首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
BACKGROUND: Whether the opening of mitochondrial adenosine triphosphate-regulated potassium (K(ATP)) channels is a trigger or an end effector of anesthetic-induced preconditioning is unknown. We tested the hypothesis that the opening of mitochondrial K(ATP) channels triggers isoflurane-induced preconditioning by generating reactive oxygen species (ROS) in vivo. METHODS: Pentobarbital-anesthetized rabbits were subjected to a 30-min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive a vehicle (0.9% saline) or the selective mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD) alone 10 min before or immediately after a 30-min exposure to 1.0 minimum alveolar concentration (MAC) isoflurane. In another series of experiments, the fluorescent probe dihydroethidium was used to assess superoxide anion production during administration of 5-HD or the ROS scavengers N-acetylcysteine or N-2-mercaptopropionyl glycine (2-MPG) in the presence or absence of 1.0 MAC isoflurane. Myocardial infarct size and superoxide anion production were measured using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively. RESULTS: Isoflurane (P < 0.05) decreased infarct size to 19 +/- 3% (mean +/- SEM) of the left ventricular area at risk as compared to the control (38 +/- 4%). 5-HD administered before but not after isoflurane abolished this beneficial effect (37 +/- 4% as compared to 24 +/- 3%). 5-HD alone had no effect on infarct size (42 +/- 3%). Isoflurane increased fluorescence intensity. Pretreatment with N-acetylcysteine, 2-MPG, or 5-HD before isoflurane abolished increases in fluorescence, but administration of 5-HD after isoflurane only partially attenuated increases in fluorescence produced by the volatile anesthetic agent. CONCLUSIONS: The results indicate that mitochondrial K(ATP) channel opening acts as a trigger for isoflurane-induced preconditioning by generating ROS in vivo.  相似文献   

2.
BACKGROUND: Reactive oxygen species (ROS) contribute to myocardial protection during ischemic preconditioning, but the role of the ROS in protection against ischemic injury produced by volatile anesthetics has only recently been explored. We tested the hypothesis that ROS mediate isoflurane-induced preconditioning in vivo. METHODS: Pentobarbital-anesthetized rabbits were instrumented for measurement of hemodynamics and were subjected to a 30 min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive vehicle (0.9% saline), or the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2-mercaptopropionyl glycine (2-MPG; 1 mg. kg(-1).min(-1)), in the presence or absence of 1.0 minimum alveolar concentration (MAC) isoflurane. Isoflurane was administered for 30 min and then discontinued 15 min before coronary artery occlusion. A fluorescent probe for superoxide anion production (dihydroethidium, 2 mg) was administered in the absence of the volatile anesthetic or 5 min before exposure to isoflurane in 2 additional groups (n = 8). Myocardial infarct size and superoxide anion production were assessed using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively. RESULTS: Isoflurane (P < 0.05) decreased infarct size to 24 +/- 4% (mean +/- SEM; n = 10) of the left ventricular area at risk compared with control experiments (43 +/- 3%; n = 8). NAC (43 +/- 3%; n = 7) and 2-MPG (42 +/- 5%; n = 8) abolished this beneficial effect, but had no effect on myocardial infarct size (47 +/- 3%; n = 8 and 46 +/- 3; n = 7, respectively) when administered alone. Isoflurane increased superoxide anion production as compared with control experiments (28 +/- 12 -6 +/- 9 fluorescence units; P < 0.05). CONCLUSIONS: The results indicate that ROS produced following administration of isoflurane contribute to protection against myocardial infarction in vivo.  相似文献   

3.
Background: Reactive oxygen species (ROS) contribute to myocardial protection during ischemic preconditioning, but the role of the ROS in protection against ischemic injury produced by volatile anesthetics has only recently been explored. We tested the hypothesis that ROS mediate isoflurane-induced preconditioning in vivo.

