首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the use of 1H‐MRS with various echo times to characterize subcutaneous human adipose tissue (SAT) triglyceride composition and to validate the findings with fatty acid (FA) analysis of SAT biopsies by gas chromatography (GC). 1H‐MRS spectra were acquired with a 1.5 Tesla clinical imager from the SAT of 17 healthy volunteers, with 10 undergoing SAT biopsy. Spectra were localized with PRESS and a series of echo times; 30,50,80,135,200,300 and 540 ms were acquired with TR = 3000 ms. Prior knowledge from phantom measurements was used to construct AMARES fitting models for the lipid spectra. SAT FA composition were compared with serum lipid levels and subject characteristics in 17 subjects. Long TE (135,200 ms) spectra corresponded better with the GC data than short TE (30,50 ms) spectra. TE = 135 ms was found optimal for determining diallylic content (R = 0.952, p < 0.001) and TE = 200 ms was optimal for determining olefinic content (R = 0.800, p < 0.01). The improved performance of long TE spectra is a result of an improved baseline and better peak separation, due to J‐modulation and suppression of water. The peak position of the diallylic resonance correlated with the average double bond content of polyunsatured fatty acids with R = 0.899 (p < 0.005). The apparent T2 of the methylene resonance displayed relatively small inter‐individual variation, 88.1 ± 1.1 ms (mean ± SD). The outer methyl triplet line of ω‐3 PUFA at 1.08 ppm could be readily detected and quantitated from spectra obtained at TE = 540. The ω‐3 resonance correlated with the ω‐3 content determined by GC with R = 0.737 (p < 0.05, n = 8). Age correlated significantly with SAT diallylic content (R = 0.569, p = 0.017, n = 17), but serum lipid levels showed no apparent relation to SAT FA composition. We conclude that long TE 1H‐MRS provides a robust non‐invasive method for characterizing adipose tissue triglycerides in vivo. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this work was to validate a sequential method for quantifying the triglyceride fatty acid composition with 3.0 T MRI. The image acquisition was performed with a 3D spoiled gradient multiple echo sequence. A specific phase correction algorithm was implemented to correct the native phase images for wrap, zero‐ and first‐order phase and rebuild the real part images. Then, using a model of a fat 1H MR spectrum integrating nine components, the number of double bonds (ndb) and the number of methylene‐interrupted double bonds (nmidb) were derived. The chain length (CL) was obtained from these parameters using heuristic approximation. Validations were performed on different vegetable oils whose theoretical fatty acid composition was used as reference and in five human subjects. In vivo measurements were made in the liver and in the subcutaneous and visceral adipose tissues. Linear regressions showed strong correlations between ndb and nmidb quantified with MRI and the theoretical values calculated using oil composition. Mean ndb/nmidb/CL were 1.80 ± 0.25/0.51 ± 0.21/17.43 ± 0.07, 2.72 ± 0.31/0.94 ± 0.16/17.47 ± 0.08 and 2.53 ± 0.21/0.84 ± 0.14/17.43 ± 0.07 in the liver, subcutaneous and visceral adipose tissues respectively. The results suggest that the triglyceride fatty acid composition can be assessed in human fatty liver and adipose tissues with a clinically relevant MRI method at 3.0 T. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
4.
It is generally accepted that the amount and distribution of adipose tissue (AT) in the human body play an important role in the pathogenesis of metabolic diseases. In addition, metabolic effects of released saturated fatty acids (FAs) in blood are known to be more critical than those of unsaturated FAs. However, little is known about the variability in unsaturation of FAs in various AT compartments. The aim of this prospective study was the assessment of mono‐ and polyunsaturated FAs in various AT compartments by localized 1H‐MRS in order to obtain insight into the intra‐ and interindividual variability. Associations of FA unsaturation with intrahepatic lipids (IHLs), insulin sensitivity and related AT volumes were analyzed. Fifty healthy Caucasians (36 male, 14 female) participated in this study. Spectroscopic examinations were performed in subcutaneous adipose tissue in the neck (SCATneck), abdominal deep subcutaneous adipose tissue (DSCAT), abdominal superficial subcutaneous adipose tissue (SSCAT), visceral adipose tissue (VAT), tibial bone marrow (BM) and subcutaneous adipose tissue of the lower leg (SCATcalf) at 3 T. Unsaturated index (UI) was calculated by the ratio of olefinic and methyl resonances, polyunsaturated index (PUI) by the ratio of diallylic and methyl resonances. Volumes of AT compartments (by T1‐weighted MRI) and IHL (single‐voxel STEAM) were assessed at 1.5 T, insulin sensitivity by an oral glucose tolerance test. UI was highest for SCATcalf (0.622) and lowest for BM (0.527). Highest PUI was observed for SSCAT (0.108), lowest for BM (0.093). Significant intraindividual differences between UIs—but not PUIs—are present for most compartments. There is a non‐significant trend for higher UI in males but otherwise no correlation to anthropometric data (age, BMI). A significant negative correlation between UI and AT volume was observed for VAT but for none of the other compartments. Neither UIs nor PUIs show a relation with IHL; insulin sensitivity is significantly correlated to UI in BM (p < 0.01). Unsaturation indices in several distinct AT compartments are location dependent. Our cohort showed only moderate gender‐related differences, with a trend towards less unsaturated FAs (mainly PUI) in females. In BM, insulin resistant subjects are characterized by a higher UI compared with the insulin sensitive ones. Further studies in larger cohorts are necessary to gain further insight into unsaturation of AT.  相似文献   

