首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
cDNA expression library immunization (ELI) and analysis of expressed sequenced tags (EST) in a mouse model of tick infestations was used to identified cDNA clones that affected I. scapularis. Three protective antigens against larval tick infestations, 4F8, with homology to a nucleotidase, and 4D8 and 4E6 of unknown function, were selected for further characterization. All three antigens were expressed in all I. scapularis stages and localized in adult tick tissues. 4D8 was shown to be conserved in six other tick species. Based on immunization trials with synthetic polypeptides against larvae and nymphs and on artificial feeding experiments of adults, these antigens, especially 4D8, appear to be good candidates for continued development of a vaccine for control of tick infestations and may be useful in a formulation to target multiple species of ticks.  相似文献   

2.
Almazán C  Kocan KM  Blouin EF  de la Fuente J 《Vaccine》2005,23(46-47):5294-5298
Antigens protective against Ixodes scapularis infestations were identified by cDNA expression library immunization (ELI) and analysis of expressed sequenced tags (EST). Three cDNAs protective against larval tick infestations, 4F8, with homology to a nucleotidase, and 4D8 and 4E6 of unknown function, were characterized and obtained as recombinant proteins for immunization studies. Vaccination trials with recombinant proteins demonstrated an effect of these antigens against I. scapularis larvae in a mouse model. Herein, we evaluated the effect of recombinant antigens on I. scapularis adult infestations on immunized sheep. Vaccination with recombinant 4D8, 4F8, 4E6 and the combination of all three antigens reduced adult tick infestations by 58, 12, 20, and 16%, respectively, when compared to the control group but was statistically significant for 4D8 and 4F8 only. Oviposition was reduced by 22-49% in all groups immunized with recombinant tick antigens (P<0.05). The overall efficacy of vaccine formulations considering the effect on tick infestations and oviposition averaged 33-71%. These antigens, and especially 4D8, appear to be good candidates for continued development of a vaccine for control of tick infestations.  相似文献   

3.
We have shown previously that expression library immunization is viable alternative approach to induce protective immunity against Neisseria meningitidis serogroup B. In this study we report that few rounds of library screening allow identification of protective pools of defined antigens. A previously reported protective meningococcal library (L8, with 600 clones) was screened and two sub-libraries of 95 clones each were selected based on the induction of bactericidal and protective antibodies in BALB/c mice. After sequence analysis of each clone within these sub-libraries, we identified a pool of 20 individual antigens that induced protective immune responses in mice against N. meningitidis infection, and the observed protection was associated with the induction of bactericidal antibodies. Our studies demonstrate for the first time that ELI combined with sequence analysis is a powerful and efficient tool for identification of candidate antigens for use in a meningococcal vaccine.  相似文献   

4.
The lone star tick, Amblyomma americanum, vectors pathogens of emerging diseases of humans and animals in the United States. Currently, measures are not available for effective control of A. americanum infestations. Development of vaccines directed against tick proteins may reduce tick infestations and the transmission of tick-borne pathogens. However, the limiting step in tick vaccine development has been the identification of tick protective antigens. Herein, we report the application of RNA interference (RNAi) for screening an A. americanum cDNA library for discovery of tick protective antigens that reduce tick survival and weights after feeding. Four cDNA clones, encoding for putative threonyl-tRNA synthetase (2C9), 60S ribosomal proteins L13a (2D10) and L13e (2B7), and interphase cytoplasm foci protein 45 (2G7), were selected for vaccine studies in cattle, along with subolesin, a tick protective protein identified previously. In vaccinated cattle, an overall efficacy (E) > 30% was obtained when considering the vaccine effect on both nymphs and adults, but only 2D10, 2G7 and subolesin affected both tick stages. The highest efficacy of control for adult ticks (E > 55%) was obtained in cattle vaccinated with recombinant 2G7 or subolesin. These collective results demonstrated the feasibility of developing vaccines for the control of lone star tick infestations. The use of RNAi for identification of tick protective antigens proved to be a rapid and cost-effective tool for discovery of candidate vaccine antigens, and this approach could likely be applied to other parasites of veterinary and medical importance.  相似文献   

