivity and productivity. Mechanical disruption of tight junctions by scratching the cell monolayers with injection needle allowed markedly the replication of HSV-I in the cells aligned along the injured area. In polarized MDCK cells the progeny were released preferentially from the apical surface of the cells. These data suggest that because polarized MDCK cells mimic the epithelial cell layers, this cell line is helpful for determining the factors which regulate viral transmission in the human body. © Wiley-Liss, Inc.  相似文献   

4.
5.
Tight junctions and human diseases   总被引:23,自引:0,他引:23  
Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.  相似文献   

6.
The tight junctions of the glandular epithelium are crucial for the maintenance of cell polarity, separating the plasma membrane into apical and basolateral domains. Thus abnormalities of the tight junctions may result in the structural disturbances of glandular epithelial neoplasia. In this study we introduced an anti-occludin monoclonal antibody for semiquantitative assay of the occludin expression in tissue sections of human normal and neoplastic endometrial epithelia using the Adobe Photoshop and NIH Image programs. Normal endometrial glands and samples of endometrial hyperplasia and endometrioid carcinoma grade 1 fully expressed occludin at the apical cell border. In endometrioid carcinomas grades 2 and 3, however, occludin disappeared in solid areas of the carcinomatous tissues. Occludin was also found at the apical borders of the cancer cells that formed glandular structures. Occludin expression decreased progressively in parallel with the increase in carcinoma grade, and the decreased occludin expression correlated with myometrial invasion and lymph node metastasis. These results suggest that the loss of tight junctions has a close relationship with structural atypia in the progression of human endometrial carcinomas and their malignant potential.  相似文献   

7.
Tight junctions are intercellular junctions adjacent to the apical ends of paracellular spaces. They have two classical functions, the barrier function and the fence function. The former regulates the passage of ions, water and various molecules through paracellular spaces, and is thus related to edema, jaundice, diarrhea and blood‐borne metastasis. The latter function maintains cell polarity by forming a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell properties in terms of loss of cell polarity. Recently, two novel aspects of tight junctions have been reported. One is their involvement in signal transduction. The other is that fact that tight junctions are considered to be a crucial component of innate immunity. In addition, since some proteins comprising tight junctions work as receptors for viruses and extracellular stimuli, pathogenic bacteria and viruses target and affect the tight junction functions, leading to diseases. In this review, the relationship between tight junctions and human diseases will be described.  相似文献   

8.
9.
Dishevelled, an essential mediator of Wnt signaling, is shown to regulate vertebrate gastrulation movements by controlling cell polarity, but how cell polarization is regulated during gastrulation has remained unclear. Here, we show that Dishevelled accumulates in the apical region at cell-cell contacts in involuting mesodermal cells, and that Wnt11 stimulation induces the accumulation of Dishevelled at apical adherens junctions in Xenopus ectodermal explants. We also show that the accumulation of Dishevelled is suppressed by the depletion of the Wnt receptor Frizzeld7 with a morpholino antisense oligonucleotide, and Frizzled7 itself also accumulates at apical adherens junctions in response to Wnt11. These results indicate that Wnt11 stimulation induces the accumulation of Dishevelled via the accumulation of Frizzled7. Our subsequent analysis shows that the DIX domain of Dishevelled is necessary for its translocation and accumulation in response to Wnt11. Our results suggest that Wnt11-induced polarized accumulation of Frizzled7 and Dishevelled at adherens junctions underlies the formation and maintenance of apicobasal cell polarity.  相似文献   