Methods: Pentobarbital-anesthetized rabbits were instrumented for measurement of hemodynamics and were subjected to a 30 min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive vehicle (0.9% saline), or the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2-mercaptopropionyl glycine (2-MPG; 1 mg [middle dot] kg-1[middle dot] min-1), in the presence or absence of 1.0 minimum alveolar concentration (MAC) isoflurane. Isoflurane was administered for 30 min and then discontinued 15 min before coronary artery occlusion. A fluorescent probe for superoxide anion production (dihydroethidium, 2 mg) was administered in the absence of the volatile anesthetic or 5 min before exposure to isoflurane in 2 additional groups (n = 8). Myocardial infarct size and superoxide anion production were assessed using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively.

Results: Isoflurane (P < 0.05) decreased infarct size to 24 +/- 4% (mean +/- SEM; n = 10) of the left ventricular area at risk compared with control experiments (43 +/- 3%; n = 8). NAC (43 +/- 3%; n = 7) and 2-MPG (42 +/- 5%; n = 8) abolished this beneficial effect, but had no effect on myocardial infarct size (47 +/- 3%; n = 8 and 46 +/- 3; n = 7, respectively) when administered alone. Isoflurane increased superoxide anion production as compared with control experiments (28 +/- 12 vs. -6 +/- 9 fluorescence units;P < 0.05).  相似文献   


4.
Inhibition of the mitochondrial permeability transition pore (mPTP) mediates the protective effects of brief, repetitive ischemic episodes during early reperfusion after prolonged coronary artery occlusion. Brief exposure to isoflurane immediately before and during early reperfusion also produces cardioprotection, but whether mPTP is involved in this beneficial effect is unknown. We tested the hypothesis that mPTP mediates isoflurane-induced postconditioning and also examined the role of mitochondrial KATP (mKATP) channels in this process. Rabbits (n = 102) subjected to a 30-min coronary occlusion followed by 3 h reperfusion received 0.9% saline (control), isoflurane (0.5 or 1.0 MAC) administered for 3 min before and 2 min after reperfusion, or the mPTP inhibitor cyclosporin A (CsA, 5 or 10 mg/kg) in the presence or absence of the mPTP opener atractyloside (5 mg/kg) or the selective mK(ATP) channel antagonist 5-hydroxydecanoate (5-HD; 10 mg/kg). Other rabbits received 0.5 MAC isoflurane plus 5 mg/kg CsA in the presence and absence of atractyloside or 5-HD. Isoflurane (1.0 but not 0.5 MAC) and CsA (10 but not 5 mg/kg) reduced (P < 0.05) infarct size (21% +/- 4%, 44% +/- 6%, 24% +/- 3%, and 43% +/- 6%, respectively, mean +/- sd of left ventricular area at risk; triphenyltetrazolium staining) as compared with control (42% +/- 7%). Isoflurane (0.5 MAC) plus CsA (5 mg/kg) was also protective (27% +/- 4%). Neither atractyloside nor 5-HD alone affected infarct size, but these drugs abolished protection by 1.0 MAC isoflurane, 10 mg/kg CsA, and 0.5 MAC isoflurane plus 5 mg/kg CsA. The results indicate that mPTP inhibition enhances, whereas opening abolishes, isoflurane-induced postconditioning. This isoflurane-induced inhibition of mitochondrial permeability transition is dependent on activation of mitochondrial KATP channels in vivo.  相似文献   

5.
Background: Adenosine triphosphate-regulated potassium channels mediate protection against myocardial infarction produced by volatile anesthetics and opioids. We tested the hypothesis that morphine enhances the protective effect of isoflurane by activating mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors.

Methods: Barbiturate-anesthetized rats (n = 131) were instrumented for measurement of hemodynamics and subjected to a 30 min coronary artery occlusion followed by 2 h of reperfusion. Myocardial infarct size was determined using triphenyltetrazolium staining. Rats were randomly assigned to receive 0.9% saline, isoflurane (0.5 and 1.0 minimum alveolar concentration [MAC]), morphine (0.1 and 0.3 mg/kg), or morphine (0.3 mg/kg) plus isoflurane (1.0 MAC). Isoflurane was administered for 30 min and discontinued 15 min before coronary occlusion. In eight additional groups of experiments, rats received 5-hydroxydecanoic acid (5-HD; 10 mg/kg) or naloxone (6 mg/kg) in the presence or absence of isoflurane, morphine, and morphine plus isoflurane.