5.
Ultrahigh‐field, whole‐body MR systems increase the signal‐to‐noise ratio (SNR) and improve the spectral resolution. Sequences with a short TE allow fast signal acquisition with low signal loss as a result of spin–spin relaxation. This is of particular importance in the liver for the precise quantification of the hepatocellular content of lipids (HCL). In this study, we introduce a spoiler Gradient‐switching Ultrashort STimulated Echo AcqUisition (GUSTEAU) sequence, which is a modified version of a stimulated echo acquisition mode (STEAM) sequence, with a minimum TE of 6 ms. With the high spectral resolution at 7 T, the efficient elimination of water sidebands and the post‐processing suppression of the water signal, we estimated the composition of fatty acids (FAs) via the detection of the olefinic lipid resonance and calculated the unsaturation index (UI) of hepatic FAs. The performance of the GUSTEAU sequence for the assessment of UI was validated against oil samples and provided excellent results in agreement with the data reported in the literature. When measuring HCL with GUSTEAU in 10 healthy volunteers, there was a high correlation between the results obtained at 7 and 3 T (R2 = 0.961). The test–retest measurements yielded low coefficients of variation for HCL (4 ± 3%) and UI (11 ± 8%) when measured with the GUSTEAU sequence at 7 T. A negative correlation was found between UI and HCL (n = 10; p < 0.033). The ultrashort TE MRS sequence (GUSTEAU; TE = 6 ms) provided high repeatability for the assessment of HCL. The improved spectral resolution at 7 T with the elimination of water sidebands and the offline water subtraction also enabled an assessment of the unsaturation of FAs. This all highlights the potential use of this MRS acquisition scheme for studies of hepatic lipid composition in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Quantitative imaging techniques are emerging in the field of magnetic resonance imaging of neuromuscular diseases (NMD). T2 of water (T2w) is considered an important imaging marker to assess acute and chronic alterations of the muscle fibers, being generally interpreted as an indicator for “disease activity” in the muscle tissue. To validate the accuracy and robustness of quantitative imaging methods, 1H magnetic resonance spectroscopy (MRS) can be used as a gold standard. The purpose of the present work was to investigate T2w of remaining muscle tissue in regions of higher proton density fat fraction (PDFF) in 40 patients with defined NMD using multi‐TE single‐voxel 1H MRS. Patients underwent MR measurements on a 3 T system to perform a multi‐TE single‐voxel stimulated echo acquisition method (STEAM) MRS (TE = 11/15/20/25(/35) ms) in regions of healthy, edematous and fatty thigh muscle tissue. Muscle regions for MRS were selected based on T2‐weighted water and fat images of a two‐echo 2D Dixon TSE. MRS results were confined to regions with qualitatively defined remaining muscle tissue without edema and high fat content, based on visual grading of the imaging data. The results showed decreased T2w values with increasing PDFF with R2 = 0.45 (p < 10?3) (linear fit) and with R2 = 0.51 (exponential fit). The observed dependence of T2w on PDFF should be considered when using T2w as a marker in NMD imaging and when performing single‐voxel MRS for T2w in regions enclosing edematous, nonedematous and fatty infiltrated muscle tissue.  相似文献   

