首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Effects of diacetyl monoxime on cardiac excitation-contraction coupling   总被引:8,自引:0,他引:8  
Diacetyl monoxime (DAM) is a negative inotropic agent. To identify the mechanism of its actions, electrical and mechanical studies with various cardiac tissues were carried out. DAM (0.2-20 mM) inhibited the contractile force in both normal and 22 mM KCl-depolarized (in presence of 10(-6) M isoproterenol) guinea-pig papillary muscles in a concentration-dependent manner. In general, there was a lack of major effects of DAM on sarcolemmal electrical properties. The fast action potentials were somewhat depressed and the slow action potentials were slightly enhanced. In chemically skinned pig ventricular muscles, the myofibrillar contraction induced in 6.25 pCa was inhibited by DAM in a similar concentration range. DAM also produced an apparent decrease in sensitivity toward Ca++ in this preparation. Myofibrillar adenosine triphosphatase assay showed similar results as in the skinned muscles. All DAM effects were reversible upon washout and could be partially antagonized by raising [Ca++]. Taken together, the negative inotropic effect of DAM cannot be ascribed to an inhibitory effect on the slow inward current, as suggested previously. An inhibitory effect at the myofibril level is a distinct possibility. Additional effects of DAM on the sarcoplasmic reticulum cannot be ruled out.  相似文献   

2.
The influence of ketamine on the inotropic and chronotropic responsiveness of heart muscle was examined in spontaneously beating right atrial preparations and in electrically driven left atrial preparations of guinea pigs. Ketamine (2.63 X 10(-5) to 4.2 X 10(-4) M) decreased heart rate of right atria and decreased contractile tension and its maximum rate of increase in both right and left atrial preparations (right atria greater than left atria). Ketamine did not prevent the heart rate increase produced by norepinephrine (NE; 1 X 10(-8) to 1 X 10(-4) M) in right atria; however, the maximum heart rate was consistently lower in ketamine-treated than in control muscles even after exposure to NE. Although contractile tension was decreased by ketamine, the maximum inotropic response to NE was consistently greater in ketamine-treated atria than in control atria. An inhibitor of the slow Ca++ current in heart muscle, D600, depressed the contractile effects of NE but did not prevent the positive inotropic interaction of ketamine and NE. Ketamine similarly enhanced the inotropic responses to norepinephrine (1 X 10(-6) M), epinephrine (1 X 10(-6) M), isoproterenol (1 X 10(-7) M) and dibutyryl cyclic adenosine 3':5'-monophosphate (AMP; 4 X 10(-3) M) in left atria electrically paced at a constant frequency of contraction of 1 Hz; however, ketamine inhibited the positive inotropic response to increased frequency of stimulation (0.1-3.0 Hz) and to ouabain (3 X 10(-7) M). These findings demonstrate that ketamine can exert a selective positive inotropic influence in heart muscle independent of heart rate or direct or reflexogenic autonomic nervous system changes, and suggest that this activity could in some way be associated with an alteration of the intracellular disposition of cyclic AMP.  相似文献   