Results: Isoflurane (1.0 MAC) and morphine (0.3 mg/kg) reduced infarct size (41 +/- 3%; n = 13 and 38 +/- 2% of the area at risk; n = 10, respectively) as compared to control experiments (59 +/- 2%; n = 10). Morphine plus isoflurane further decreased infarct size to 26 +/- 3% (n = 11). 5-HD and naloxone alone did not affect infarct size, but abolished cardioprotection produced by isoflurane, morphine, and morphine plus isoflurane.  相似文献   


6.
BACKGROUND: Adenosine triphosphate-regulated potassium channels mediate protection against myocardial infarction produced by volatile anesthetics and opioids. We tested the hypothesis that morphine enhances the protective effect of isoflurane by activating mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors. METHODS: Barbiturate-anesthetized rats (n = 131) were instrumented for measurement of hemodynamics and subjected to a 30 min coronary artery occlusion followed by 2 h of reperfusion. Myocardial infarct size was determined using triphenyltetrazolium staining. Rats were randomly assigned to receive 0.9% saline, isoflurane (0.5 and 1.0 minimum alveolar concentration [MAC]), morphine (0.1 and 0.3 mg/kg), or morphine (0.3 mg/kg) plus isoflurane (1.0 MAC). Isoflurane was administered for 30 min and discontinued 15 min before coronary occlusion. In eight additional groups of experiments, rats received 5-hydroxydecanoic acid (5-HD; 10 mg/kg) or naloxone (6 mg/kg) in the presence or absence of isoflurane, morphine, and morphine plus isoflurane. RESULTS: Isoflurane (1.0 MAC) and morphine (0.3 mg/kg) reduced infarct size (41 +/- 3%; n = 13 and 38 +/- 2% of the area at risk; n = 10, respectively) as compared to control experiments (59 +/- 2%; n = 10). Morphine plus isoflurane further decreased infarct size to 26 +/- 3% (n = 11). 5-HD and naloxone alone did not affect infarct size, but abolished cardioprotection produced by isoflurane, morphine, and morphine plus isoflurane. CONCLUSIONS: Combined administration of isoflurane and morphine enhances the protection against myocardial infarction to a greater extent than either drug alone. This beneficial effect is mediated by mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors in vivo.  相似文献   

7.
Background: Volatile anesthetics stimulate but hyperglycemia attenuates activity of mitochondrial adenosine triphosphate-regulated potassium channels. The authors tested the hypothesis that acute hyperglycemia interferes with isoflurane-induced preconditioning in vivo.

Methods: Barbiturate-anesthetized dogs (n = 79) were instrumented for measurement of hemodynamics. Myocardial infarct size and collateral blood flow were assessed with triphenyltetrazolium chloride staining and radioactive microspheres, respectively. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Dogs were randomly assigned to receive an infusion of normal saline (normoglycemic controls) or 15% dextrose in water to increase blood glucose concentrations to 300 or 600 mg/dl in the absence or presence of isoflurane (0.5 or 1.0 minimum alveolar concentration [MAC]) in separate experimental groups. Isoflurane was discontinued, and blood glucose concentrations were allowed to return to baseline values before left anterior descending coronary artery occlusion.