5.
6.
Tick-borne encephalitis (TBE) is a growing zoonotic disease caused by tick-borne encephalitis virus (TBEV) infection. Although effective vaccines for TBEV are available, on-going vaccination efforts are insufficient to prevent increase in TBE cases annually. Vaccination with arthropod vector antigens to reduce vector infestations and vector capacity allows control of several vector-borne diseases by targeting their common vector. Subolesin (SUB) is a tick protective antigen that has a role in tick innate immunity and other molecular pathways and has been shown to protect against tick infestations and infection by vector-borne pathogens. However, SUB expression and the effect of SUB immunization have not been evaluated for tick-borne viruses. Herein, we showed that SUB expression is downregulated during Ixodes ricinus tick feeding but induced in ticks infected with TBEV, thus supporting a role for this molecule in tick innate immune response to virus infection. Immunization with recombinant SUB reduced SUB mRNA levels in nymphs co-feeding with infected females and suggested and effect on tick infestations in mice. However, SUB immunization did not reduce tick infection with TBEV nor protect mice against TBE. These results suggested that SUB is not a good candidate antigen for vaccination against TBEV and support the characterization of tick-pathogen interactions to identify mechanisms that could be targeted to reduce TBEV infection and transmission by ticks.  相似文献   

7.
Red deer (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) are hosts for different tick species and tick-borne pathogens and play a role in tick dispersal and maintenance in some regions. These factors stress the importance of controlling tick infestations in deer and several methods such as culling and acaricide treatment have been used. Tick vaccines are a cost-effective alternative for tick control that reduced cattle tick infestations and tick-borne pathogens prevalence while reducing the use of acaricides. Our hypothesis is that vaccination with vector protective antigens can be used for the control of tick infestations in deer. Herein, three experiments were conducted to characterize (1) the antibody response in red deer immunized with recombinant BM86, the antigen included in commercial tick vaccines, (2) the antibody response and control of cattle tick infestations in white-tailed deer immunized with recombinant BM86 or tick subolesin (SUB) and experimentally infested with Rhipicephalus (Boophilus) microplus, and (3) the antibody response and control of Hyalomma spp. and Rhipicephalus spp. field tick infestations in red deer immunized with mosquito akirin (AKR), the SUB ortholog and candidate protective antigen against different tick species and other ectoparasites. The results showed that deer produced an antibody response that correlated with the reduction in tick infestations and was similar to other hosts vaccinated previously with these antigens. The overall vaccine efficacy was similar between BM86 (E = 76%) and SUB (E = 83%) for the control of R. microplus infestations in white-tailed deer. The field trial in red deer showed a 25-33% (18-40% when only infested deer were considered) reduction in tick infestations, 14-20 weeks after the first immunization. These results demonstrated that vaccination with vector protective antigens could be used as an alternative method for the control of tick infestations in deer to reduce tick populations and dispersal in regions where deer are relevant hosts for these ectoparasites.  相似文献   

8.
《Ticks and Tick》2020,11(6):101529
Ticks deposit salivary proteins into the skin during a bite to mediate acquisition of a blood meal. Acquired resistance to tick bites has been demonstrated to prevent Borrelia burgdorferi sensu lato (s.l.) transmission. However, the mechanism of resistance, as well as the protective antigens, have remained elusive. To address these unknowns, we utilized a guinea pig model of tick resistance and a mouse model of permissiveness. Guinea pigs developed immunity after multiple Ixodes scapularis tick infestations, characterized by rapid tick detachment and impaired feeding. In comparison, mice tolerated at least 6 infestations with no significant impact on feeding. We analyzed the bite sites by RNA-sequencing and histology, identifying several inflammatory pathways in tick immune animals, such as FcεRI signaling and complement activation, and activation of coagulation pathways that could impair local blood flow. Together, these results identify important pathways altered during tick rejection and potential tick proteins that could serve as vaccine candidates.  相似文献   

9.
《Vaccine》2017,35(9):1323-1328
BackgroundTick-borne diseases greatly impact human and animal health worldwide, and vaccines are an environmentally friendly alternative to acaricides for their control. Recent results have suggested that aquaporin (AQP) water channels have a key function during tick feeding and development, and constitute good candidate antigens for the control of tick infestations.MethodsHere we describe the effect of vaccination with the Ixodes ricinus AQP1 (IrAQP) and a tick AQP conserved region (CoAQP) on I. ricinus tick larval mortality, feeding and molting.ResultsWe demonstrated that vaccination with IrAQP and CoAQP had an efficacy of 32% and 80%, respectively on the control of I. ricinus larvae by considering the cumulative effect on reducing tick survival and molting.ConclusionsThe effect of the AQP vaccines on larval survival and molting is essential to reduce tick infestations, and extended previous results on the effect of R. microplus AQP1 on the control of cattle tick infestations. These results supports that AQP, and particularly CoAQP, might be a candidate protective antigen for the control of different tick species.  相似文献   