7.
The supraclavicular fat depot is known for brown adipose tissue presence. To unravel adipose tissue physiology and metabolism, high quality and reproducible imaging is required. In this study we quantified the reliability and agreement of MRI fat fraction measurements in supraclavicular and subcutaneous adipose tissue of 25 adult patients with clinically manifest cardiovascular disease. MRI fat fraction measurements were made under ambient temperature conditions using a vendor supplied mDixon chemical‐shift water–fat multi‐echo pulse sequence at 1.5 T field strength. Supraclavicular fat fraction reliability (intraclass correlation coefficientagreement, ICCagreement) was 0.97 for test–retest, 0.95 for intra‐observer and 0.56 for inter‐observer measurements, which increased to 0.88 when ICCconsistency was estimated. Supraclavicular fat fraction agreement displayed mean differences of 0.5% (limit of agreement (LoA) ?1.7 to 2.6) for test–retest, ?0.5% (LoA ?2.9 to 2.0) for intra‐observer and 5.6% (LoA 0.4 to 10.8) for inter‐observer measurements. Median fat fraction in supraclavicular adipose tissue was 82.5% (interquartile range (IQR) 78.6–84.0) and 89.7% (IQR 87.2–91.5) in subcutaneous adipose tissue (p < 0.0001). In conclusion, water–fat MRI has good reliability and agreement to measure adipose tissue fat fraction in patients with manifest cardiovascular disease. These findings enable research on determinants of fat fraction and enable longitudinal monitoring of fat fraction within adipose tissue depots. Interestingly, even in adult patients with manifest cardiovascular disease, supraclavicular adipose tissue has a lower fat fraction compared with subcutaneous adipose tissue, suggestive of distinct morphologic characteristics, such as brown adipose tissue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of the present study was to examine the effects of 8 weeks of exercise training on the fatty acid composition of phospholipids (PL) and triacylglycerols (TG) in rat liver, skeletal muscle (gastrocnemius medialis), and adipose tissue (epididymal and subcutaneous fat). For this purpose, the relevant tissues of 11 trained rats were compared to those of 14 untrained ones. Training caused several significant differences of large effect size in the concentrations and percentages of individual fatty acids in the aforementioned lipid classes. The fatty acid composition of liver PL, in terms of both concentrations and percentages, changed with training. The TG content of muscle and subcutaneous adipose tissue decreased significantly with training. In contrast to the liver, where no significant differences in the fatty acid profile of TG were found, muscle underwent more significant differences in TG than PL, and adipose tissue only in TG. Most differences were in the same direction in muscle and adipose tissue TG, suggesting a common underlying mechanism. Estimated fatty acid elongase activity was significantly higher, whereas 9-desaturase activity was significantly lower in muscle and adipose tissue of the trained rats. In conclusion, exercise training modified the fatty acid composition of liver PL, muscle PL and TG, as well as adipose tissue TG. These findings may aid in delineating the effects of exercise on biological functions such as membrane properties, cell signaling, and gene expression.An erratum to this article can be found at  相似文献   

