首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using an embryoid body (EB) culture system, we developed a functional organ-like cluster--a "gut"--from mouse embryonic stem (ES) cells (ES gut). Each ES gut exhibited spontaneous contractions but did not exhibit distinct peristalsis-like movements. In these spontaneously contracting ES guts, dense distributions of interstitial cells of Cajal (c-kit [a transmembrane receptor that has tyrosine kinase activity]-positive cells; gut pacemaker cells) and smooth muscle cells were discernibly identified; however, enteric neural ganglia were absent in the spontaneously differentiated ES gut. By adding brain-derived neurotrophic factor (BDNF) only during EB formation, we for the first time succeeded in in vitro formation of enteric neural ganglia with connecting nerve fiber tracts (enteric nervous system [ENS]) in the ES gut. The ES gut with ENS exhibited strong peristalsis-like movements. During EB culture in BDNF(+) medium, we detected each immunoreactivity associated with the trk proto-oncogenes (trkB; BDNF receptors) and neural crest marker, proto-oncogene tyrosine-protein kinase receptor ret precursor (c-ret), p75, or sox9. These results indicated that the present ENS is differentiated from enteric neural crest-derived cells. Moreover, focal stimulation of ES guts with ENS elicited propagated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) at single or multiple sites that were attenuated by atropine or abolished by tetrodotoxin. These results suggest in vitro formation of physiologically functioning enteric cholinergic excitatory neurons. We for the first time succeeded in the differentiation of functional neurons in ENS by exogenously adding BDNF in the ES gut, resulting in generation of distinct peristalsis-like movements.  相似文献   

2.
3.
4.
The enteric nervous system (ENS) controls gastrointestinal key functions and is mainly characterized by two ganglionated plexus located in the gut wall: the myenteric plexus and the submucous plexus. The ENS harbors a high number and diversity of enteric neurons and glial cells, which generate neuronal circuitry to regulate intestinal physiology. In the past few years, the pivotal role of enteric neurons in the underlying mechanism of several intestinal diseases was revealed. Intestinal diseases are associated with neuronal death that could in turn compromise intestinal functionality. Enteric neurogenesis and regeneration is therefore a crucial aspect within the ENS and could be revealed not only during embryogenesis and early postnatal periods, but also in the adulthood. Enteric glia and/or enteric neural precursor/progenitor cells differentiate into enteric neurons, both under homeostatic and pathologic conditions beyond the perinatal period. The unique role of the intestinal microbiota and serotonin signaling in postnatal and adult neurogenesis has been shown by several studies in health and disease. In this review article, we will mainly focus on different recent studies, which advanced the concept of postnatal and adult ENS neurogenesis. Moreover, we will discuss the key factors and underlying mechanisms, which promote enteric neurogenesis. Finally, we will shortly describe neurogenesis of transplanted enteric neural progenitor cells. Anat Rec, 302:1345–1353, 2019. © 2019 Wiley Periodicals, Inc.  相似文献   

5.
The enteric nervous system (ENS) resides within the gut wall and autonomously controls gut functions through coordinated activation of sensory, inter and motor neurons. Its activity is modulated by the enteric immune and endocrine system as well as by afferent and efferent nerves of the parasympathetic and sympathetic nervous system. The ENS is often referred to as the second brain and hence is able to perform sophisticated tasks. We review the evidence that the “smartness” of the ENS may even extend to its ability to learn and to memorize. Examples for habituation, sensitization, conditioned behaviour and long‐term facilitation are evidence for various forms of implicit learning. Moreover, we discuss how this may change not only basic Neurogastroenterology but also our understanding of development of gut diseases and chronic disorders in gut functions. At the same time, we identify open questions and future challenges to confirm learning, memory and memory deficits in the gut. Despite some remaining experimental challenges, we are convinced that the gut is able to learn and are tempted to answer the question with: Yes, the gut is smart.  相似文献   