Results: Myocardial infarct size was 26 +/- 1% of the left ventricular area at risk in control experiments. Isoflurane reduced infarct size (15 +/- 2 and 13 +/- 1% during 0.5 and 1.0 MAC, respectively). Hyperglycemia alone did not alter infarct size (26 +/- 2 and 33 +/- 4% during 300 and 600 mg/dl, respectively). Moderate hyperglycemia blocked the protective effects of 0.5 MAC (25 +/- 2%) but not 1.0 MAC isoflurane (13 +/- 2%). In contrast, severe hyperglycemia prevented reductions of infarct size during both 0.5 MAC (29 +/- 3%) and 1.0 MAC isoflurane (28 +/- 4%).  相似文献   


8.
BACKGROUND: Volatile anesthetic-induced preconditioning is mediated by adenosine triphosphate-dependent potassium (KATP) channels; however, the subcellular location of these channels is unknown. The authors tested the hypothesis that desflurane reduces experimental myocardial infarct size by activation of specific sarcolemmal and mitochondrial KATP channels. METHODS: Barbiturate-anesthetized dogs (n = 88) were acutely instrumented for measurement of aortic and left ventricular pressures. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3-h reperfusion. In four separate groups, dogs received vehicle (0.9% saline) or the nonselective KATP channel antagonist glyburide (0.1 mg/kg intravenously) in the presence or absence of 1 minimum alveolar concentration desflurane. In four additional groups, dogs received 45-min intracoronary infusions of the selective sarcolemmal (HMR 1098; 1 microg. kg-1. min-1) or mitochondrial (5-hydroxydecanoate [5-HD]; 150 microg. kg-1. min-1) KATP channel antagonists in the presence or absence of desflurane. Myocardial perfusion and infarct size were measured with radioactive microspheres and triphenyltetrazolium staining, respectively. RESULTS: Desflurane significantly (P < 0.05) decreased infarct size to 10 +/- 2% (mean +/- SEM) of the area at risk as compared with control experiments (25 +/- 3% of area at risk). This beneficial effect of desflurane was abolished by glyburide (25 +/- 2% of area at risk). Glyburide (24 +/- 2%), HMR 1098 (21 +/- 4%), and 5-HD (24 +/- 2% of area at risk) alone had no effects on myocardial infarct size. HMR 1098 and 5-HD abolished the protective effects of desflurane (19 +/- 3% and 22 +/- 2% of area at risk, respectively). CONCLUSION: Desflurane reduces myocardial infarct size in vivo, and the results further suggest that both sarcolemmal and mitochondrial KATP channels could be involved.  相似文献   

9.
BACKGROUND: Volatile anesthetics stimulate but hyperglycemia attenuates activity of mitochondrial adenosine triphosphate-regulated potassium channels. The authors tested the hypothesis that acute hyperglycemia interferes with isoflurane-induced preconditioning in vivo. METHODS: Barbiturate-anesthetized dogs (n = 79) were instrumented for measurement of hemodynamics. Myocardial infarct size and collateral blood flow were assessed with triphenyltetrazolium chloride staining and radioactive microspheres, respectively. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Dogs were randomly assigned to receive an infusion of normal saline (normoglycemic controls) or 15% dextrose in water to increase blood glucose concentrations to 300 or 600 mg/dl in the absence or presence of isoflurane (0.5 or 1.0 minimum alveolar concentration [MAC]) in separate experimental groups. Isoflurane was discontinued, and blood glucose concentrations were allowed to return to baseline values before left anterior descending coronary artery occlusion. RESULTS: Myocardial infarct size was 26 +/- 1% of the left ventricular area at risk in control experiments. Isoflurane reduced infarct size (15 +/- 2 and 13 +/- 1% during 0.5 and 1.0 MAC, respectively). Hyperglycemia alone did not alter infarct size (26 +/- 2 and 33 +/- 4% during 300 and 600 mg/dl, respectively). Moderate hyperglycemia blocked the protective effects of 0.5 MAC (25 +/- 2%) but not 1.0 MAC isoflurane (13 +/- 2%). In contrast, severe hyperglycemia prevented reductions of infarct size during both 0.5 MAC (29 +/- 3%) and 1.0 MAC isoflurane (28 +/- 4%). CONCLUSIONS: Acute hyperglycemia attenuates reductions in myocardial infarct size produced by isoflurane in dogs.  相似文献   

10.
Background: The authors tested the hypothesis that isoflurane directly preconditions myocardium against infarction via activation of K sub ATP channels and that the protection afforded by isoflurane is associated with an acute memory phase similar to that of ischemic preconditioning.