10.
The realization of human embryonic stem cells (hESC) as a model for human developmental hematopoiesis and in potential cell replacement strategies relies on an improved understanding of the extrinsic and intrinsic factors regulating hematopoietic-specific hESC differentiation. Human mesenchymal stem cells (hMSCs) are multipotent cells of mesodermal origin that form a part of hematopoietic stem cell niches and have an important role in the regulation of hematopoiesis through production of secreted factors and/or cell-to-cell interactions. We have previously shown that hESCs may be successfully maintained feeder free using hMSC-conditioned media (MSC-CM). Here, we hypothesized that hESCs maintained in MSC-CM may be more prone to differentiation toward hematopoietic lineage than hESCs grown in standard human foreskin fibroblast-conditioned media. We report that specification into hemogenic progenitors and subsequent hematopoietic differentiation and clonogenic progenitor capacity is robustly enhanced in hESC lines maintained in MSC-CM. Interestingly, co-culture of hESCs on hMSCs fully abrogates hematopoietic specification of hESCs, thus suggesting that the improved hematopoietic differentiation is mediated by MSC-secreted factors rather than by MSC-hESC physical interactions. To investigate the molecular mechanism involved in this process, we analyzed global (LINE-1) methylation and genome-wide promoter DNA methylation. hESCs grown in MSC-CM showed a decrease of 17% in global DNA methylation and a promoter DNA methylation signature consisting of 45 genes commonly hypomethylated and 102 genes frequently hypermethylated. Our data indicate that maintenance of hESCs in MSC-CM robustly augments hematopoietic specification and that the process seems mediated by MSC-secreted factors conferring a DNA methylation signature to undifferentiated hESCs which may influence further predisposition toward hematopoietic specification.  相似文献   

11.
12.
Human embryonic stem cells (hESCs) are derived from the inner cell mass of preimplantation embryos; they can be cultured indefinitely and differentiated into many cell types in vitro. These cells therefore have the ability to provide insights into human disease and provide a potential unlimited supply of cells for cell-based therapy. Little is known about the factors that are important for maintaining undifferentiated hESCs in vitro, however. As a tool to investigate these factors, transfected hES clonal cell lines were generated; these lines are able to express the enhanced green fluorescent protein (EGFP) reporter gene under control of the OCT4 promoter. OCT4 is an important marker of the undifferentiated state and a central regulator of pluripotency in ES cells. These OCT4-EGFP clonal cell lines exhibit features similar to parental hESCs, are pluripotent, and are able to produce all three embryonic germ layer cells. Expression of OCT4-EGFP is colocalized with endogenous OCT4, as well as the hESC surface antigens SSEA4 and Tra-1-60. In addition, the expression is retained in culture for an extensive period of time. Differentiation of these cells toward the neural lineage and targeted knockdown of endogenous OCT4 expression by RNA interference downregulated the EGFP expression in these cell lines, and this correlates closely with the reduction of endogenous OCT4 expression. Therefore, these cell lines provide an easy and noninvasive method to monitor expression of OCT4 in hESCs, and they will be invaluable for studying not only OCT4 function in hESC self-renewal and differentiation but also the factors required for maintenance of undifferentiated hESCs in culture.  相似文献   

13.
14.
Hepatocytes are highly polarized cells where intercellular junctions, including tight junctions (TJs), determine the polarity. Recently, the TJ-associated proteins claudin-1 and occludin have been implicated in hepatitis C virus (HCV) entry and spread. Nevertheless, cell line-based experimental systems that exhibit hepatocyte-like polarity and permit robust infection and virion production are not currently available. Thus, we sought to determine whether cell line-based, Matrigel-embedded cultures could be used to study hepatitis C virus (HCV) infection and virion production in a context of hepatocyte-like polarized cells. In contrast to standard bidimensional cultures, Matrigel-cultured Huh-7 cells adopted hepatocyte polarization features forming a continuous network of functional proto-bile canaliculi structures. These 3D cultures supported HCV infection by JFH-1 virus and produced infective viral particles which shifted towards lower densities with higher associated specific infectivity. In conclusion, our findings describe a novel use of Matrigel to study the entire HCV cycle in a more relevant context.  相似文献   

15.
The factors and signaling pathways controlling pluripotent human cell properties, both embryonic and induced, have not been fully investigated. Failure to account for functional heterogeneity within human embryonic stem cell (hESC) cultures has led to inconclusive results in previous work examining extrinsic influences governing hESC fate (self renewal vs. differentiation vs. death). Here, we attempt to reconcile these inconsistencies with recent reports demonstrating that an autologously produced in vitro niche regulates hESCs. Moreover, we focus on the reciprocal paracrine signals within the in vitro hESC niche allowing for the maintenance and/or expansion of the hESC colony-initiating cell (CIC). Based on this, it is clear that separation of hESC-CICs, apart from their differentiated derivatives, will be essential in future studies involving their molecular regulation. Understanding how extrinsic factors control hESC self-renewal and differentiation will allow us to culture and differentiate these pluripotent cells with higher efficiency. This knowledge will be essential for clinical applications using human pluripotent cells in regenerative medicine.  相似文献   