6.
The neural and glial cells of the intrinsic ganglia of the enteric nervous system (ENS) are derived from the hindbrain neural crest at the vagal level. The Hoxb3 gene is expressed in the vagal neural crest and in the enteric ganglia of the developing gut during embryogenesis. We have identified a cis-acting enhancer element b3IIIa in the Hoxb3 gene locus. In this study, by transgenic mice analysis, we examined the tissue specificity of the b3IIIa enhancer element using the lacZ reporter gene, with emphasis on the vagal neural crest cells and their derivatives in the developing gut. We found that the b3IIIa-lacZ transgene marks only the vagal region and not the trunk or sacral region. Using cellular markers, we showed that the b3IIIa-lacZ transgene was expressed in a subset of enteric neuroblasts during early development of the gut, and the expression was maintained in differentiated neurons of the myenteric plexus at later stages. The specificity of the b3IIIa enhancer in directing gene expression in the developing ENS was further supported by genetic analysis using the Dom mutant, a spontaneous mouse model of Hirschsprung's disease characterized by the absence of enteric ganglia in the distal gut. The colonization of lacZ-expressing cells in the large intestine was incomplete in all the Dom/b3IIIa-lacZ hybrid mutants we examined. To our knowledge, this is the only vagal neural crest-specific genetic regulatory element identified to date. This element could be used for a variety of genetic manipulations and in establishing transgenic mouse models for studying the development of the ENS.  相似文献   

7.
The majority of the enteric nervous system (ENS) is derived from vagal neural crest cells (NCC). For many years, the contribution from a second region of the neuraxis (the sacral neural crest) to the ENS has been less clear, with conflicting reports appearing in the literature. To resolve this longstanding issue, we documented the spatiotemporal migration and differentiation of vagal and sacral-derived NCC within the developing chick embryo using quail-chick grafting and antibody labelling. Results showed that vagal NCC colonised the entire length of the gut in a rostrocaudal direction. The hindgut, the region of the gastrointestinal tract most frequently affected in developmental disorders, was found to be colonised in a complex manner. Vagal NCC initially migrated within the submucosa, internal to the circular muscle layer, before colonising the myenteric plexus region. In contrast, sacral NCC, which colonised the hindgut in a caudorostral direction, were primarily located in the myenteric plexus region from where they subsequently migrated to the submucosa. We also observed that sacral NCC migrated into the hindgut in significant numbers only after vagal-derived cells had colonised the entire length of the gut. This suggested that to participate in ENS formation, sacral cells may require an interaction with vagal-derived cells, or with factors or signalling molecules released by them or their progeny. To investigate this possible inter-relationship, we ablated sections of vagal neural crest (NC) to prevent the rostrocaudal migration of ENS precursors and, thus, create an aganglionic hindgut model. In the same NC ablated animals, quail-chick sacral NC grafts were performed. In the absence of vagal-derived ganglia, sacral NCC migrated and differentiated in an apparently normal manner. Although the numbers of sacral cells within the hindgut was slightly higher in the absence of vagal-derived cells, the increase was not sufficient to compensate for the lack of enteric ganglia. As vagal NCC appear to be more invasive than sacral NCC, since they colonise the entire length of the gut, we investigated the ability of transplanted vagal cells to colonise the hindgut by grafting the vagal NC into the sacral region. We found that when transplanted, vagal cells retained their invasive capacity and migrated into the hindgut in large numbers. Although sacral-derived cells normally contribute a relatively small number of precursors to the post-umbilical gut, many heterotopic vagal cells were found within the hindgut enteric plexuses at much earlier stages of development than normal. Heterotopic grafting of invasive vagal NCC into the sacral neuraxis may, therefore, be a means of rescuing an aganglionic hindgut phenotype.  相似文献   

8.
Oxidative stress is widely recognized to contribute to neuronal death during various pathological conditions and ageing. In the enteric nervous system (ENS), reactive oxygen species have been implicated in the mechanism of age-associated neuronal loss. The neurotrophic factors, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor (GDNF), are important in the development of enteric neurons and continue to be expressed in the gut throughout life. It has therefore been suggested that they may have a neuroprotective role in the ENS. We investigated the potential of NT-3 and GDNF to prevent the death of enteric ganglion cells in dissociated cell culture after exposure to hydrogen peroxide (H(2)O(2)). H(2)O(2) treatment resulted in a dose-dependent death of enteric neurons and glial cells, as demonstrated by MTS assay, bis-benzimide and propidium iodide staining and immunolabelling. Cultures treated with NT-3 prior to exposure showed reduced cell death compared to untreated control or GDNF-treated cultures. GDNF treatment did not affect neuronal survival in H(2)O(2)-treated cultures. These results suggest that NT-3 is able to enhance the survival of enteric ganglion cells exposed to oxidative stress.  相似文献   