9.
A theoretical triglyceride model was developed for in vivo human liver fat (1) H MRS characterization, using the number of double bonds (-CH=CH-), number of methylene-interrupted double bonds (-CH=CH-CH(2)-CH=CH-) and average fatty acid chain length. Five 3 T, single-voxel, stimulated echo acquisition mode spectra (STEAM) were acquired consecutively at progressively longer TEs in a fat-water emulsion phantom and in 121 human subjects with known or suspected nonalcoholic fatty liver disease. T(2)-corrected peak areas were calculated. Phantom data were used to validate the model. Human data were used in the model to determine the complete liver fat spectrum. In the fat-water emulsion phantom, the spectrum predicted by the model (based on known fatty acid chain distribution) agreed closely with spectroscopic measurement. In human subjects, areas of CH(2) peaks at 2.1 and 1.3 ppm were linearly correlated (slope, 0.172; r = 0.991), as were the 0.9 ppm CH(3) and 1.3 ppm CH(2) peaks (slope, 0.125; r = 0.989). The 2.75 ppm CH(2) peak represented 0.6% of the total fat signal in high-liver-fat subjects. These values predict that 8.6% of the total fat signal overlies the water peak. The triglyceride model can characterize human liver fat spectra. This allows more accurate determination of liver fat fraction from MRI and MRS.  相似文献   

10.
Accurate and precise techniques that identify the quantity and distribution of adipose tissue in vivo are critical for investigations of adipose development, obesity, or diabetes. Here, we tested whether in vivo micro-computed tomography (microCT) can be used to provide information on the distribution of total, subcutaneous and visceral fat volume in the mouse. Ninety C57BL/6J mice (weight range: 15.7-46.5 g) were microCT scanned in vivo at 5 months of age and subsequently sacrificed. Whole body fat volume (base of skull to distal tibia) derived from in vivo microCT was significantly (p<0.001) correlated with the ex vivo tissue weight of discrete perigonadal (R(2)=0.94), and subcutaneous (R(2)=0.91) fat pads. Restricting the analysis of tissue composition to the abdominal mid-section between L1 and L5 lumbar vertebrae did not alter the correlations between total adiposity and explanted fat pad weight. Segmentation allowed for the precise discrimination between visceral and subcutaneous fat as well as the quantification of adipose tissue within specific anatomical regions. Both the correlations between visceral fat pad weight and microCT determined visceral fat volume (R(2)=0.95, p<0.001) as well as subcutaneous fat pad weight and microCT determined subcutaneous fat volume (R(2)=0.91, p<0.001) were excellent. Data from these studies establish in vivo microCT as a non-invasive, quantitative tool that can provide an in vivo surrogate measure of total, visceral, and subcutaneous adiposity during longitudinal studies. Compared to current imaging techniques with similar capabilities, such as microMRI or the combination of DEXA with NMR, it may also be more cost-effective and offer higher spatial resolutions.  相似文献   

11.
Vertebral bone marrow fat quantification using single‐voxel MRS is confounded by overlapping water–fat peaks and the difference in T2 relaxation time between water and fat components. The purposes of the present study were: (i) to determine the proton density fat fraction (PDFF) of vertebral bone marrow using single‐voxel multi‐TE MRS, addressing these confounding effects; and (ii) to investigate the implications of these corrections with respect to the age dependence of the PDFF. Single‐voxel MRS was performed in the L5 vertebral body of 86 subjects (54 women and 32 men). To reliably extract the water peak from the overlying fat peaks, the mean bone marrow fat spectrum was characterized based on the area of measurable fat peaks and an a priori knowledge of the chemical triglyceride structure. MRS measurements were performed at multiple TEs. The T2‐weighted fat fraction was calculated at each TE. In addition, a T2 correction was performed to obtain the PDFF and the T2 value of water (T2w) was calculated. The implications of the T2 correction were investigated by studying the age dependence of the T2‐weighted fat fractions and the PDFF. Compared with the PDFF, all T2‐weighted fat fractions significantly overestimated the fat fraction. Compared with the age dependence of the PDFF, the age dependence of the T2‐weighted fat fraction showed an increased slope and intercept as TE increased for women and a strongly increased intercept as TE increased for men. For women, a negative association between the T2 value of bone marrow water and PDFF was found. Single‐voxel MRS‐based vertebral bone marrow fat quantification should be based on a multi‐TE MRS measurement to minimize confounding effects on PDFF determination, and also to allow the simultaneous calculation of T2w, which might be considered as an additional parameter sensitive to the composition of the water compartment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Background: Obesity is increasing rapidly in Africa, and may not be associated with the same changes in body composition among different ethnic groups in Africa.