10.
Ixodes ricinus is one the most abundant tick species in Europe and these ticks transmit pathogens causing human and animal diseases. The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Development of vaccines directed against tick proteins may reduce tick infestations and the transmission of tick-borne pathogens. However, a limiting step in tick vaccine development has been the identification of tick protective antigens. Herein, the tick iron metabolism pathway was targeted in an effort to identify new tick protective antigens. Recombinant I. ricinus (IrFER2) and Rhipicephalus microplus (RmFER2) ferritin 2 proteins were expressed in Escherichia coli and used to immunize rabbits and cattle, respectively. Vaccination with IrFER2 reduced I. ricinus tick numbers, weight and fertility in rabbits with an overall vaccine efficacy (E) of 98%. Control of cattle tick, R. microplus and Rhipicephalus annulatus infestations was obtained in vaccinated cattle with overall E of 64% and 72%, respectively. Notably, the efficacy of the RmFER2 vaccine was similar to that obtained with Bm86 against R. microplus. These collective results demonstrated the feasibility of using ferritin 2 to develop vaccines for the control of tick infestations.  相似文献   

11.
McNeilly CL  Beagley KW  Moore RJ  Haring V  Timms P  Hafner LM 《Vaccine》2007,25(14):2643-2655
Protective sequences of Chlamydia muridarum were identified as potential vaccine candidates by screening a genomic DNA expression library and assessing the immune responses of mice immunized with individual library clones following vaginal challenge with live Chlamydia. Groups of female BALB/c mice were immunized intra-abdominally by gene gun delivery of DNA three times at three-weekly intervals with individual library clones expressing chlamydial protein fragments and humoral and cell-mediated immune responses were evaluated. Chlamydia-specific cytokines including tumour necrosis factor-alpha (TNF-alpha) interleukin-10 (IL-10), interleukin-4 (IL-4), interleukin-12 (IL-12) and interferon-gamma (IFN-gamma) were detected in mice immunized either with selected DNA clones in spleen cells (0.2-135.2 pg/mL) or lymph nodes (0.15-84.9 pg/mL). The most protective antigen identified was TC0512, a putative outer membrane protein (OMP). Immunization of mice with this clone elicited T-helper type-1 (Th-1) and T-helper type-2 (Th-2) cytokines as well as and IgG1 and IgG2a in sera of these animals. Ten days after the last immunization, animals were challenged intra-vaginally with 5 x 10(4) inclusion-forming units (IFUs) of C. muridarum. At 9 days following challenge TC0512 showed a 73% reduction in the number of recoverable Chlamydia compared with vector only immunized controls. Six additional clones were identified that also conferred varying degrees of protection against live chlamydial challenge. Significant protection against the initial stages of infection was shown by two DNA clones (encoding hypothetical proteins) and five clones showed enhanced clearance of chlamydial infection following DNA immunization and live chlamydial challenge. These results demonstrate that the C. muridarum genome can be screened for individual vaccine candidates by genetic immunization and that the screen produces novel and partially protective vaccine candidates.  相似文献   

12.
cDNA expression library immunization (cDELI), based on the use of a large number of pathogen's cDNA clones, has been previously used in our laboratory in an experimental model of murine Taenia crassiceps cysticercosis. In this study we show that ex vivo immunization of mice with macrophages pulsed in vitro with plasmid DNA containing cDNA expression library (2x10(4) clones) leads to significant reduction of parasite load. Additionally, pathogen-specific proliferation of splenocytes from immunized mice is demonstrated indicating the induction of cellular protective immune response and the efficacy of the proposed strategy to identify vaccine candidate antigens. Our method may represent an attractive tool in vaccine discovery applicable to any host-pathogen system and may be useful especially for the pathogens with large genomes and complicated life cycles.  相似文献   