3.
It has been suggested that amrinone and AR-L57 enhance cardiac contractility either by inhibiting phosphodiesterase activity or altering Ca++ homeostasis. Because these novel agents are potentially useful in the management of heart failure, it was of interest to more clearly define their mechanism(s) of action. Amrinone and AR-L57 caused concentration-dependent increases in the contractile states of either perfused guinea-pig hearts or cultured rat cardiomyocytes. To determine whether these actions might result from an increase in sarcolemmal Ca++ movement, the effects of these agents on Ca++ accumulation were studied in a simple system, dog erythrocytes. Both agents promoted erythrocyte Ca++ accumulation in time and concentration-dependent manners, effects that resulted primarily from increased Ca++ entry. However, because these effects were not measurable at inotropic drug concentrations and were apparent only after a 30-min incubation, they did not provide an explanation for the inotropic effects of these agents. Amrinone and AR-L57 inhibited dog heart phosphodiesterase activity (isozyme III) with EC50 values of 23 and 420 microM, respectively; however, only the inotropic responses to amrinone were attenuated by the muscarinic agonist, carbachol, thereby implying a cAMP (cyclic AMP)-dependent mechanism. In cultured ventricular cells, concentrations of amrinone (2 X 10(-4) M) and AR-L57 (3 X 10(-5) M) that caused maximal inotropic responses were associated with the activation of glycogen phosphorylase, but neither drug significantly increased the activation state of cAMP-dependent protein kinase. To further probe the effects of these drugs on intracellular cAMP and Ca++ metabolism, their effects on protein phosphorylation were studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Xestoquinone (XQN) isolated from the sea sponge Xestospongia sapra produced dose-dependent cardiotonic effects on guinea pig left and right atria. A direct action of XQN (1-30 microM) on the contractile machinery of cardiac myofilaments was demonstrated in chemically skinned fiber preparations from guinea pig papillary muscles. In atrial preparations, the XQN-induced inotropic effect was markedly inhibited by verapamil or nifedipine, but was not affected by practolol, chlorpheniramine, cimetidine, tetrodotoxin or reserpine. The Ca++ dependence curve for the contractile response of the atria was substantially shifted to the left by XQN (10 microM), and this XQN-induced shift was reversed by verapamil. The time-to-peak tension and relaxation times of the atrial contractions were shortened by XQN, and the action potential duration was markedly prolonged. Whole-cell patch clamp recordings in left atrial strips confirmed that XQN (30 microM) increased the slow inward current. However, there was a temporal dissociation between altered tension development and prolongation of the action potential duration. Cyclic AMP phosphodiesterase activity was inhibited and tissue cyclic AMP content of guinea pig left atria was increased by XQN (0.3-10 microM) in a concentration-dependent manner, but increases in cyclic AMP content did not occur in parallel with increases in contractile response. These observations suggest that an enhancement of intracellular cyclic AMP content and Ca++ influx across the cell membrane contribute to the late phase of XQN-caused cardiotonic responses, whereas the early phase may largely be elicited through direct activation of contractile elements. XQN may provide a novel leading compound for valuable cardiotonic agents.  相似文献   

5.
In noncontracting mouse hemidiaphragms incubated in modified Krebs-Ringer--bicarbonate buffer with 10 mM Ca++, isoproterenol-stimulated phosphorylase a formation, conversion of phosphorylase kinase to the activated form, elevation of cyclic AMP-dependent protein kinase activity ratios and increase in cyclic AMP concentrations were reduced 35 to 50% over the responses in buffer with 2.5 mM Ca++. In buffer with 10 mM Ca++, the initial rate of isoproterenol-stimulated cyclic AMP accumulation was 59% of that in buffer with 2.5 mM Ca++. The inhibitory action of Ca++ on cyclic AMP accumulation was antagonized by verapamil, but not by inhibitors of cyclic nucleotide phosphodiesterase activity. In buffer with 2.5 mM Ca++, isoproterenol-stimulated cyclic AMP accumulation was inhibited by A23187 and caffeine, agents that can increase intracellular Ca++ concentrations. In addition to Ca++, high concentrations of Co++, Ni++, Mn++ and, to a lesser extent, Sr++ inhibited the isoproterenol response. The results of these studies indicate that high buffer Ca++ concentrations inhibit the response of the glycogenolytic pathway to isoproterenol by an action on cyclic AMP formation. We propose that the site of the inhibitory action of Ca++ is the divalent metal activator site associated with hormone-stimulated adenylate cyclase activity.  相似文献   