Objective: To assess abdominal visceral and subcutaneous fat thickness, prevalence of obesity, and differences in body composition in rural and urban Kenya.

Subjects and methods: In a cross-sectional study carried out among Luo, Kamba and Maasai in rural and urban Kenya, abdominal visceral and subcutaneous fat thicknesses were measured by ultrasonography. Height and weight, waist, mid-upper arm circumferences, and triceps skinfold thickness were measured. Body mass index (BMI), arm fat area (AFA) and arm muscle area (AMA) were calculated.

Results: Among 1430 individuals (58.3% females) aged 17–68 years, abdominal visceral and subcutaneous fat, BMI, AFA and waist circumference (WC) increased with age, and were highest in the Maasai and in the urban population. AMA was only higher with increasing age among males. The prevalence of overweight (BMI ≥ 25) (39.8% vs. 15.8%) and obesity (BMI ≥ 30) (15.5% vs. 5.1%) was highest in the urban vs. rural population.

Conclusion: Abdominal visceral and subcutaneous fat thickness was higher with urban residency. A high prevalence of overweight and obesity was found. The Maasai had the highest overall fat accumulation.  相似文献   

13.

Background/Aims

Adipose tissue is an active endocrine organ that secretes various metabolically important substances including adipokines, which represent a link between insulin resistance and nonalcoholic steatohepatitis (NASH). The factors responsible for the progression from simple steatosis to steatohepatitis remain elusive, but adipokine imbalance may play a pivotal role. We evaluated the expressions of adipokines such as visfatin, adipocyte-fatty-acid-binding protein (A-FABP), and retinol-binding protein-4 (RBP-4) in serum and tissue. The aim was to discover whether these adipokines are potential predictors of NASH.

Methods

Polymerase chain reaction, quantification of mRNA, and Western blots encoding A-FABP, RBP-4, and visfatin were used to study tissue samples from the liver, and visceral and subcutaneous adipose tissue. The tissue samples were from biopsy specimens obtained from patients with proven NASH who were undergoing laparoscopic cholecystectomy due to gallbladder polyps.

Results

Patients were classified into two groups: NASH, n=10 and non-NASH, n=20 according to their nonalcoholic fatty liver disease Activity Score. Although serum A-FABP levels did not differ between the two groups, the expressions of A-FABP mRNA and protein in the visceral adipose tissue were significantly higher in NASH group than in non-NASH group (104.34 vs. 97.05, P<0.05, and 190.01 vs. 95.15, P<0.01, respectively). Furthermore, the A-FABP protein expression ratio between visceral adipose tissue and liver was higher in NASH group than in non-NASH group (4.38 vs. 1.64, P<0.05).

Conclusions

NASH patients had higher levels of A-FABP expression in their visceral fat compared to non-NASH patients. This differential A-FABP expression may predispose patients to the progressive form of NASH.  相似文献   

14.
Abstract

Purpose: During the 24-week PIILR study of protease inhibitor (PI) withdrawal, improved lipids and reduction in intraabdominal visceral fat was seen, however, there was also a loss of subcutaneous limb fat in patients with HIV-lipodystrophy (LD). It was hypothesized that overall improvement in LD may require a longer period of time off PIs. Method: Follow-up of patients randomized to stop or continue PI-based therapy for 24 weeks, in a multicenter study, was continued for up to 120 weeks. Biochemistry and lipid parameters were assessed every 3 months. DEXA and CT scans were performed annually. Limb fat, visceral adipose tissue, and the lipodystrophy case definition score (LCDS) were used as indicators of LD severity. Results: Forty-five male patients with baseline and week 120 body composition data were assessed. There were no significant changes in the limb fat or visceral adipose tissue (VAT) components of LD, with the exception of the LCDS (change from baseline +5.79, p < .001). Control of viral replication was maintained and lipid and glycemic parameters were unchanged over the 120-week follow-up. Linear regression analysis showed on-study usage of stavudine was independently and significantly correlated with both decreased limb fat mass and a higher LCDS. Conclusion: Body composition or metabolic features of LD did not improve over 2 years of observation in patients remaining on predominantly PI-sparing therapy. LD was adversely influenced by continued stavudine use.  相似文献   

