首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the contractile machinery in skeletal muscle is initiated by the action-potential-induced release of Ca2+ from the sarcoplasmic reticulum (SR). Several proteins involved in SR Ca2+ release are affected by calmodulin kinase II (CaMKII)-induced phosphorylation in vitro , but the effect in the intact cell remains uncertain and is the focus of the present study. CaMKII inhibitory peptide or inactive control peptide was injected into single isolated fast-twitch fibres of mouse flexor digitorum brevis muscles, and the effect on free myoplasmic [Ca2+] ([Ca2+]i) and force during different patterns of stimulation was measured. Injection of the inactive control peptide had no effect on any of the parameters measured. Conversely, injection of CaMKII inhibitory peptide decreased tetanic [Ca2+]i by ≈25 %, but had no significant effect on the rate of SR Ca2+ uptake or the force-[Ca2+]i relationship. Repeated tetanic stimulation resulted in increased tetanic [Ca2+]i, and this increase was smaller after CaMKII inhibition. In conclusion, CaMKII-induced phosphorylation facilitates SR Ca2+ release in the basal state and during repeated contractions, providing a positive feedback between [Ca2+]i and SR Ca2+ release.  相似文献   

2.
Isolated whole skeletal muscles fatigue more rapidly than isolated single muscle fibres. We have now employed this difference to study mechanisms of skeletal muscle fatigue. Isolated whole soleus and extensor digitorum longus (EDL) muscles were fatigued by repeated tetanic stimulation while measuring force production. Neither application of 10 m m lactic acid nor increasing the [K+] of the bath solution from 5 to 10 m m had any significant effect on the rate of force decline during fatigue induced by repeated brief tetani. Soleus muscles fatigued slightly faster during continuous tetanic stimulation in 10 m m [K+]. Inhibition of mitochondrial respiration with cyanide resulted in a faster fatigue development in both soleus and EDL muscles. Single soleus muscle fibres were fatigued by repeated tetani while measuring force and myoplasmic free [Ca2+] ([Ca2+]i). Under control conditions, the single fibres were substantially more fatigue resistant than the whole soleus muscles; tetanic force at the end of a series of 100 tetani was reduced by about 10% and 50%, respectively. However, in the presence of cyanide, fatigue developed at a similar rate in whole muscles and single fibres, and tetanic force at the end of fatiguing stimulation was reduced by ∼80%. The force decrease in the presence of cyanide was associated with a ∼50% decrease in tetanic [Ca2+]i, compared with an increase of ∼20% without cyanide. In conclusion, lactic acid or [K+] has little impact on fatigue induced by repeated tetani, whereas hypoxia speeds up fatigue development and this is mainly due to an impaired Ca2+ release from the sarcoplasmic reticulum.  相似文献   

3.
In the preceding paper, we reported that flexor digitorum brevis (FDB) muscle fibres from S100A1 knock-out (KO) mice exhibit a selective suppression of the delayed, steeply voltage-dependent component of intra-membrane charge movement current termed Q γ. Here, we use 50 μ m of the Ca2+ indicator fluo-4 in the whole cell patch clamp pipette, in addition to 20 m m EGTA and other constituents included for the charge movement studies, and calculate the SR Ca2+ release flux from the fluo-4 signals during voltage clamp depolarizations. Ca2+ release flux is decreased in amplitude by the same fraction at all voltages in fibres from S100A1 KO mice compared to fibres from wild-type (WT) littermates, but unchanged in time course at each pulse membrane potential. There is a strong correlation between the time course and magnitude of release flux and the development of Q γ. The decreased Ca2+ release in KO fibres is likely to account for the suppression of Q γ in these fibres. Consistent with this interpretation, 4-chloro- m -cresol (4–CMC; 100 μ m ) increases the rate of Ca2+ release and restores Q γ at intermediate depolarizations in fibres from KO mice, but does not increase Ca2+ release or restore Q γ at large depolarizations. Our findings are consistent with similar activation kinetics for SR Ca2+ channels in both WT and KO fibres, but decreased Ca2+ release in the KO fibres possibly due to shorter SR channel open times. The decreased Ca2+ release at each voltage is insufficient to activate Q γ in fibres lacking S100A1.  相似文献   