6.
The pharmacological effects of xamoterol, a beta adrenoceptor antagonist with partial agonistic activity, were examined in guinea pig cardiac preparations and compared with those of isoproterenol to assess possible mechanisms of its cardiac stimulant actions. Xamoterol produced a positive inotropic effect in the papillary muscles and a positive chronotropic effect in the spontaneously beating right atria in a concentration-dependent manner. The maximum inotropic and chronotropic effects of xamoterol were about 33 and 35% of those of isoproterenol, respectively. Although xamoterol failed to produce a consistent increase in contractile force in the left atria, the positive inotropic effect of the agent was observed clearly in preparations obtained from reserpine-pretreated animals. The positive inotropic and chronotropic effects of xamoterol were antagonized by atenolol, but not by ICI 118,551. On the other hand, xamoterol antagonized competitively the positive inotropic and chronotropic responses to isoproterenol. In papillary muscles the increases in contractile force induced by xamoterol and isoproterenol were depressed markedly in the presence of carbachol or adenosine. In all of left atria, right atria and papillary muscles obtained from reserpine-pretreated animals, xamoterol caused a significant elevation in cyclic AMP levels, while inhibiting the isoproterenol-induced increase in cyclic AMP levels. Computer-assisted analysis of concentration-response curves for the inhibition by xamoterol of the binding of [125I]iodocyanopindolol in the membranes from guinea pig ventricles showed the existence of the 5'-guanylylimidodiphosphate sensitive, highly affinity site of beta adrenoceptors for xamoterol, suggesting that xamoterol may induce the formation of a ternary complex with the beta adrenoceptor and a stimulatory guanine nucleotide regulatory protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Platelet-activating factor (PAF) is an autacoid whose cardiovascular actions include a potent negative inotropic effect. The mechanism of this decrease in myocardial contractility is still at issue, as both a decrease and an increase in trans-sarcolemmal Ca++ influx have been reported. Because changes in intracellular sodium activity (aiNa) are known to influence myocardial contractility, we investigated whether PAF affects aiNa. Thus, we have measured contractile responses to PAF (1 nM-1 microM) in isolated guinea pig right ventricular papillary muscles paced at constant rate, and recorded transmembrane action potential and aiNa with conventional and sodium-selective microelectrodes, respectively. Our findings suggest that PAF does not affect slow inward Ca++ current, because PAF neither affected nor prevented histamine-induced restoration of contractile responses in K+-depolarized papillary muscles. On the other hand, we found the negative inotropic effect of PAF to be associated with a shortening of the action potential duration and with a decrease in aiNa. The specific PAF antagonist compound CV-3988 inhibited all three electro-mechanical responses. Our findings imply that the decrease in contractile force caused by PAF may depend on the reduction in aiNa; as aiNa falls, intracellular Ca++ may be lost via the Na+/Ca++ exchange and contractility decreases. The shortening of the action potential duration by PAF may reflect a decrease in Na+ influx and the consequent reduction in aiNa.  相似文献   

8.
The effects of verapamil on myocardial isometric force on contraction, cardiac adenosine 3,'5'-monophosphate (cyclic AMP) and heart phosphorylase alpha activity were studied in the isolated perfused rat heart. When hearts were perfused with verapamil (5.98 times 10- minus 8 M), force of contraction was reduced approximately 50% within 4 to 5 minutes; at this point, the concentration of cyclic AMP was significantly lower than control but phosphorylase alpha activity was unchanged. In hearts perfused continuously for 60 minutes with verapamil, force of contraction and cyclic AMP levels returned to normal within 20 minutes after administration of verapamil was begun. Isoproterenol (0.355 nmol/min) reversed the depressant effect of verapamil on cardiac contractility and restored heart cyclic AMP levels to normal. Methoxamine (35.5 nmol/min) given to verapamil-depressed hearts, caused contractile force to return to normal, but cardiac cyclic AMP levels remained low. Mephentermine (23.0 nmol/min) had no effect on cardiac contraction, cyclic AMP or phosphorylase alpha activity in hearts depressed by verapamil. It was concluded that with the concentration of verapamil used in these experiments, the drug caused a transient decrease in force of contraction and myocardial cyclic AMP. Both the depression in myocardial contractility and in cardiac cyclic AMP caused by verapamil were reversed promptly by isoproterenol, whereas methoxamine overcame acutely only the negative inotropic effect of verapamil. Mephentermine had no effect on hearts depressed by verapamil.  相似文献   