16.
17.
Human embryonic stem cell (hESC)-derived hepatocytes provide a promising unlimited resource for the treatment of liver disease. However, current protocols for the generation of mature and functional hepatocytes are inefficient. Therefore, in order to better differentiate and maintain the function of differentiating hESCs, we have hypothesized that hESCs undergo better differentiation into hepatocyte-like cells (HLCs) when induced on three-dimensional nanofibrillar surfaces. We have demonstrated that, during stepwise differentiation of induction, the markers of hepatic lineage expressed and finally lead to the generation of functional mature cells. In the presence of an ultraweb nanofiber, HLCs produced lower AFP, greater urea, glycogen storage, metabolic PROD activity, uptake of LDL and organic anion ICG, all of which are indicative of the differentiation of HLCs. These results show that topographically treated hESCs at the nano level have a distinct hepatic functionality profile which has implications for cell therapies.  相似文献   

18.
The majority of methodologies for maintaining human embryonic stem cell (hESC) pluripotency require the use of human or animal feeder cell layers, the most common being murine embryonic fibroblasts. In this study, we applied a protocol aimed at maintaining hESCs in culture without exposure to animal cells or proteins. hESCs were encapsulated in 1.1% (w/v) calcium alginate hydrogels and grown in basic maintenance medium for a period of up to 260 days. Investigation of the cell aggregates formed within the hydrogels yielded no evidence of the formation of any of the three germ layers, although the hESCs retained their pluripotency and could differentiate when they were subsequently cultured in a conditioned environment. Immunohistochemistry and RT-PCR showed that the hESC aggregates expressed protein and gene markers characteristic of pluripotency including Oct-4, Nanog, SSEA-4, TRA-1-60 and TRA-1-81. At the ultrastructural level, the cells were arranged in closely packed clusters and showed no cytoplasmic organelles, suggesting an undifferentiated state. These data show that it is possible to maintain hESCs in an undifferentiated state, without passaging or embryoid body formation, and without animal contamination.  相似文献   

19.
New methods of study are necessary to define the homeostatic mechanisms that regulate stem cell properties and to determine the possible epigenetic influence of the stem cell microenvironment on the phenotype of tumor cells. We recently demonstrated that the tumorgenicity of aggressive cutaneous melanoma cells can be abrogated by the zebrafish embryonic microenvironment. We have developed a three-dimensional (3D) model, as a corollary of these findings, that allows melanoma cells to be exposed to the microenvironment of human embryonic stem cells (hESCs). Using this methodology, we determined that hESC microenvironments can dramatically influence the behavior of aggressive melanoma cells. Specifically, exposure of tumor cells to H1- or HSF-6-hESC matrices induced a melanocyte-like phenotype with the ability to form colonies similar to hESCs. Furthermore, melanoma cells were less invasive after culture on hESC microenvironments. These findings demonstrate the utility of this 3D model for studying the unique factors deposited by hESCs and for investigating the epigenetic effects that stem cell microenvironments may have on tumor progression.  相似文献   

20.
Epithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells. Although apicobasal cell polarity was promoted by the nanofiber scaffolds relative to flat surfaces, as determined by the apical localization of ZO-1, it was antagonized by the presence of chitosan. Neither salivary gland acinar nor ductal cells fully polarized on the nanofiber scaffolds, as determined by the homogenous membrane distribution of the mature tight junction marker, occludin. However, nanofiber scaffolds chemically functionalized with the basement membrane protein, laminin-111, promoted more mature tight junctions, as determined by apical localization of occludin, but did not affect cell proliferation. To emulate the multifunctional capabilities of the basement membrane, bifunctional PLGA nanofibers were generated. Both acinar and ductal cell lines responded to signals provided by bifunctional scaffolds coupled to chitosan and laminin-111, demonstrating the applicability of such scaffolds for epithelial cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号