15.
Visceral fat differs from subcutaneous fat by higher local inflammation and increased release of IL-6 and free fatty acids (FFA) which contribute to hepatic steatosis. IL-6 has been shown to upregulate the monocyte/macrophage specific receptor CD163 whose soluble form, sCD163, is increased in inflammatory diseases. Here, it was analyzed whether CD163 and sCD163 are differentially expressed in the human fat depots and fatty liver. CD163 mRNA and protein were similarly expressed in paired samples of human visceral and subcutaneous fat, and comparable levels in portal venous and systemic venous blood of liver-healthy controls indicate that release of sCD163 from visceral adipose tissue was not increased. CD163 was also similarly expressed in steatotic liver when compared to non-steatotic tissues and sCD163 was almost equal in the respective sera. Concentrations of sCD163 were not affected when passing the liver excluding substantial hepatic removal/release of this protein. A high concentration of IL-6 upregulated CD163 protein while physiological doses had no effect. However, sCD163 was not increased by any of the IL-6 doses tested. FFA even modestly decreased CD163 and sCD163. The anti-inflammatory mediators fenofibrate, pioglitazone, and eicosapentaenoic acid (EPA) did not influence sCD163 levels while CD163 was reduced by EPA. These data suggest that in humans neither visceral fat nor fatty liver are major sources of sCD163.  相似文献   

16.
HIV-associated lipodystrophy often includes excess accumulation of visceral fat. Recombinant human growth hormone (rhGH) is a potential treatment for the excess visceral fat. Prospective, open-label trials of 24 weeks of rhGH 6 mg/d and 24 weeks of 4 mg every other day were conducted with an intervening washout period of 12 weeks. Thirty HIV-positive participants (26 men and 4 women) with visceral adiposity were enrolled. The main outcome measure was change in visceral adipose tissue (VAT) on whole-body magnetic resonance imaging scan. Changes in whole-body subcutaneous adipose tissue and skeletal muscle, glucose metabolism, serum lipids, and quality of life were also assessed. Despite stable body weight, VAT decreased in evaluable subjects an average of 42% with rhGH 6 mg/d (n = 24; p <.001) and 15% with 4 mg every other day (n = 10; p <.01) after 12 weeks, with trends toward further decreases after an additional 12 weeks at each dose. Subcutaneous adipose tissue also decreased, but proportionately less and not significantly on the lower dose. Skeletal muscle increased. Body composition rebounded to or near baseline after the washout period. Effects on lipids were inconsistent. Total cholesterol levels fell on the higher dose only, whereas high-density lipoprotein cholesterol levels increased on the lower dose only, and there was no effect on triglyceride levels. Joint pain was the most common adverse event, and was reflected in subjective quality of life measurements as an increase in bodily pain. Insulin sensitivity fell, and 4 participants developed diabetes. Other adverse events included cancer of unknown relationship to treatment in 3 participants. Levels of distress decreased after 24 weeks on the higher dose. In conclusion, rhGH effectively reduces the excess visceral adipose tissue often associated with HIV fat redistribution/lipodystrophy. However, frequent adverse effects warrant controlled studies and careful patient monitoring, especially regarding glucose tolerance.  相似文献   