4.
Ca2+ release during excitation–contraction (EC) coupling varies across the left ventricular free wall. Here, we investigated the mechanisms underlying EC coupling differences between mouse left ventricular epicardial (Epi) and endocardial (Endo) myocytes. We found that diastolic and systolic [Ca2+]i was higher in paced Endo than in Epi myocytes. Our data indicated that differences in action potential (AP) waveform between Epi and Endo cells only partially accounted for differences in [Ca2+]i. Rather, we found that the amplitude of the [Ca2+]i transient, but not its trigger – the Ca2+ current – was larger in Endo than in Epi cells. We also found that spontaneous Ca2+ spark activity was about 2.8-fold higher in Endo than in Epi cells. Interestingly, ryanodine receptor type 2 (RyR2) protein expression was nearly 2-fold higher in Endo than in Epi myocytes. Finally, we observed less Na+–Ca2+ exchanger function in Endo than in Epi cells, which was associated with decreased Ca2+ efflux during the AP; this contributed to higher diastolic [Ca2+]i and SR Ca2+ in Endo than in Epi cells during pacing. We propose that transmural differences in AP waveform, SR Ca2+ release, and Na+–Ca2+ exchanger function underlie differences in [Ca2+]i and EC coupling across the left ventricular free wall.  相似文献   

5.
Energy turnover was measured during isometric contractions of intact and Triton-permeabilized white fibres from dogfish ( Scyliorhinus canicula ) at 12°C. Heat + work from actomyosin in intact fibres was determined from the dependence of heat + work output on filament overlap. Inorganic phosphate (Pi) release by permeabilized fibres was recorded using the fluorescent protein MDCC-PBP, N-(2-[1-maleimidyl]ethyl)-7-diethylamino-coumarin-3 carboxamide phosphate binding protein. The steady-state ADP release rate was measured using a linked enzyme assay. The rates decreased five-fold during contraction in both intact and permeabilized fibres. In intact fibres the rate of heat + work output by actomyosin decreased from 134 ± s.e.m. 28 μW mg−1 ( n = 17) at 0.055 s to 42% of this value at 0.25 s, and to 20% at 3.5 s. The force remained constant between 0.25 and 3.5 s. Similarly in permeabilized fibres the Pi release rate decreased from 5.00 ± 0.39 mmol l−1 s−1 at 0.055 s to 39% of this value at 0.25 s and to 19% at 0.5 s. The steady-state ADP release rate at 15 s was 21% of the Pi rate at 0.055 s. Using a single set of rate constants, the time courses of force, heat + work and Pi release were described by an actomyosin model that took account of the transition from the initial state (rest or rigor) to the contracting state, shortening and the consequent work against series elasticity, and reaction heats. The model suggests that increasing Pi concentration slows the cycle in intact fibres, and that changes in ATP and ADP slow the cycle in permeabilized fibres.  相似文献   

6.
An electrically evoked twitch during a maximal voluntary contraction (twitch interpolation) is frequently used to assess central fatigue. In this study we used intact single muscle fibres to determine if intramuscular mechanisms could affect the force increase with the twitch interpolation technique. Intact single fibres from flexor digitorum brevis of NMRI mice were dissected and mounted in a chamber equipped with a force transducer. Free myoplasmic [Ca2+] ([Ca2+]i) was measured with the fluorescent Ca2+ indicator indo-1. Seven fibres were fatigued with repeated 70 Hz tetani until 40% initial force with an interpolated pulse evoked every fifth tetanus. Results showed that the force generated by the interpolated twitch increased throughout fatigue, being 9 ± 1% of tetanic force at the start and 19 ± 1% at the end ( P < 0.001). This was not due to a larger increase in [Ca2+]i induced by the interpolated twitch during fatigue but rather to the fact that the force–[Ca2+]i relationship is sigmoidal and fibres entered a steeper part of the relationship during fatigue. In another set of experiments, we observed that repeated tetani evoked at 150 Hz resulted in more rapid fatigue development than at 70 Hz and there was a decrease in force ('sag') during contractions, which was not observed at 70 Hz. In conclusion, the extent of central fatigue is difficult to assess and it may be overestimated when using the twitch interpolation technique.  相似文献   

7.
Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 μ m to 1.0 m m ). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (−log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 μ m , with no further alteration when the [ADP] was increased to 1.0 m m . The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 μ m , but was increased by 26% when the [ADP] was elevated to 1.0 m m . This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.  相似文献   