13.
Chen AY  Fry SR  Daggard GE  Mukkur TK 《Vaccine》2008,26(34):4372-4378
Intramuscular immunization of mice with DNA cocktail vaccines, comprising potential protective antigens P36, P46, NrdF, and P97or P97R1 of Mycoplasma hyopneumoniae, induced strong Th1-polarized immune responses against each antigen, with only P46 eliciting a serum IgG response. Subcutaneous immunization with protein cocktail vaccines, surprisingly, induced both Th1-polarized immune response as well as antibody response whereas mice immunized with DNA cocktail vaccines followed by boosting with protein cocktail vaccines generated strong Th1-polarized and humoral immune responses. P97 was not recognized by serum antibodies from commercial bacterin-immunized mice indicating potential lack of expression of this important antigen in inactivated whole-cell vaccines.  相似文献   

14.
Smooker PM  Setiady YY  Rainczuk A  Spithill TW 《Vaccine》2000,18(23):2533-2540
Although several candidate vaccine antigens have been developed for malaria, there is as yet no effective single vaccine available. There is a growing consensus that the ultimate malaria vaccine will be multivalent, requiring the identification of a suitable cocktail of antigens. However, evaluation of the multitude of potential malaria vaccine antigens in suitable combinations is a daunting task. Here we describe the validation of expression library immunization (ELI) as a tool for the discovery of sequences protective against malaria infection. A genomic Plasmodium chabaudi expression library was constructed comprising ten separate pools of 3000 plasmids. Over three vaccine trials using biolistic delivery of pools composed of 616 to 30,000 plasmids we report up to 63% protection of mice from a challenge with P. chabaudi adami DS, a highly virulent strain. Overall, ELI protected 36% of vaccinated mice against virulent challenge compared with only 3.2% survival of control mice. These results demonstrate that ELI is a suitable approach for screening the malaria genome to identify the components of multivalent vaccines.  相似文献   

15.
We have investigated novel vaccine strategies against severe acute respiratory syndrome (SARS) CoV using cDNA constructs encoding the structural antigens: (S), (M), (E), or (N) protein, derived from SARS CoV. PBL from healthy human volunteers were administered i.p. into IL-2 receptor gamma-chain disrupted SCID mice, and SCID-PBL/hu mice were constructed. These mice can be used to analyze the human immune response in vivo. SARS M DNA vaccine and N DNA vaccine induced human CTL specific for SARS CoV antigens. Alternatively, SARS M DNA vaccines inducing human neutralizing antibodies and human monoclonal antibodies against SARS CoV are now being developed. These results show that these vaccines can induce virus-specific immune responses and should provide a useful tool for development of protective and therapeutic vaccines.  相似文献   

16.
Ticks are a threat to human and animal health worldwide. Ticks are considered to be second worldwide to mosquitoes as vectors of human diseases, the most important vectors of diseases that affect cattle industry worldwide and important vectors of diseases affecting pets. Tick vaccines are a cost-effective and environmentally friendly alternative to protect against tick-borne diseases through the control of vector infestations and reducing pathogen infection and transmission. These premises stress the need for developing improved tick vaccines in a more efficient way. In this context, development of improved vaccines for tick-borne diseases will be greatly enhanced by vaccinomics approaches starting from the study of tick–host–pathogen molecular interactions and ending in the characterization and validation of vaccine formulations. The discovery of new candidate vaccine antigens for the control of tick infestations and pathogen infection and transmission requires the development of effective screening platforms and algorithms that allow the analysis and validation of data produced by systems biology approaches to tick research. Tick vaccines that affect both tick infestations and pathogen transmission could be used to vaccinate human and animal populations at risk and reservoir species to reduce host exposure to ticks while reducing the number of infected ticks and their vectorial capacity for pathogens that affect human and animal health worldwide.  相似文献   

17.
《Ticks and Tick》2020,11(3):101369
Ticks and tick-borne diseases are on the rise world-wide and vaccines to prevent transmission of tick-borne diseases is an urgent public health need. Tick transmission of pathogens to the mammalian host occurs during tick feeding. Therefore, it is reasoned that vaccine targeting of tick proteins essential for feeding would thwart tick feeding and consequently prevent pathogen transmission. The phenomenon of acquired tick-immunity, wherein, repeated tick infestations of non-natural hosts results in the development of host immune responses detrimental to tick feeding has served as a robust paradigm in the pursuit of tick salivary antigens that may be vaccine targeted. While several salivary antigens have been identified, immunity elicited against these antigens have only provided modest tick rejection. This has raised the possibility that acquired tick-immunity is directed against tick components other than tick salivary antigens. Using Ixodes scapularis, the blacklegged tick, that vectors several human pathogens, we demonstrate that immunity directed against tick salivary glycoproteins is indeed sufficient to recapitulate the phenomenon of tick-resistance. These observations emphasize the utility of tick salivary glycoproteins as viable vaccine targets to thwart tick feeding and direct our search for anti-tick vaccine candidates.  相似文献   

