共查询到20条相似文献,搜索用时 0 毫秒
1.
Huong Le‐Petross MD Vikas Kundra MD PhD Janio Szklaruk MD PhD Wei Wei MS Gabriel N. Hortobagyi MD Jingfei Ma PhD 《Journal of magnetic resonance imaging : JMRI》2010,31(4):889-894
Purpose:
To compare qualitative and quantitative measures of the contrast‐enhanced dual‐echo Dixon technique with the commonly used standard three‐dimensional (3D) gradient echo (spectrally selective fat suppression) technique (SS‐FS) in breast MRI exams (bMRI).Materials and Methods:
A total of 19 women, with prescheduled bMRI exam, were recruited to our study between 2006 and 2008. Dixon and standard SS‐SF techniques were used on both breasts of each patient. Image quality was rated in five categories: fat suppression quality, fat suppression uniformity, lesion margin clarity, lesion visibility, and axillary visibility. For quantitative assessment, we calculated the signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR) of lesion to breast, SNR efficiency, and CNR efficiency.Results:
Of 19 patients evaluated, 13 had a primary breast malignancy and 6 had benign lesions or negative exams. Dixon images were rated higher in four of five qualitative categories (P < 0.0001) and required a shorter scan time. Dixon images yielded significantly higher SNR (43.8) and CNR (40.1) values than did 3DGRE images (SNR = 34.8, CNR = 25.3; P < 0.05). SNR efficiency (36.30) and CNR efficiency (33.79) values for Dixon images were also higher than were 3DGRE images (SNR efficiency =25.7, CNR efficiency = 19.1; P < 0.05).Conclusion:
Dixon images were superior to the standard SS‐SF images in both qualitative and quantitative assessment of 19 bMRI exams. The Dixon technique could replace standard SS‐SF technique in bMRI exam, after our findings have been confirmed in future studies with a larger sample size. J. Magn. Reson. Imaging 2010;31:889–894. ©2010 Wiley‐Liss, Inc. 相似文献2.
3.
Cornfeld DM Israel G McCarthy SM Weinreb JC 《Journal of magnetic resonance imaging : JMRI》2008,28(1):121-127
PURPOSE: To compare two T1-weighted (T1W) fat-suppressed sequences for 3D breath-hold pre- and postcontrast fat-suppressed T1W imaging of the female pelvis at 3T. MATERIALS AND METHODS: Pelvic MRI scans of 16 female patients were retrospectively identified who were scanned with two 3D breath-hold sequences: 1) a fast spoiled gradient echo sequence with spectral inversion at lipids (SPECIAL) (called 3D FSPGR), and 2) a dual-echo two-point Dixon (DE Dixon) sequence. Contrast between soft tissue and fat, soft tissue and fluid, and fat and fluid was measured on pre- and postcontrast images. Additionally, two readers subjectively scored the images for degree and homogeneity of fat suppression plus presence and severity of artifacts. RESULTS: Contrast between muscle and myometrium to fat was improved with the Dixon technique (0.61 vs. 0.09 and 0.7 vs. 0.3, respectively, P < 0.001). Both readers agreed that fat suppression was stronger with the Dixon sequence (P < 0.001 and P = 0.06). Artifacts were equivalent (P = 0.53 and 0.65). CONCLUSION: The 3D DE Dixon sequence achieved stronger fat suppression in the female pelvis when compared to a 3D FSPGR sequence with SPECIAL. 相似文献
4.
5.
6.
7.
8.
Variable spatiotemporal resolution three‐dimensional dixon sequence for rapid dynamic contrast‐enhanced breast MRI 下载免费PDF全文
Manojkumar Saranathan PhD Dan W. Rettmann BS Brian A. Hargreaves PhD Jafi A. Lipson MD Bruce L. Daniel MD PhD 《Journal of magnetic resonance imaging : JMRI》2014,40(6):1392-1399
9.
Misung Han MS Bruce L. Daniel MD Brian A. Hargreaves PhD 《Journal of magnetic resonance imaging : JMRI》2008,28(6):1425-1434
Purpose
To assess the ability of adaptive sensitivity encoding incorporating temporal filtering (TSENSE) to accelerate bilateral dynamic contrast‐enhanced (DCE) 3D breast MRI.Materials and Methods
Bilateral DCE breast magnetic resonance imaging (MRI) exams were performed using a dual‐band water‐only excitation and a “stack‐of‐spirals” imaging trajectory. TSENSE was applied in the slab direction with an acceleration factor of 2. Four different techniques for sensitivity map calculation were compared by analyzing resultant contrast uptake curves qualitatively and quantitatively for 10 patient datasets. In addition, image quality and temporal resolution were compared between unaccelerated and TSENSE images.Results
TSENSE can increase temporal resolution by a factor of 2 in DCE imaging, providing better depiction of contrast uptake curves and good image quality. Of the different methods tested, calculation of static sensitivity maps by averaging late postcontrast frames yields the lowest aliasing artifact level based on ROI analysis.Conclusion
TSENSE acceleration combined with 3D spiral imaging is very time‐efficient, providing 11‐second temporal resolution and 1.1 × 1.1 × 3 mm3 spatial resolution over a 20 × 20 × 10 cm3 field of view for each breast. J. Magn. Reson. Imaging 2008;28:1425–1434. © 2008 Wiley‐Liss, Inc. 相似文献10.