8.
Regulation of the ryanodine receptor (RYR) by Mg2+ and SR luminal Ca2+ was studied in mechanically skinned malignant hyperthermia susceptible (MHS) and non-susceptible (MHN) fibres from human vastus medialis. Preparations were perfused with solutions mimicking the intracellular milieu and changes in [Ca2+] were detected using fura-2 fluorescence. At 1 m m cytosolic Mg2+, MHS fibres had a higher sensitivity to caffeine (2-40 m m ) than MHN fibres. The inhibitory effect of Mg2+ on caffeine-induced Ca2+ release was studied by increasing [Mg2+] of the solution containing 40 m m caffeine. Increasing [Mg2+] from 1 to 3 m m reduced the amplitude of the caffeine-induced Ca2+ transient by 77 ± 7.4 % ( n = 8) in MHN fibres. However, the caffeine-induced Ca2+ transient decreased by only 24 ± 8.1 % ( n = 9) in MHS fibres. In MHN fibres, reducing the Ca2+ loading period from 4 to 1 min (at 1 m m Mg2+) decreased the fraction of the total sarcoplasmic reticulum (SR) Ca2+ content released in response to 40 m m caffeine by 90.4 ± 6.2 % ( n = 6). However, in MHS fibres the response was reduced by only 31.2 ± 17.4 % ( n = 6) under similar conditions. These results suggest that human malignant hyperthermia (MH) is associated with reduced inhibition of the RYR by (i) cytosolic Mg2+ and (ii) SR Ca2+ depletion. Both of these effects may contribute to increased sensitivity of the RYR to caffeine and volatile anaesthetics.  相似文献   

9.
Calsequestrin (CS), the major Ca2+-binding protein in the sarcoplasmic reticulum (SR), is thought to play a dual role in excitation–contraction coupling: buffering free Ca2+ increasing SR capacity, and modulating the activity of the Ca2+ release channels (RyRs). In this study, we generated and characterized the first murine model lacking the skeletal CS isoform (CS1). CS1- null mice are viable and fertile, even though skeletal muscles appear slightly atrophic compared to the control mice. No compensatory increase of the cardiac isoform CS2 is detectable in any type of skeletal muscle. CS1- null muscle fibres are characterized by structural and functional changes, which are much more evident in fast-twitch muscles (EDL) in which most fibres express only CS1, than in slow-twitch muscles (soleus), where CS2 is expressed in about 50% of the fibres. In isolated EDL muscle, force development is preserved, but characterized by prolonged time-to-peak and half-relaxation time, probably related to impaired calcium release from and re-uptake by the SR. Ca2+-imaging studies show that the amount of Ca2+ released from the SR and the amplitude of the Ca2+ transient are significantly reduced. The lack of CS1 also causes significant ultrastructural changes, which include: (i) striking proliferation of SR junctional domains; (ii) increased density of Ca2+-release channels (confirmed also by 3H-ryanodine binding); (iii) decreased SR terminal cisternae volume; (iv) higher density of mitochondria. Taken together these results demonstrate that CS1 is essential for the normal development of the SR and its calcium release units and for the storage and release of appropriate amounts of SR Ca2+.  相似文献   

10.
The mechanisms of muscle fatigue were studied in small muscle bundles and single fibres isolated from the flexor digitorum brevis of the mouse. Fatigue caused by repeated isometric tetani was accelerated at body temperature (37°C) when compared to room temperature (22°C). The membrane-permeant reactive oxygen species (ROS) scavenger, Tiron (5 m m ), had no effect on the rate of fatigue at 22°C but slowed the rate of fatigue at 37°C to that observed at 22°C. Single fibres were microinjected with indo-1 to measure intracellular calcium. In the accelerated fatigue at 37°C the tetanic [Ca2+]i did not change significantly and the decline of maximum Ca2+-activated force was similar to that observed at 22°C. The cause of the greater rate of fatigue at 37°C was a large fall in myofibrillar Ca2+ sensitivity. In the presence of Tiron, the large fall in Ca2+ sensitivity was abolished and the usual decline in tetanic [Ca2+]i was observed. This study confirms the importance of ROS in fatigue at 37°C and shows that the mechanism of action of ROS is a decline in myofibrillar Ca2+ sensitivity.  相似文献   