9.
Pimobendan (UD-CG 115 BS), an inotropic agent and inhibitor of type III phosphodiesterase activity, is demethylated in vivo to form UD-CG 212 Cl, which is a more potent type III phosphodiesterase inhibitor. This study examined cyclic AMP (cAMP)-mediated actions of UD-CG 212 Cl. In guinea pig papillary muscles, UD-CG 212 Cl increased cAMP and stimulated Ca(++)-dependent slow action potentials (APs) in a dose-dependent manner. When compared to previous studies using pimobendan, UD-CG 212 Cl was approximately 100-fold more potent. UD-CG 212 Cl had no additional effects on slow APs in the presence of a maximal dose of isoproterenol (1 microM). Propranolol had little effect on UD-CG 212 Cl-induced slow APs. These results, along with previous studies, indicate that slow AP induction by UD-CG 212 Cl was cAMP-dependent, and the increase in cAMP levels was most likely due to phosphodiesterase inhibition and not beta receptor stimulation. Experiments with tetraethylammonium.Cl suggested that UD-CG 212 Cl probably did not induce slow APs by blocking K+ channels. In voltage-clamped ventricular myocytes UD-CG 212 Cl (100 microM) could stimulate Ca++ current (+21 +/- 5%) when basal cAMP levels were enhanced with a submaximal dose of isoproterenol (10(-9)-10(-8) M). Isoproterenol was not required to observe the stimulating effect of UD-CG 212 Cl on Ca++ current in intact, nondialyzed cells prepared using the nystatin-perforated patch method. Studies with the stereoisomers of UD-CG 212 Cl showed that the D-isomer was more potent than the L-isomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of the sulfidopeptide leukotrienes (LTs) on the contractile response of electrically paced guinea-pig right ventricular papillary muscles in vitro were studied. LTs caused a concentration-dependent (1 nM-20 microM) negative inotropic effect; the order of relative potency was LTC4 greater than or equal to LTD4 greater than LTE4. A maximal 30% decrease in contractility occurred with 1 microM LTC4. The LT-induced decrease in contractile force was not mediated by cyclooxygenase products of the arachidonic acid cascade, as it was not influenced by indomethacin (14 microM). On the other hand, the slow-reacting substance-antagonist compound FPL 55712 (480 nM) caused a marked shift to the right of the LTC4 concentration-response curve. Because the negative inotropic effect of LTD4 was attenuated by increasing [Ca++]o, we next assessed the negative inotropic effect of LTs under conditions in which myocardial contractility depends solely on the slow inward Ca++ current. As a model, we used the isoproterenol- or histamine-induced restoration of contractile response in papillary muscles rendered inexcitable by 22 mMK+. LTC4 (16-480 nM) and LTD4 (20-600nM) inhibited isoproterenol- and histamine-induced restoration of contractility in a dose-dependent manner; a maximal 90% inhibition occurred with 0.48 microM LTC4. This effect of LTs was reversed by an elevation in [Ca++]o from 1.8 to 5.4 mM and prevented by FPL 55712 (480 nM). In muscles maintained at 5.4 mM [K+]o, LTC4 (160 and 480 nM) and LTD4 (1 microM) shifted the force-frequency curve (0.1-2 Hz) downwards in a parallel fashion; a similar alteration was obtained by lowering [Ca++]o to 1 mM.  相似文献   

11.
The effects of MCI-154, a novel cardiotonic agent, on the contractile protein system and the sarcoplasmic reticulum (SR) were investigated by using thin bundles of chemically skinned fibers from the guinea pig papillary muscles. In the skinned muscle fibers treated with 50 micrograms/ml of saponin, MCI-154 shifted the -log[Ca++]M-tension relation curve to the left and upward in the concentration-dependent manner (10(-7) to 10(-4) M). This was confirmed also in the skinned muscle fibers treated with 250 micrograms/ml of saponin which destroyed not only the surface membrane but also the function of SR. Sulmazole (10(-4) M) shifted the -log[Ca++]M-tension relation curve to the left but the effect was about 100 times less potent than that of MCI-154. Unlike MCI-154, sulmazole had little effect on the maximum tension development induced by -log[Ca++]M 4.4. Milrinone did not affect the Ca++-induced tension development in the skinned cardiac fibers. Higher concentration of MCI-154 (10(-4) M) also increased amplitude of -log[Mg-ATP]M-tension-curve in the absence of free Ca++ ion (bell-shaped curve) to the upward. Initial rate and plateau phase of Ca++ uptake by the SR in the skinned fibers treated with 50 micrograms/ml of saponin was increased slightly by MCI-154 at the concentrations of 10(-6) and 10(-4) M. MCI-154 had no effect on the Ca++-induced Ca++ release mechanism in the SR. These results suggest that an increase in Ca++ sensitivity of the contractile protein system is responsible for, at least in part, the mechanism of the positive inotropic action of MCI-154.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of somatostatin on the contractile response of guinea pig cardiac preparations were investigated and compared with those of carbachol and adenosine. Somatostatin produced a concentration-dependent negative inotropic effect in the left atria, which was accompanied by a decrease in action potential duration. The maximum decrease in contractility which was obtained at 3 x 10(-6) M was around 40% of the predrug control values and far less than those produced by carbachol and adenosine. Somatostatin failed to produce inotropic effect on the papillary muscle and did not influence the spontaneously beating rate of the right atria. In the papillary muscles, however, somatostatin inhibited the positive inotropic effect of isoproterenol in a concentration-dependent manner as did carbachol and adenosine. In addition, somatostatin caused a significant inhibition of the isoproterenol-induced increase in cyclic AMP levels without affecting the basal level of cyclic AMP. In the papillary muscle, the inhibitory effect of somatostatin on the positive inotropic response to isoproterenol was significantly attenuated by pretreatment with islet-activating protein, and was significantly antagonized by the somatostatin antagonist cyclo[7-aminoheptanoyl-Phe-D-Trp-Lys-Thr(Bzl)]. These results suggest that somatostatin receptors in guinea pig ventricular muscles are coupled with adenylate cyclase via islet-activating protein-sensitive GTP-binding protein, whereas the negative inotropic effect of somatostatin in the left atria might be mediated by a subtype of somatostatin receptors which is different from that in the ventricle.  相似文献   