Manojkumar Saranathan PhD Dan Rettmann BS Ersin Bayram PhD Christine Lee MD James Glockner MD 《Journal of magnetic resonance imaging : JMRI》2009,29(6):1406-1413
Purpose
To evaluate a new dynamic contrast‐enhanced (DCE) imaging technique called multiecho time‐resolved acquisition (META) for abdominal/pelvic imaging. META combines an elliptical centric time‐resolved three‐dimensional (3D) spoiled gradient‐recalled echo (SPGR) imaging scheme with a Dixon‐based fat‐water separation algorithm to generate high spatiotemporal resolution volumes.Materials and Methods
Twenty‐three patients referred for hepatic metastases or renal masses were imaged using the new META sequence and a conventional fat‐suppressed 3D SPGR sequence on a 3T scanner. In 12 patients, equilibrium‐phase 3D SPGR images acquired immediately after META were used for comparing the degree and homogeneity of fat suppression, artifacts, and overall image quality. In the remaining 11 of 23 patients, DCE 3D SPGR images acquired in a previous or subsequent examination were used for comparing the efficiency of arterial phase capture in addition to the qualitative analysis for the degree and homogeneity of fat suppression, artifacts, and overall image quality.Results
META images were determined to be significantly better than conventional 3D SPGR images for degree and uniformity of fat suppression and ability to visualize the arterial phase. There were no significant differences in artifact levels or overall image quality.Conclusion
META is a promising high spatiotemporal resolution imaging sequence for capturing the fast dynamics of hyperenhancing hepatic lesions and provides robust fat suppression even at 3T. J. Magn. Reson. Imaging 2009. © 2009 Wiley‐Liss, Inc. 相似文献11.
Neha Bhooshan Maryellen Giger Li Lan Hui Li Angelica Marquez Akiko Shimauchi Gillian M. Newstead 《Magnetic resonance in medicine》2011,66(2):555-564
A multiparametric computer‐aided diagnosis scheme that combines information from T1‐weighted dynamic contrast–enhanced (DCE)‐MRI and T2‐weighted MRI was investigated using a database of 110 malignant and 86 benign breast lesions. Automatic lesion segmentation was performed, and three categories of lesion features (geometric, T1‐weighted DCE, and T2‐weighted) were automatically extracted. Stepwise feature selection was performed considering only geometric features, only T1‐weighted DCE features, only T2‐weighted features, and all features. Features were merged with Bayesian artificial neural networks, and diagnostic performance was evaluated by ROC analysis. With leave‐one‐lesion‐out cross‐validation, an area under the ROC curve value of 0.77 ± 0.03 was achieved with T2‐weighted‐only features, indicating high diagnostic value of information in T2‐weighted images. Area under the ROC curve values of 0.79 ± 0.03 and 0.80 ± 0.03 were obtained for geometric‐only features and T1‐weighted DCE‐only features, respectively. When all features were considered, an area under the ROC curve value of 0.85 ± 0.03 was achieved. We observed P values of 0.006, 0.023, and 0.0014 between the geometric‐only, T1‐weighted DCE‐only, and T2‐weighted‐only features and all features conditions, respectively. When ranked, the P values satisfied the Holm–Bonferroni multiple‐comparison test; thus, the improvement of multiparametric computer‐aided diagnosis was statistically significant. A computer‐aided diagnosis scheme that combines information from T1‐weighted DCE and T2‐weighted MRI may be advantageous over conventional T1‐weighted DCE‐MRI computer‐aided diagnosis. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
12.
Johan Berglund Håkan Ahlström Lars Johansson Joel Kullberg 《Magnetic resonance in medicine》2011,65(4):994-1004
The two‐point Dixon method is a proton chemical shift imaging technique that produces separated water‐only and fat‐only images from a dual‐echo acquisition. It is shown how this can be achieved without the usual constraints on the echo times. A signal model considering spectral broadening of the fat peak is proposed for improved water/fat separation. Phase errors, mostly due to static field inhomogeneity, must be removed prior to least‐squares estimation of water and fat. To resolve ambiguity of the phase errors, a corresponding global optimization problem is formulated and solved using a message‐passing algorithm. It is shown that the noise in the water and fat estimates matches the Cramér‐Rao bounds, and feasibility is demonstrated for in vivo abdominal breath‐hold imaging. The water‐only images were found to offer superior fat suppression compared with conventional spectrally fat suppressed images. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
13.