Methods: Barbiturate-anesthetized dogs (n = 71) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size was assessed by triphenyltetrazolium chloride staining. All dogs were subjected to a single prolonged (60 min) left anterior descending coronary artery (LAD) occlusion followed by 3 h of reperfusion. Ischemic preconditioning was produced by four 5-min LAD occlusions interspersed with 5-min periods of reperfusion before the prolonged LAD occlusion and reperfusion. The actions of isoflurane to decrease infarct size were examined in dogs receiving 1 minimum alveolar concentration (MAC) isoflurane that was discontinued 5 min before prolonged LAD occlusion. The interaction between isoflurane and ischemic preconditioning on infarct size was evaluated in dogs receiving isoflurane before and during preconditioning LAD occlusions and reperfusions. To test whether the cardioprotection produced by isoflurane can mimic the acute memory of ischemic preconditioning, isoflurane was discontinued 30 min before prolonged LAD occlusion and reperfusion. The mechanism of isoflurane-induced cardioprotection was evaluated in two final groups of dogs pretreated with glyburide in the presence or absence of isoflurane.

Results: Myocardial infarct size was 25.3 +/- 2.9% of the area at risk during control conditions. Isoflurane and ischemic preconditioning produced significant (P < 0.05) and equivalent reductions in infarct size (ischemic preconditioning alone, 9.6 +/- 2.0; isoflurane alone, 11.8 +/- 2.7; isoflurane and ischemic preconditioning, 5.1 +/- 1.9%). Isoflurane-induced reduction of infarct size also persisted 30 min after discontinuation of the anesthetic (13.9 +/- 1.5%), independent of hemodynamic effects during LAD occlusion. Glyburide alone had no effect on infarct size (28.3 +/- 3.9%), but it abolished the protective effects of isoflurane (27.1 +/- 4.6%).  相似文献   


11.
Background: Volatile anesthetic-induced preconditioning is mediated by adenosine triphosphate-dependent potassium (KATP) channels; however, the subcellular location of these channels is unknown. The authors tested the hypothesis that desflurane reduces experimental myocardial infarct size by activation of specific sarcolemmal and mitochondrial KATP channels.

Methods: Barbiturate-anesthetized dogs (n = 88) were acutely instrumented for measurement of aortic and left ventricular pressures. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3-h reperfusion. In four separate groups, dogs received vehicle (0.9% saline) or the nonselective KATP channel antagonist glyburide (0.1 mg/kg intravenously) in the presence or absence of 1 minimum alveolar concentration desflurane. In four additional groups, dogs received 45-min intracoronary infusions of the selective sarcolemmal (HMR 1098; 1 [mu]g [middle dot] kg-1 [middle dot] min-1) or mitochondrial (5-hydroxydecanoate [5-HD]; 150 [mu]g [middle dot] kg-1 [middle dot] min-1) KATP channel antagonists in the presence or absence of desflurane. Myocardial perfusion and infarct size were measured with radioactive microspheres and triphenyltetrazolium staining, respectively.

Results: Desflurane significantly (P < 0.05) decreased infarct size to 10 +/- 2% (mean +/- SEM) of the area at risk as compared with control experiments (25 +/- 3% of area at risk). This beneficial effect of desflurane was abolished by glyburide (25 +/- 2% of area at risk). Glyburide (24 +/- 2%), HMR 1098 (21 +/- 4%), and 5-HD (24 +/- 2% of area at risk) alone had no effects on myocardial infarct size. HMR 1098 and 5-HD abolished the protective effects of desflurane (19 +/- 3% and 22 +/- 2% of area at risk, respectively).  相似文献   