13.
Chronotropic and inotropic actions of phencyclidine were studied in spontaneously beating right atrial muscle and electrically paced left atrial muscle preparations isolated from guinea-pig or rat hearts. In right atrial muscle preparations, phencyclidine (10-100 microM) decreased the frequency of spontaneous beating. Guinea-pig and rat heart preparations had similar sensitivities to this action of phencyclidine. The negative chronotropic effect was not altered by atropine. A high concentration of naloxone failed to affect the chronotropic effect of phencyclidine in guinea-pig muscle, but significantly reduced the effect in rat heart muscle preparations. Phencyclidine (1-100 microM) caused positive inotropic effects in both guinea-pig and rat heart left atrial muscle electrically stimulated at 1.5 Hz; rat heart preparations had a higher sensitivity to the positive inotropic action of phencyclidine. The positive inotropic effect was reduced by verapamil, nifedipine and relatively high concentrations of diltiazem, but was not affected by propranolol, phentolamine, tripelennamine, atropine or ryanodine, indicating that the effect is not mediated by adrenergic, histaminergic or cholinergic systems or does not involve ryanodine-sensitive calcium pools. Inactivation of the fast sodium channels by partial membrane depolarization, and subsequent restoration of the contraction by raising the extracellular Ca++ concentration, did not abolish the positive inotropic action of phencyclidine. These results suggest that the negative chronotropic effect of phencyclidine is not mediated by a stimulation of the muscarinic receptor. The positive inotropic effects of phencyclidine seem to result from an increase in Ca++ influx through the slow channels of the cardiac cell membrane.  相似文献   