17.
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non‐invasively assessed by 1H‐MRS in vivo. We used 1H‐MRS to characterize the hepatic fatty‐acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra‐short TE of 2.8 ms, confounding effects from T2 relaxation and J‐coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono‐unsaturated (MUFA) and poly‐unsaturated (PUFA) fatty‐acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo 1H‐MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty‐acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty‐acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ‐induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of 1H‐MRS in vivo to monitor changes in the composition of the hepatic fatty‐acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid‐lowering interventions in the scope of metabolic disorders. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Repeated measurements of body composition and subcutaneous fat distribution were obtained in female gymnasts to test the hypothesis of a selective response from localized fat deposits to intense physical training. Repeated measurements were obtained on the members of three nationally ranked collegiate gymnastic teams: at the beginning and peak of the training season. The highest ranked team was measured a third time, three weeks after the end of the competitive season. Body composition was estimated using anthropometry and bioelectric impedance; subcutaneous fat thickness was measured using skinfold calipers and ultrasound images of adipose tissue thickness (ATT). The mean difference between baseline and peak measurements were statistically significant (P ? .05) for the triceps and suprailiac skinfolds, and for the adipose tissue thickness at the suprailiac and hypogastric sites. There were no significant changes in weight, percentage of body fat, circumferences, or subcutaneous fat thickness at the subscapular, calf or medial thigh sites. In the team with three sets of measurements, only the triceps skinfold and the suprailiac ATT showed a statistically significant effect of training. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The glycerol methylene proton resonances (4–4.5 parts per million, ppm), which arise from the triglyceride backbone, are relevant to fat composition assessment and can be measured with proton MRS. The purpose of the presented work is to determine long TE (echo time) point resolved spectroscopy (PRESS) and stimulated echo acquisition mode (STEAM) values at 3 T to resolve the glycerol resonances from that of overlapping water. The response of the glycerol methylene protons of nine edible oils as a function of PRESS and STEAM TE (mixing time, TM = 20 ms) was investigated. In addition, high resolution NMR spectra of the oils were acquired at 16.5 T. Long TE values where J‐coupling losses were lowest were selected, namely a TE of 180 ms for PRESS (first echo time 17 ms) and a TE of 100 ms for STEAM (mixing time 20 ms). Oil olefinic (≈5.4 ppm) to glycerol ratios were calculated from the long TE spectra and correlated with 16.5 T ratios. The two techniques yielded olefinic/glycerol ratios that correlated with 16.5 T ratios (R2 = 0.79 for PRESS and 0.90 for STEAM). The efficacy of the sequences in resolving the glycerol resonance from that of water was verified in vivo on tibial bone marrow of four healthy volunteers. In addition, the potential for using the glycerol methylene signal normalized to the methyl signal (≈0.9 ppm) to assess changes in free fatty acid content was demonstrated by measuring differences in spectra acquired from a triglyceride peanut oil phantom and from a phantom composed of a mixture of peanut oil and free fatty acid oleic acid.  相似文献   

20.
The aim of this study was to introduce a two‐dimensional chemical shift imaging (2D CSI) sequence, with simultaneous acquisition of free induction decay (FID) and long TEs, for the detection and quantification of intramyocellular lipids (IMCLs) in the calf at 7 T. The feasibility of the new 2D CSI sequence, which acquires FID (acquisition delay, 1.3 ms) and an echo (long TE) in one measurement, was evaluated in phantoms and volunteers (n = 5): TR/TE*/TE = 800/1.3/156 ms; 48 × 48 matrix; field of view, 200 × 200 × 20 mm3; Hamming filter; no water suppression; measurement time, 22 min 2 s. The IMCL concentration and subcutaneous lipid contamination were assessed. Spectra in the tibialis anterior (TA), gastrocnemius (GM) and soleus (SOL) muscles were analyzed. The water signal from the FID acquisition was used as an internal concentration reference. In the spectra from subcutaneous adipose tissue (SUB) and bone marrow (BM), an unsaturation index (UI) of the vinyl‐H (5.3 ppm) to methyl‐CH3 ratio, and a polyunsaturation index (pUI) of the diallylic‐H (2.77 ppm) to ‐CH3 ratio, were calculated. Long‐TE spectra from muscles showed a simplified spectral pattern with well‐separated IMCL for several muscle groups in the same scan. The IMCL to water ratio was largest in SOL (0.66% ± 0.23%), and lower in GM (0.37% ± 0.14%) and TA (0.36% ± 0.12%). UI and pUI for SUB were 0.65 ± 0.06 and 0.18 ± 0.04, respectively, and for BM were 0.60 ± 0.16 and 0.18 ± 0.08, respectively. The new sequence, with the proposed name ‘free induction decay echo spectroscopic imaging’ (FIDESI), provides information on both specific lipid resonances and water signal from different tissues in the calf, with high spectral and spatial resolution, as well as minimal voxel bleeding and subcutaneous lipid contamination, in clinically acceptable measurement times. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号