12.
BACKGROUND: Hyperglycemia generates reactive oxygen species and prevents isoflurane-induced preconditioning. The authors tested the hypothesis that scavenging reactive oxygen species with N-acetylcysteine will restore protection against myocardial infarction produced by isoflurane in vivo. METHODS: Barbiturate-anesthetized dogs (n = 45) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size and coronary collateral blood flow were measured with triphenyltetrazolium staining and radioactive microspheres, respectively. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Dogs were randomly assigned to receive an infusion of 0.9% saline or 15% dextrose in water to increase blood glucose concentrations to 600 mg/dl (hyperglycemia) in the absence or presence of isoflurane (1.0 minimum alveolar concentration) with or without pretreatment with N-acetylcysteine (150 mg/kg i.v.) in six experimental groups. Isoflurane was discontinued, and blood glucose concentrations were allowed to return to baseline values before left anterior descending coronary artery occlusion. RESULTS: Myocardial infarct size was 27 +/- 2% (n = 8) of the left ventricular area at risk in control experiments. Isoflurane significantly (P < 0.05) decreased infarct size (13 +/- 2%; n = 7). Hyperglycemia alone did not alter infarct size (29 +/- 3%; n = 7) but abolished the protective effect of isoflurane (25 +/- 2%; n = 8). N-Acetylcysteine alone did not affect infarct size (28 +/- 2%; n = 8) but restored isoflurane-induced cardioprotection during hyperglycemia (10 +/- 1%; n = 7). CONCLUSIONS: Acute hyperglycemia abolishes reductions in myocardial infarct size produced by isoflurane, but N-acetylcysteine restores these beneficial effects. The results suggest that excessive quantities of reactive oxygen species generated during hyperglycemia impair isoflurane-induced preconditioning in dogs.  相似文献   

13.
Brief exposure to isoflurane or repetitive, transient ischemia during early reperfusion after prolonged coronary artery occlusion protects against myocardial infarction by inhibiting the mitochondrial permeability transition pore (mPTP). Inhibition of mPTP during delayed ischemic preconditioning occurred concomitant with enhanced expression of the antiapoptotic protein B cell lymphoma-2 (Bcl-2). We tested the hypothesis that Bcl-2 mediates myocardial protection by isoflurane or brief ischemic episodes during reperfusion in rabbits (n = 91) subjected to a 30-min left anterior descending coronary artery occlusion followed by 3 h reperfusion. Rabbits received 0.9% saline, isoflurane (0.5 or 1.0 minimum alveolar concentration, MAC) administered for 3 min before and 2 min after reperfusion, 3 cycles of postconditioning ischemia (10 or 20 s each) during early reperfusion, 0.5 MAC isoflurane plus 3 cycles of postconditioning ischemia (10 s), or the direct mPTP inhibitor cyclosporin A (CsA, 10 mg/kg) in the presence or absence of the selective Bcl-2 inhibitor HA14-1 (2 mg/kg, i.p.). Isoflurane (1.0, but not 0.5, MAC) and postconditioning ischemia (20 s but not 10 s) significantly (P < 0.05) reduced infarct size (mean +/- sd, 21% +/- 4%, 43% +/- 7%, 19% +/- 7%, and 39% +/- 11%, respectively, of left ventricular area at risk) as compared with control (44% +/- 4%). Isoflurane (0.5 MAC) plus 10 s postconditioning ischemia and CsA alone also exerted protection. HA14-1 alone did not affect infarct size nor block protection produced by CsA but abolished reductions in infarct size caused by 1.0 MAC isoflurane, 20 s postconditioning ischemia, and 0.5 MAC isoflurane plus 10 s postconditioning ischemia. The results suggest that Bcl-2 mediates isoflurane-induced and ischemic postconditioning by indirectly modulating mPTP activity in vivo.  相似文献   

14.
Background: Hyperglycemia generates reactive oxygen species and prevents isoflurane-induced preconditioning. The authors tested the hypothesis that scavenging reactive oxygen species with N-acetylcysteine will restore protection against myocardial infarction produced by isoflurane in vivo.