9.
10.
The enteric nervous system (ENS) is the largest part of the peripheral nervous system and is entirely neural crest–derived. It provides the intrinsic innervation of the gut, controlling different aspects of gut function, such as motility. In this review, we will discuss key points of Zebrafish ENS development, genes, and signaling pathways regulating ENS development, as well as contributions of the Zebrafish model system to better understand ENS disorders. During their migration, enteric progenitor cells (EPCs) display a gradient of developmental states based on their proliferative and migratory characteristics, and show spatiotemporal heterogeneity based on gene expression patterns. Many genes and signaling pathways that regulate the migration and proliferation of EPCs have been identified, but later stages of ENS development, especially steps of neuronal and glial differentiation, remain poorly understood. In recent years, Zebrafish have become increasingly important to test candidate genes for ENS disorders (e.g., from genome‐wide association studies), to identify environmental influences on ENS development (e.g., through large‐scale drug screens), and to investigate the role the gut microbiota play in ENS development and disease. With its unique advantages as a model organism, Zebrafish will continue to contribute to a better understanding of ENS development, function, and disease. Developmental Dynamics 247:268–278, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
Increasing evidence suggests that, in addition to peripheral sensory and sympathetic neurons, the enteric neurons are also under the control of neurotrophins. Recently, neurotrophin receptors have been detected in the developing and adult mammalian enteric nervous system (ENS). Nevertheless, it remains to be established whether neurotrophin receptors are expressed in all enteric neurons and/or in glial cells and whether expression is a common feature in the enteric nervous system of all mammals or if interspecific differences exist. Rabbit polyclonal antibodies against Trk proteins (regarded as essential constituents of the high-affinity signal-transducing neurotrophin receptors) and p75 protein (considered as a low-affinity pan-neurotrophin receptor) were used to investigate the cell localization of these proteins in the ENS of adult man, horse, cow, sheep, pig, rabbit, and rat. Moreover, the percentage of neurons displaying immunoreactivity (IR) for each neurotrophin receptor protein was determined. TrkA-like IR and TrkC-like IR were observed in a neuronal subpopulation in both the myenteric and submucous plexuses, from esophagus to rectum in humans, and in the jejunum-ileum of the other species. Many neurons, and apparently all glial cells, in the human and rat enteric nervous system also displayed p75 IR. TrkB-like IR was found restricted to the glial cells of all species studied, with the exception of humans, in whom IR was mainly in glial cells and a small percentage of enteric neurons (about 5%). These findings indicate that the ENS of adult mammals express neuronal TrkA and TrkC, glial TrkB, and neuronal-glial p75, this pattern of distribution being similar in all examined species. Thus, influence of specific neurotrophins on their cognate receptors may be considered in the physiology and/or pathology of the adult ENS. Anat. Rec. 251:360–370, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
The enteric nervous system arises predominantly from vagal level neural crest cells that migrate into and along the developing gut. As the neural crest‐derived cells migrate within the gut, a subpopulation begins to differentiate into enteric neurons. Here, we show that the differentiation of neural crest‐derived cells into enteric neurons is delayed in L1‐deficient mice, compared with littermate controls. However, glial cell differentiation is not affected in L1‐deficient mice. These mice also show a delay in the differentiation of a neurotransmitter‐specific subtype of enteric neuron within the gastrointestinal tract. Together, these results suggest a role for the cell adhesion molecule, L1, in the differentiation of neural crest‐derived cells into enteric neurons within the developing enteric nervous system. Developmental Dynamics 238:708–715, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Cell migration is fundamental to organogenesis. During development, the enteric neural crest cells (ENCCs) that give rise to the enteric nervous system (ENS) migrate and colonize the entire length of the gut, which undergoes substantial growth and morphological rearrangement. How ENCCs adapt to such changes during migration, however, is not fully understood. Using time-lapse imaging analyses of mouse ENCCs, we show that a population of ENCCs crosses from the midgut to the hindgut via the mesentery during a developmental time period in which these gut regions are transiently juxtaposed, and that such 'trans-mesenteric' ENCCs constitute a large part of the hindgut ENS. This migratory process requires GDNF signaling, and evidence suggests that impaired trans-mesenteric migration of ENCCs may underlie the pathogenesis of Hirschsprung disease (intestinal aganglionosis). The discovery of this trans-mesenteric ENCC population provides a basis for improving our understanding of ENS development and pathogenesis.  相似文献   