11.
This study tested the hypothesis that store-operated channels (SOCs) exist as a discrete population of Ca2+ channels activated by depletion of intracellular Ca2+ stores in cerebral arteriolar smooth muscle cells and explored their direct contractile function. Using the Ca2+ indicator fura-PE3 it was observed that depletion of sarcoplasmic reticulum (SR) Ca2+ by inhibition of SR Ca2+-ATPase (SERCA) led to sustained elevation of [Ca2+]i that depended on extracellular Ca2+ and slightly enhanced Mn2+ entry. Enhanced background Ca2+ influx did not explain the raised [Ca2+]i in response to SERCA inhibitors because it had marked gadolinium (Gd3+) sensitivity, which background pathways did not. Effects were not secondary to changes in membrane potential. Thus SR Ca2+ depletion activated SOCs. Strikingly, SOC-mediated Ca2+ influx did not evoke constriction of the arterioles, which were in a resting state. This was despite the fura-PE3-indicated [Ca2+]i rise being greater than that evoked by 20 m m [K+]o (which did cause constriction). Release of endothelial vasodilators did not explain the absence of SOC-mediated constriction, nor did a change in Ca2+ sensitivity of the contractile proteins. We suggest SOCs are a discrete subset of Ca2+ channels allowing Ca2+ influx into a 'non-contractile' compartment in cerebral arteriolar smooth muscle cells.  相似文献   

12.
Waves of calcium-induced calcium release occur in a variety of cell types and have been implicated in the origin of cardiac arrhythmias. We have investigated the effects of inhibiting the SR Ca2+-ATPase (SERCA) with the reversible inhibitor 2',5'-di(tert-butyl)-1,4-benzohydroquinone (TBQ) on the properties of these waves. Cardiac myocytes were voltage clamped at a constant potential between −65 and −40 mV and spontaneous waves evoked by increasing external Ca2+ concentration to 4 m m . Application of 100 μ m TBQ decreased the frequency of waves. This was associated with increases of resting [Ca2+]i, the time constant of decay of [Ca2+]i and the integral of the accompanying Na+–Ca2+ exchange current. There was also a decrease in propagation velocity of the waves. There was an increase of the calculated Ca2+ efflux per wave. The SR Ca2+ content when a wave was about to propagate decreased to 91.7 ± 3.2%. The period between waves increased in direct proportion to the Ca2+ efflux per wave meaning that TBQ had no effect on the Ca2+ efflux per unit time. We conclude that (i) decreased wave frequency is not a direct consequence of decreased Ca2+ pumping by SERCA between waves but, rather, to more Ca2+ loss on each wave; (ii) inhibiting SERCA increases the chance of spontaneous Ca2+ release propagating at a given SR content.  相似文献   

13.
In the present study, the link between cellular metabolism and Ca2+ signalling was investigated in permeabilized mammalian skeletal muscle. Spontaneous events of Ca2+ release from the sarcoplasmic reticulum were detected with fluo-3 and confocal scanning microscopy. Mitochondrial functions were monitored by measuring local changes in mitochondrial membrane potential (with the potential-sensitive dye tetramethylrhodamine ethyl ester) and in mitochondrial [Ca2+] (with the Ca2+ indicator mag-rhod-2). Digital fluorescence imaging microscopy was used to quantify changes in the mitochondrial autofluorescence of NAD(P)H. When fibres were immersed in a solution without mitochondrial substrates, Ca2+ release events were readily observed. The addition of l -glutamate or pyruvate reversibly decreased the frequency of Ca2+ release events and increased mitochondrial membrane potential and NAD(P)H production. Application of various mitochondrial inhibitors led to the loss of mitochondrial [Ca2+] and promoted spontaneous Ca2+ release from the sarcoplasmic reticulum. In many cases, the increase in the frequency of Ca2+ release events was not accompanied by a rise in global [Ca2+]i. Our results suggest that mitochondria exert a negative control over Ca2+ signalling in skeletal muscle by buffering Ca2+ near Ca2+ release channels.  相似文献   