Methods: Barbiturate-anesthetized dogs (n = 45) were instrumented for measurement of systemic hemodynamics. Myocardial infarct size and coronary collateral blood flow were measured with triphenyltetrazolium staining and radioactive microspheres, respectively. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Dogs were randomly assigned to receive an infusion of 0.9% saline or 15% dextrose in water to increase blood glucose concentrations to 600 mg/dl (hyperglycemia) in the absence or presence of isoflurane (1.0 minimum alveolar concentration) with or without pretreatment with N-acetylcysteine (150 mg/kg IV) in six experimental groups. Isoflurane was discontinued, and blood glucose concentrations were allowed to return to baseline values before left anterior descending coronary artery occlusion.

Results: Myocardial infarct size was 27 +/- 2% (n = 8) of the left ventricular area at risk in control experiments. Isoflurane significantly (P < 0.05) decreased infarct size (13 +/- 2%; n = 7). Hyperglycemia alone did not alter infarct size (29 +/- 3%; n = 7) but abolished the protective effect of isoflurane (25 +/- 2%; n = 8). N-Acetylcysteine alone did not affect infarct size (28 +/- 2%; n = 8) but restored isoflurane-induced cardioprotection during hyperglycemia (10 +/- 1%; n = 7).  相似文献   


15.
Background: Cyclooxygenase-2 (COX-2) mediates the late phase of ischemic preconditioning (IPC), but whether this enzyme modulates early IPC, anesthetic-induced preconditioning (APC), or other forms of pharmacologic preconditioning (PPC) is unknown. The authors tested the hypothesis that COX-2 is an essential mediator of IPC, APC, and PPC in vivo.

Methods: Barbiturate-anesthetized dogs (n = 91) were instrumented for measurement of hemodynamics and randomly assigned to receive IPC (four 5-min coronary occlusions interspersed with 5-min reperfusions), APC (1.0 minimum alveolar concentration of isoflurane for 30 min), or PPC (selective mitochondrial KATP channel opener diazoxide, 2.5 mg/kg intravenous) in the presence or absence of pretreatment with oral aspirin (650 mg), the selective COX-2 inhibitor celecoxib (200 mg), or acetaminophen (500 mg) administered 24, 12, and 2 h before experimentation in 12 separate experimental groups. All dogs were subjected to a 60-min coronary artery occlusion followed by 3 h of reperfusion. Myocardial infarct size and coronary collateral blood flow were quantified with triphenyltetrazolium staining and radioactive microspheres, respectively. Myocardial 6-keto-prostaglandin F1[alpha], a stable metabolite of prostacyclin, was measured (enzyme immunoassay) in separate experiments (n = 8) before and after isoflurane administration, in the presence or absence of celecoxib.

Results: No significant differences in baseline hemodynamics or the left ventricular area at risk for infarction were observed between groups. IPC, isoflurane, and diazoxide all decreased myocardial infarct size (9 +/- 1, 12 +/- 2, and 11 +/- 1%, respectively) as compared with control (30 +/- 1%). Celecoxib alone had no effect on infarct size (26 +/- 3%) but abolished IPC (30 +/- 3%), APC (30 +/- 3%), and PPC (26 +/- 1%). Aspirin (24 +/- 3%) and acetaminophen alone (29 +/- 2%) did not alter infarct size or abolish APC-induced protection (18 +/- 1 and 19 +/- 1%, respectively). Isoflurane increased myocardial 6-keto-prostaglandin F1[alpha] to 463 +/- 267% of baseline in the absence but not in the presence (94 +/- 13%) of celecoxib.  相似文献   