18.
The recombinant Bm86-based tick vaccines have shown their efficacy for the control of cattle ticks, Rhipicephalus (Boophilus) microplus and R. annulatus infestations. However, cattle ticks often co-exist with multi-host ticks such as Hyalomma and Amblyomma species, thus requiring the control of multiple tick infestations for cattle and other hosts. Vaccination trials using a R. microplus recombinant Bm86-based vaccine were conducted in cattle and camels against Hyalomma dromedarii and in cattle against Amblyomma cajennense immature and adult ticks. The results showed an 89% reduction in the number of H. dromedarii nymphs engorging on vaccinated cattle, and a further 32% reduction in the weight of the surviving adult ticks. In vaccinated camels, a reduction of 27% and 31% of tick engorgement and egg mass weight, respectively was shown, while egg hatching was reduced by 39%. However, cattle vaccination with Bm86 did not have an effect on A. cajennense tick infestations. These results showed that Bm86 vaccines are effective against R. microplus and other tick species but improved vaccines containing new antigens are required to control multiple tick infestations.  相似文献   

19.
Dabir S  Dabir P  Goswami K  Goswamy K  Reddy MV 《Vaccine》2008,26(29-30):3705-3710
The immunoscreening of Brugia malayi adult cDNA library with pooled endemic normal sera identified several seroreactive clones including, EC-SOD which contained a 612 bp insert and showed significant nucleotide and deduced amino acid sequence homologies with superoxide dismutase (SOD) of other nematode parasites. The SODs are known to play an important role in the protection of parasite against reactive oxygen species of the host. The coding region of the B. malayi EC-SOD (BmEC-SOD) was cloned and expressed in Escherichia coli followed by affinity purification on nickel agarose resin. Staining of native polyacrylamide gel for SOD activity of the expressed recombinant protein revealed that SOD activity inactivated by potassium cyanide and hydrogen peroxide but not by sodium azide, indicating presence of Cu/Zn-SOD. The rBm EC-SOD protein showed its activity over a broad range of pH.7.0-11.0. Further the immune protective activity of recombinant EC-SOD antigen was evaluated in susceptible host, jirds (gerbils) (Meriones unguiculatus) against B. malayi filarial infection. The immunized jirds showed 33.5% and 36% cytotoxicity against microfilariae and 42.8% and 45.5% cytotoxicity against infective larvae in in vitro antibody dependent cellular cytotoxicity (ADCC) assay and in in situ micropore chamber methods respectively. This study suggests that the rBm EC-SOD antigen could stimulate a partial protective immune response against microfilariae and infective larvae in experimental animals against filarial infection.  相似文献   

20.
Xin ZT  Liu C  Gao YP  Mao CQ  Zhao A  Zhang J  Shao NS  Ling SG  Xue YN 《Vaccine》2003,21(27-30):4373-4379
Bacterially-displayed peptide libraries have been widely used as an alternative to phage-displayed peptide libraries in screening epitopes or mimotopes of antibodies. Using a protective monoclonal antibody (mAb) 3B9 against hepatitis B virus (HBV) preS protein as target, mimotopes were successfully screened from a FliTrx random peptide library. To monitor the enrichment ratios of each round and to isolate higher affinity clones from the library, a modified procedure was performed in which the titer of eluted bacteria from an antibody-coated well (P value) was compared with that from a non-coated well (N value). After sufficient enrichment of the library, bacterial colonies were randomly picked and identified further by the monoclonal bacterial P/N value assay and Western blotting analysis. Immunization of mice with the selected bacterially-displayed mimotopes, including the enriched populations without clone identification, elicited strong specific immune responses against the recombinant preS protein. The present study provides a potentially rapid and effective strategy for the development of engineered live bacterial vaccines without the need for information about the aetiological agents or their antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号