14.
[8]-Gingerol (gingerol), a component of ginger, produced a concentration-dependent positive inotropic effect on guinea pig isolated left atria at concentrations of 1 X 10(-6) to 3 X 10(-5) M. Gingerol also exhibited positive inotropic and chronotropic effects on guinea pig right atria. The gingerol-induced inotropic effect was abolished by ryanodine, but was little affected by propranolol, chlorpheniramine, cimetidine, tetrodotoxin, diltiazem or reserpine. The time to peak tension and relaxation time within a single contraction were shortened by gingerol (1 X 10(-5) M) as well as isoproterenol, whereas they were prolonged by BAY K 8644. In guinea pig isolated atrial cells, gingerol (3 X 10(-6) M) caused an increase in the degree and the rate of longitudinal contractions. In guinea pig left atria, gingerol (1 X 10(-6) to 3 X 10(-5) M) gave little influence on the action potential, although it increased the contractile force of the atria. The whole-cell patch-clamp experiments showed that the slow inward current was little affected by gingerol (1 X 10(-6) to 3 X 10(-5) M) in voltage-clamped guinea pig cardiac myocytes. The measurement of extravesicular Ca++ concentration using a Ca++ electrode indicated that gingerol (3 X 10(-6) to 3 X 10(-5) M) accelerated the Ca++ uptake of fragmented sarcoplasmic reticulum (SR) prepared from canine cardiac muscle in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of cromakalim, an ATP-sensitive K+ channel activator, on changes in cytosolic calcium concentration [( Ca++]i) and tension induced by acetylcholine (ACh; 0.1-10 microM) were examined in swine tracheal smooth muscle. Cromakalim (10 microM) hyperpolarized muscle cells by approximately 18 mV from -58 mV (resting membrane potential) to -76 mV. Cromakalim relaxed muscle contractions evoked by ACh at a concentration of 0.1 microM, but not at higher concentrations. Measurement of [Ca++]i using Fura-2 demonstrated that except at 0.1 microM ACh, cromakalim did not alter peak increases in [Ca++]i. At 0.1 microM ACh, the peak transient was decreased, but not eliminated. Cromakalim reduced steady-state increases in [Ca++]i at ACh less than or equal to 1 microM, but not 10 microM ACh. Tension was similarly affected. These data suggest that ACh-induced increases in steady-state [Ca++]i and tension are inhibited by cromakalim-induced hyperpolarization. The initial ACh-induced transient increase in [Ca++]i is not greatly altered. Cromakalim did not alter the transient peak tension and [Ca++]i relationship. The relationship between steady-state [Ca++]i/tension (EC50 = 321 nM) obtained for control, cromakalim inhibition and after glibenclamide reversal of cromakalim inhibition falls to the left of the peak transient [Ca++]i/tension relationship (EC50 = 587 nM). Thus, the Ca++ sensitivity of the contractile proteins during steady-state stimulation by ACh was increased from that at rest. We conclude that electromechanical coupling is important in ACh-induced contraction at concentrations less than 1 microM. Pharmacomechanical coupling with little or no sensitivity to changes in potential is important at higher ACh concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The purpose of this study was to investigate the pharmacological activity of endothelin-1 (ET-1) on guinea pig gallbladder smooth muscle. Guinea pig gallbladder muscle strips were mounted in 10-ml siliconized organ baths containing Krebs' solution. After 1 hr of equilibration, ET-1 was added cumulatively. ET-1 induced slow-developing and long-duration contractile responses. The EC50 was approximately 10 nM. ET-1 was 5 times less potent than cholecystokinin (EC50, 2 nM), but 20 and 40 times more potent than carbachol (EC50, 200 nM) and histamine (EC50, 400 nM), respectively. The concentration-response curve to ET-1 was not affected by tetrodotoxin (0.1 microM) or by the muscarinic antagonist, atropine (10 microM). The neuronal N-type calcium channel blocker, omega-conotoxin (0.1 microM), had no significant effect on the ET-1 concentration-response curve. In contrast, the contractile effect to ET-1 was reduced markedly by removal of extracellular calcium or by the voltage-dependent calcium channel blockers nicardipine and diltiazem. Substitution of strontium (an inhibitor of intracellular calcium release) for Ca++ significantly reduced the response to ET-1. The cyclooxygenase inhibitor indomethacin had no significant effect on the contractile activity of ET-1. These finding suggest that ET-1 is a potent contractile stimulant of guinea pig gallbladder and that it acts directly on the smooth muscle. The activity depends on extracellular Ca++, suggesting involvement of Ca++ influx via the voltage-dependent Ca++ channel and on intracellular calcium.  相似文献   

17.
The effects of leukotriene D4 and methacholine on cyclic nucleotide content and isoproterenol-induced relaxation were examined in the isolated opossum trachea. Although leukotriene D4 (-log EC50 = 6.70) was a more potent contractile agent than methacholine (-log EC50 = 5.78), the maximal response to leukotriene D4 was only 65% of the maximum response to methacholine. Contraction of tracheal strips with leukotriene D4 was accompanied by a 3-fold increase in cyclic GMP accumulation. Methacholine-induced contraction was not associated with an increase in cyclic GMP. Neither agent altered basal cyclic AMP content. Additional experiments were carried out to examine functional inhibitory interactions between bronchoconstricting and bronchodilating pathways. In these studies, cumulative isoproterenol concentration-response curves were constructed in tracheal strips contracted with three different concentrations of methacholine and in tissues contracted with three corresponding equieffective concentrations of leukotriene D4. Although the relaxant response to isoproterenol decreased as tissues were contracted with higher concentrations of either agent, the inhibitory effect of methacholine on isoproterenol-induced relaxation was much greater than the inhibitory effect of leukotriene D4. Previous studies from our laboratory suggested that a potential explanation for the greater inhibitory effect of methacholine on the mechanical response to isoproterenol was that methacholine may inhibit isoproterenol-stimulated cyclic AMP accumulation whereas leukotriene D4 may not. However, neither methacholine nor leukotriene D4 inhibited isoproterenol-stimulated cyclic AMP accumulation in the opossum trachea. The results of this study indicate that the sensitivity of airway smooth muscle to beta adrenoceptor agonists is influenced both by the initial contractile state of the tissue and by the type of agent used to induce tone.  相似文献   