15.
The enteric nervous system (ENS) is a network of neurons and glia found in the gut wall and governs this gastrointestinal function independently from the central nervous system (CNS). ENS comprises the myenteric plexus (MP) and the submucous plexus (SP). In this study, we examined the expression profile of neurofilament heavy chain (NF-H), neuron-specific enolase (NSE), calcyclin (S100A6), vimentin and glial fibril acidic protein (GFAP) in ovine ileal enteric neurons and enteric glia cells (EGCs) during prenatal development using an immunohistochemical method. The material of the study consisted of 15 different fetal ileum tissues obtained between days 60 and 150 of pregnancy. NF-H was observed in the majority of ganglion cells in SP and MP throughout the fetal period. It was determined that there was no NF-H reaction in some ganglion cells in Peyer’s patches of internal submucosal plexus (ISPF). In the early stage of pregnancy (60–90 days), there was no expression of NSE and S1006 in ileum. After this period, NSE and S1006 were expressed in the ganglion cells of the plexus, indicating an increase in the amount of expression towards the end of pregnancy. In the early period, vimentin expression was only detected in intramuscular interstitial cells (ICs) (60–90 days), but later (90–150 days) it was also seen in the cells around the ganglion cells in the plexus. On days 60–90 of gestation, GFAP expression only occurred in MP, but in later stages, staining was also detected in SP. In the plexus, an immunoreactivity was present in EGCs forming a network around the ganglion cell. During the last period of gestation (120–150 days), the number of GFAP-positive plexus increased, with the majority of these stained cells being observed in MP. Interestingly, weak staining or reaction did not occur in ISPF, unlike other plexuses. In conclusion, this is the first study that demonstrated the expression of NF-H, vimentin, S100A6, NSE and glial fibril acidic protein (GFAP) in ovine ileal ENS in the prenatal period. In the last period of gestation (120–150 days), the expression profile of ENS was similar to that of adult animals. The expression of the used markers increased toward the end of pregnancy. Our results suggest that neurons and EGCs show heterogeneity, and GFAP and NF-H cannot be used as panenteric glial or panneuronal markers, respectively. We also demonstrated, for the first time, the prenatal expression of S100A6 in enteric neurons and the possibility of using this protein for the identification of enteric neurons.  相似文献   

16.
《Journal of anatomy》2017,230(4):567-574
The development of the enteric nervous system (ENS) and intestinal smooth muscle occurs in a spatially and temporally correlated manner, but how they influence each other is unknown. In the developing mid‐gut of the chick embryo, we find that α‐smooth muscle actin expression, indicating early muscle differentiation, occurs after the arrival of migrating enteric neural crest‐derived cells (ENCCs). In contrast, hindgut smooth muscle develops prior to ENCC arrival. Smooth muscle development is normal in experimentally aganglionic hindguts, suggesting that proper development and patterning of the muscle layers does not rely on the ENS. However, inhibiting early smooth muscle development severely disrupts ENS patterning without affecting ENCC proliferation or apoptosis. Our results demonstrate that early intestinal smooth muscle differentiation is required for patterning the developing ENS.  相似文献   