14.
In skeletal muscle, sarcoplasmic reticulum (SR) Ca2+ depletion is suspected to trigger a calcium entry across the plasma membrane and recent studies also suggest that the opening of channels spontaneously active at rest and possibly involved in Duchenne dystrophy may be regulated by SR Ca2+ depletion. Here we simultaneously used the cell-attached and whole-cell voltage-clamp techniques as well as intracellular Ca2+ measurements on single isolated mouse skeletal muscle fibres to unravel any possible change in membrane conductance that would depend upon SR Ca2+ release and/or SR Ca2+ depletion. Delayed rectifier K+ single channel activity was routinely detected during whole-cell depolarizing pulses. In addition the activity of channels carrying unitary inward currents of ∼1.5 pA at −80 mV was detected in 17 out of 127 and in 21 out of 59 patches in control and mdx dystrophic fibres, respectively. In both populations of fibres, large whole-cell depolarizing pulses did not reproducibly increase this channel activity. This was also true when, repeated application of the whole-cell pulses led to exhaustion of the Ca2+ transient. SR Ca2+ depletion produced by the SR Ca2+ pump inhibitor cyclopiazonic acid (CPA) also failed to induce any increase in the resting whole-cell conductance and in the inward single channel activity. Overall results indicate that voltage-activated SR Ca2+ release and/or SR Ca2+ depletion are not sufficient to activate the opening of channels carrying inward currents at negative voltages and challenge the physiological relevance of a store-operated membrane conductance in adult skeletal muscle.  相似文献   

15.
H. Amano  M. Kurosawa  Y. Miyachi 《Allergy》1997,52(2):215-219
Rat peritoneal mast cells purified on a Percoll gradient were loaded with the fluorescent Ca2+ indicator fura-2 and were challenged with different concentrations of substance P (SP), and intracellular calcium concentrations ([Ca2+]i) were measured by a spectrofluorometric assay. SP at 5 × 10−6 mol/1 and 10−5 mol/1 caused a significant histamine release with a significant increase in [Ca2+]i in a dose-dependent manner. However, SP at 10−8-10−6 mol/1 did not induce either histamine release or increase in [Ca2+]i. Extracellular calcium at 0.9 mM inhibited the histamine release with a significant reduction of [Ca2+]i compared with that of the cells in a nominally calcium-free condition. These results indicate that the action of SP on rat mast cells relies upon [Ca2+]i to induce histamine release.  相似文献   

16.
Regenerative potentials were initiated by depolarizing short segments of single bundles of circular muscle isolated from the gastric antrum of guinea-pigs. When changes in [Ca2+]i and membrane potential were recorded simultaneously, regenerative potentials were found to be associated with an increase in [Ca2+]i, with the increase starting after a minimum latency of about 1 s. Although the increase in [Ca2+]i was reduced by nifedipine, the amplitudes of the regenerative responses were little changed. Regenerative responses and associated changes in [Ca2+]i were abolished by loading the preparations with the Ca2+ chelator MAPTA-AM. Regenerative potentials were abolished by 2-aminoethoxydiphenyl borate (2APB), an inhibitor of IP3 induced Ca2+ release, by N -ethylamaleimide (NEM), an alkylating agent which blocks activation of G-proteins and were reduced in amplitude by two agents which block chloride (Cl)-selective channels in many tissues. The observations suggest that membrane depolarization triggers IP3 formation. This causes Ca2+ release from intracellular stores which activates Ca2+-dependent Cl channels.  相似文献   

17.
We measured the effects of ionic strength (IS), 200 (standard) and 400 mmol l−1 (high), on force and ATP hydrolysis during isometric contractions of permeabilized white fibres from dogfish myotomal muscle at their physiological temperature, 12°C. One goal was to test the validity of our kinetic scheme that accounts for energy release, work production and ATP hydrolysis. Fibres were activated by flash photolysis of the P 3-1-(2 nitrophenyl) ethyl ester of ATP (NPE-caged ATP), and time-resolved phosphate (Pi) release was detected with the fluorescent protein MDCC-PBP, N -(2[1-maleimidyl]ethyl)-7-diethylamino-coumarin-3-carboxamide phosphate binding protein. High IS slowed the transition from rest to contraction, but as the fibres approached the isometric force plateau they showed little IS sensitivity. By 0.5 s of contraction, the force and the rate of Pi release at standard and high IS values were not significantly different. A five-step reaction mechanism was used to account for the observed time courses of force and Pi release in all conditions explored here. Only the rate constants for reactions of ATP, ADP and Pi with the contractile proteins varied with IS, thus suggesting that the actin–myosin interactions are largely non-ionic. Our reaction scheme also fits previous results for intact fibres.  相似文献   