18.
Cardiac dysfunction is occasionally detected in patients undergoing treatment with amino-glycoside antibiotics, however, the mechanism responsible for the negative inotropic effect of these agents has not been identified. In the present investigation electrically driven left atria of guinea pigs were used to study the effects of gentamicin on calcium ion (Ca++)-dependent contractile events in heart muscle isolated from in vivo influences. When atria were first inactivated by excess potassium ion (K+; 22mM) and contractions were then restored by isoproterenol (an experimental model that accentuates the contractile dependence of myocardial fibers on influx of Ca++ through specific "slow channels" of the sarcolemma), the cardiac depressant activity of gentamicin (0.1 mM) was profoundly augmented. Conversely, the negative inotropic effect of tetrodotoxin (23.5 micron) was abolished by the same experimental conditions. Also, gentamicin (1 mM) and La+++ (0.5 mM) markedly decreased the positive inotropic response to increased frequency of stimulation; whereas, D600 (1.05 micron) converted the positive frequency-force relationship to a negative relationship. Present data indicate a direct cardiac depressant action of gentamicin, and suggest that this antibiotic adversely affects either the transport system responsible for Ca++ movement through slow channels of the sarcolemma, the availability of Ca++ for translocation to these sites, or both.  相似文献   

19.
Anthopleurin-A (AP-A), a polypeptide with MW ca. 5500 (53 amino acids), isolated from the sea anemone, Anthopleura xanthogrammica (Brandt), elicited a potent positive inotropic effect but without an accompanying chronotropic effect on the isolated cardiac muscles of rat, rabbit, guinea pig and cat. Similarly in dogs and cats in situ, i.p. injections of AP-A increased the contractile force without effect on heart rate or blood pressure. The cardiotonic potency for AP-A was equivalent to that of isoproterenol but much greater than that for ouabain or glucagon on the isolated cardiac muscle. AP-A increased the contractile force (cardiac output) and decreased atrial pressure in dog heart during pentobarbital-induced failure. This inotropic effect was not inhibited by propranolol pretreatment. The Ca++ requirement to restore the contractile force was less in AP-A-treated than in ouabain or isoproterenol-treated tissues. After AP-A treatment, the cardiac contractility was more resistant to hypoxia and to low or high temperature stress than ouabain-treated or control preparations. AP-A at 5 10(-9) M increased the duration of the action potential, its mean rate of rise and conduction in the guinea-pig atria and ventricles. At the maximum effective concentration, AP-A did not inhibit Na+, K+-activated adenosine triphosphatase, phosphodiesterase (high Km and low Km) and cyclic 3',5'-adenosine monophosphate content of guinea-pig heart. AP-A (5 X 10(-8) to 5 X 10(-7) M) neither contracted nor relaxed the isolated vascular smooth muscle. The results suggest that AP-A may be useful in the clinical management of cardiac failure and as an experimental tool to study the pharmacology and physiology of cardiac muscle.  相似文献   

20.
Adenosine is known to attenuate the positive inotropic and chronotropic effects of norepinephrine and histamine by reducing cyclic AMP accumulation. We assessed whether adenosine, while inhibiting the cardiac responses mediated by beta and H2 receptors, leaves unmodified the responses mediated by alpha and H1 receptors. In isolated cardiac preparations from the guinea pig, adenosine antagonized the positive inotropic effect of histamine more than that of norepinephrine. This most likely occurred because, by attenuating H2 and beta responses, adenosine unmasked the H1-negative and alpha-1-positive components of the inotropic effects of histamine and norepinephrine. Consistent with this hypothesis, the pure H2 agonist impromidine appeared to be antagonized by adenosine less than histamine, and norepinephrine less than isoproterenol. In addition, adenosine antagonized the positive inotropic effect of norepinephrine in the presence of the alpha-1 blocker prazosin, whereas it did not affect the inotropic effect of phenylephrine. In the papillary muscle depolarized by 22 mM K+, adenosine antagonized the restoration of contractile responses induced by histamine or norepinephrine. This action of adenosine was reversed by the phosphodiesterase inhibitor papaverine and by the adenylate cyclase activator forskolin, suggesting that adenosine attenuates beta and H2 responses by suppressing the cyclic AMP-dependent facilitation of Ca++ influx promoted by the two amines. Our data indicate that adenosine selectively attenuates H2 and beta but not alpha and H1 responses. Thus, when catecholamines, histamine and adenosine are released together, as in myocardial ischemia, in addition to their individual effects, negative inotropism, decreased impulse conduction velocity and coronary constriction (i.e., H1- and alpha-mediated responses) may result from the adenosine-histamine-norepinephrine interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号