17.
The enteric nervous system is formed by neural crest cells that migrate, proliferate, and differentiate into neurons and glia distributed in ganglia along the gastrointestinal tract. In the developing embryo some enteric crest cells cease their caudal movements, whereas others continue to migrate. Subsequently, the enteric neurons form a reticular network of ganglia interconnected by axonal projections. We studied the developing avian gut to characterize the pattern of migration of the crest cells, and the relationship between migration and differentiation. Crest cells at the leading edge of the migratory front appear as strands of cells; isolated individual crest cells are rarely seen. In the foregut and midgut, these strands are located immediately beneath the serosa. In contrast, crest cells entering the colon appear first in the deeper submucosal mesenchyme and later beneath the serosa. As the neural crest wavefront passes caudally, the crest cell cords become highly branched, forming a reticular lattice that presages the mature organization of the enteric nervous system. Neurons and glia first appear within the strands at the advancing wavefront. Later neurons are consistently located at the nodes where branches of the lattice intersect. In the most rostral foregut and in the colon, some neurons initially appear in close association with extrinsic nerve fibers from the vagus and Remak's nerve, respectively. We conclude that crest cells colonize the gut as chains of cells and that, within these chains, both neurons and glia appear close to the wavefront.  相似文献   

18.
Neuroblasts were identified histologically in the intestine of the fowl embryo of stages 25 to 35 (Hamburger and Hamilton, ′51). These cells occurred rostral to the umbilicus at stage 26, and appeared caudally in a wave that reached the coprodeum at stage 34. The presence of histologically unidentifiable neuronal precursors was studied by grafting onto the chorio-allantoic membrane (CAM) short lengths of gut from embryos of stage 24 to 34. After growth in isolation on the CAM, the resultant gut grafts were examined histologically for enteric neurons. In these grafts, neuronal differentiation occurred in the gut as a wave moving caudally at about 40 ?m/hr. This wave preceded by less than 12 hours the normal appearance of neuroblasts at any particular level of the intestine. The findings are discussed with regard to previous reports on the origin of enteric neurons. The most likely conclusion is that all enteric neurons in the fowl are derived from vagal neural crest. The results obtained with grafts containing neurons of Remak's nerve, in addition to intestine, suggest that lumbo-sacral neural crest may give rise to some enteric supporting cells which, in the absence of normal enteric plexuses, differentiate as pigment cells. If lumbo-sacral neural crest cells contribute to post-umbilical enteric neurons, their differentiation requires the presence of vagal cells. A comparison of enteric neuronal density and distribution in short and long colo-rectal grafts suggests that only the advancing front of the neuronal precursor wave is necessary to populate the remainder of the gut. This high proliferative potential in the wave-front appears to decline on reaching the most caudal colo-rectum and coprodeum.  相似文献   

19.
Glial‐derived neurotrophic factor (Gdnf) is required for morphogenesis of the enteric nervous system (ENS) and it has been shown to regulate proliferation, differentiation, and survival of cultured enteric neural crest–derived cells (ENCCs). The goal of this study was to investigate its in vivo role in the colon, the site most commonly affected by intestinal neuropathies such as Hirschsprung's disease. Gdnf activity was modulated in ovo in the distal gut of avian embryos using targeted retrovirus‐mediated gene overexpression and retroviral vector‐based gene silencing. We find that Gdnf has a pleiotropic effect on colonic ENCCs, promoting proliferation, inducing neuronal differentiation, and acting as a chemoattractant. Down‐regulating Gdnf similarly induces premature neuronal differentiation, but also inhibits ENCC proliferation, leading to distal colorectal aganglionosis with severe proximal hypoganglionosis. These results indicate an important role for Gdnf signaling in colonic ENS formation and emphasize the critical balance between proliferation and differentiation in the developing ENS. Developmental Dynamics 240:1402–1411, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
The ENS is responsible for the regulation and control of all gastrointestinal functions. Because of this critical role, and probably as a consequence of its remarkable plasticity, the ENS is often relatively well preserved in conditions where the architecture of the intestine is seriously disrupted, such as in IBD. There are structural and functional changes in the enteric innervation in animal models of experimental intestinal inflammation and in IBD. These include both up and down regulation of transmitter expression and the induction of new genes in enteric neurons. Using Fos expression as a surrogate marker of neuronal activation it is now well established that enteric neurons (and also enteric glia) respond to inflammation. Whether this "activation" is limited to a short-term functional response, such as increased neuronal excitability, or reflects a long-term change in some aspect of the neuronal phenotype (or both) has yet to be firmly established, but it appears that enteric neurons are highly plastic in their response to inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号