18.
In addition to activating more Ca2+ release sites via voltage sensors in the t-tubular membranes, it has been proposed that more depolarised voltages enhance activation of Ca2+ release channels via a voltage-dependent increase in Ca-induced Ca2+ release (CICR). To test this, release permeability signals in response to voltage-clamp pulses to two voltages, –60 and –45 mV, were compared when Δ[Ca2+] was decreased in two kinds of experiments. (1) Addition of 8 m m of the fast Ca2+ buffer BAPTA to the internal solution decreased release permeability at –45 mV by > 2-fold and did not significantly affect Ca2+ release at –60 mV. Although some of this decrease may have been due to a decrease in voltage activation at –45 mV – as assessed from measurements of intramembranous charge movement – the results do tend to support a Ca-dependent enhancement with greater depolarisations. (2) Decreasing SR (sarcoplasmic reticulum) Ca content ([CaSR]) should decrease the Ca2+ flux through an open channel and thereby Δ[Ca2+]. Decreasing [CaSR] from > 1000 μ m (the physiological range) to < 200 μ m decreased release permeability at –45 mV relative to that at –60 mV by > 6-fold, an effect shown to be reversible and not attributable to a decrease in voltage activation at –45 mV. These results indicate a Ca-dependent triggering of Ca2+ release at more depolarised voltages in addition to that expected by voltage control alone. The enhanced release probably involves CICR and appears to involve another positive feedback mechanism in which Ca2+ release speeds up the activation of voltage sensors.  相似文献   

19.
Postsynaptic [Ca2+]i increases result from Ca2+ entry through ligand-gated channels, entry through voltage-gated channels, or release from intracellular stores. We found that these sources have distinct spatial distributions in hippocampal CA1 pyramidal neurons. Large amplitude regenerative release of Ca2+ from IP3-sensitive stores in the form of Ca2+ waves were found almost exclusively on the thick apical shaft. Smaller release events did not extend more than 15 μm into the oblique dendrites. These synaptically activated regenerative waves initiated at points where the stimulated oblique dendrites branch from the apical shaft. In contrast, NMDA receptor-mediated increases were observed predominantly in oblique dendrites where spines are found at high density. These [Ca2+]i increases were typically more than eight times larger than [Ca2+]i from this source on the main aspiny apical shaft. Ca2+ entry through voltage-gated channels, activated by backpropagating action potentials, was detected at all dendritic locations. These mechanisms were not independent. Ca2+ entry through NMDA receptor channels or voltage-gated channels (as previously demonstrated) synergistically enhanced Ca2+ release generated by mGluR mobilization of IP3.  相似文献   

20.
Microheterogeneity of calcium signalling in dendrites   总被引:2,自引:0,他引:2  
Transient changes in the intracellular concentration of free Ca2+ ([Ca2+]i) originating from voltage- or ligand-gated influx and by ligand- or Ca2+-gated release from intracellular stores, trigger or modulate many fundamental neuronal processes, including neurotransmitter release and synaptic plasticity. Of the intracellular compartments involved in Ca2+ clearance, the endoplasmic reticulum (ER) has received the most attention because it expresses Ca2+ pumps and Ca2+ channels, thus endowing it with the potential to act as both an intracellular calcium sink and store. We review here our ongoing work on the role of calcium sequestration into, and release from, ER cisterns and the role that this plays in the generation and termination of free [Ca2+]i transients in dendrites of pyramidal neurons in hippocampal slices during and after synaptic activity. These studies have been approached by combining parallel microfluorometric measurements of free cytosolic [Ca2+]i transients with energy-dispersive X-ray microanalytical measurements of total Ca content within specific dendritic compartments at the electron microscopy level. Our observations support the emerging realization that specific subsets of dendritic ER cisterns provide spatial and temporal microheterogeneity of Ca2+ signalling, acting not only as a major intracellular Ca sink involved in active clearance mechanisms after voltage- and ligand-gated Ca2+ influx, but also as an intracellular Ca2+ source that can be mobilized by a signal cascade originating at activated synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号