14.
Che A. Azlan MMedPhys Pierluigi Di Giovanni MSc Trevor S. Ahearn PhD Scott I.K. Semple PhD Fiona J. Gilbert FRCR Thomas W. Redpath PhD 《Journal of magnetic resonance imaging : JMRI》2010,31(1):234-239
Purpose:
To quantify B1 transmission‐field inhomogeneity in breast imaging of normal volunteers at 3T using 3D T1‐weighted spoiled gradient echo and to assess the resulting errors in enhancement ratio (ER) measured in dynamic contrast‐enhanced MRI (DCE‐MRI) studies of the breast.Materials and Methods:
A total of 25 volunteers underwent breast imaging at 3T and the B1 transmission‐fields were mapped. Gel phantoms that simulate pre‐ and postcontrast breast tissue T1 were developed. The effects of B1‐field inhomogeneity on ER, as measured using a 3D spoiled gradient echo sequence, were investigated by computer simulation and experiments on gel phantoms.Results:
It was observed that by using the patient orientation and MR scanner employed in this study, the B1 transmission‐field field is always reduced toward the volunteer's right side. The median B1‐field in the right breast is reduced around 40% of the expected B1‐field. For some volunteers the amplitude was reduced by more than 50%. Computer simulation and experiment showed that a reduction in B1‐field decreases ER. This reduction increases with both B1‐field error and contrast agent uptake.Conclusion:
B1 transmission‐field inhomogeneity is a critical issue in breast imaging at 3T and causes errors in quantifying ER. These errors would be sufficient to reduce the conspicuity of a malignant lesion and could result in reduced sensitivity for cancer detection. J. Magn. Reson. Imaging 2010;31:234–239. © 2009 Wiley‐Liss, Inc. 相似文献15.
16.
Henrik B. W. Larsson Frédéric Courivaud Egill Rostrup Adam E. Hansen 《Magnetic resonance in medicine》2009,62(5):1270-1281
Assessment of vascular properties is essential to diagnosis and follow‐up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood‐brain permeability from dynamic T1‐weighted imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model‐free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 ± 16/30 ± 8/56 ± 45 mL/100 g/min); blood volume (6 ± 2/4 ± 1/7 ± 6 mL/100 g) and permeability (0.9 ± 0.4/0.8 ± 0.3/3 ± 5 mL/100 g/min) were estimated by using Patlak's method and a two‐compartment model. A corroboration of these results was achieved by using model simulation. In addition, it was possible to generate maps on a pixel‐by‐pixel basis of cerebral perfusion, cerebral blood volume, and blood‐brain barrier permeability. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
17.
Samantha L. Heller MD PhD Linda Moy MD Sherlin Lavianlivi MD Melanie Moccaldi RT Sungheon Kim PhD 《Journal of magnetic resonance imaging : JMRI》2013,37(1):138-145
Purpose:
To evaluate feasibility of using magnetization transfer ratio (MTR) in conjunction with dynamic contrast‐enhanced MRI (DCE‐MRI) for differentiation of benign and malignant breast lesions at 3 Tesla.Materials and Methods:
This prospective study was IRB and HIPAA compliant. DCE‐MRI scans followed by MT imaging were performed on 41 patients. Regions of interest (ROIs) were drawn on co‐registered MTR and DCE postcontrast images for breast structures, including benign lesions (BL) and malignant lesions (ML). Initial enhancement ratio (IER) and delayed enhancement ratio (DER) were calculated, as were normalized MTR, DER, and IER (NMTR, NDER, NIER) values. Diagnostic accuracy analysis was performed.Results:
Mean MTR in ML was lower than in BL (P < 0.05); mean DER and mean IER in ML were significantly higher than in BL (P < 0.01, P < 0.001). NMTR, NDER, and NIER were significantly lower in ML versus BL (P < 0.007, P < 0.001, P < 0.001). IER had highest diagnostic accuracy (77.6%), sensitivity (86.2%), and area under the ROC curve (.879). MTR specificity was 100%. Logistic regression modeling with NMTR and NIER yielded best results for BL versus ML (sensitivity 93.1%, specificity 80%, AUC 0.884, accuracy 83.7%).Conclusion:
Isolated quantitative DCE analysis may increase specificity of breast MR for differentiating BL and ML. DCE‐MRI with NMTR may produce a robust means of evaluating breast lesions. J. Magn. Reson. Imaging 2013;37:138–145. © 2012 Wiley Periodicals, Inc. 相似文献18.
19.