16.
BACKGROUND: The authors tested the hypotheses that protein kinase C (PKC)-specific isoform translocation and Src protein tyrosine kinase (PTK) activation play important roles in isoflurane-induced preconditioning in vivo. METHODS: Rats (n = 125) instrumented for measurement of hemodynamics underwent 30 min of coronary artery occlusion followed by 2 h of reperfusion and received 0.9% saline (control); PKC inhibitors chelerythrine (5 mg/kg), rottlerin (0.3 mg/kg), or PKC-epsilonV1-2 peptide (1 mg/kg); PTK inhibitors lavendustin A (1 mg/kg) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1; 1 mg/kg); mitochondrial adenosine triphosphate-sensitive potassium channel antagonist 5-hydroxydecanote (10 mg/kg); or reactive oxygen species scavenger N-acetylcysteine (150 mg/kg) in the absence and presence of a 30-min exposure to isoflurane (1.0 minimum alveolar concentration) in separate groups. Isoflurane was discontinued 15 min before coronary occlusion (memory period). Infarct size was determined using triphenyltetrazolium staining. Immunohistochemistry and confocal microscopic imaging were performed to examine PKC translocation in separate groups of rats. RESULTS: Isoflurane significantly (P < 0.05) reduced infarct size (40 +/- 3% [n = 13]) as compared with control experiments (58 +/- 2% [n = 12]). Chelerythrine, rottlerin, PKC-epsilonV1-2 peptide, lavendustin A, PP1, 5-hydroxydecanote, and N-acetylcysteine abolished the anti-ischemic actions of isoflurane (58 +/- 2% [n = 8], 50 +/- 3% [n = 9], 53 +/- 2% [n = 9], 59 +/- 3% [n = 6], 57 +/- 3% [n = 7], 60 +/- 3% [n = 7], and 53 +/- 3% [n = 6], respectively). Isoflurane stimulated translocation of the delta and epsilon isoforms of PKC to sarcolemmal and mitochondrial membranes, respectively. CONCLUSIONS: Protein kinase C-delta, PKC-epsilon, and Src PTK mediate isoflurane-induced preconditioning in the intact rat heart. Opening of mitochondrial adenosine triphosphate-sensitive potassium channels and generation of reactive oxygen species are upstream events of PKC activation in this signal transduction process.  相似文献   

17.
Background: Ischemia causes an imbalance in mitochondrial metabolism and accumulation of nicotinamide adenine dinucleotide (NADH). We showed that anesthetic preconditioning (APC), like ischemic preconditioning, improved mitochondrial NADH energy balance during ischemia and improved function and reduced infarct size on reperfusion. Opening adenosine triphosphate-sensitive potassium (KATP) channels may be involved in triggering APC. The authors tested if effects of APC on NADH concentrations before, during, and after ischemia are reversible by 5-hydroxydecanoate (5-HD), a putative mitochondrial KATP channel blocker.

Methods: Nicotinamide adenine dinucleotide fluorescence was measured in 60 guinea pig Langendorff-prepared hearts assigned into five groups: (1) no treatment before ischemia; (2) APC by exposure to 1.3 mm sevoflurane for 15 min; (3) 200 [mu]m 5-HD from 5 min before to 15 min after sevoflurane exposure; (4) 35 min 5-HD alone; and (5) no treatment and no ischemia. Sevoflurane was washed out for 30 min, and 5-HD for 15 min, before 30-min ischemia and 120-min reperfusion.

Results: Nicotinamide adenine dinucleotide was reversibly increased during sevoflurane exposure before ischemia, and the increase and rate of decline in NADH during ischemia were reduced after APC. 5-HD abolished these changes in NADH. On reperfusion, function was improved and infarct size reduced after APC compared with other groups.  相似文献   


18.
Is isoflurane-induced preconditioning dose related?   总被引:30,自引:0,他引:30  
BACKGROUND: Volatile anesthetics precondition against myocardial infarction, but it is unknown whether this beneficial action is threshold- or dose-dependent. The authors tested the hypothesis that isoflurane decreases myocardial infarct size in a dose-dependent fashion in vivo. METHODS: Barbiturate-anesthetized dogs (n = 40) were instrumented for measurement of systemic hemodynamics including aortic and left ventricular pressures and rate of increase of left ventricular pressure. Dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion and were randomly assigned to receive either 0.0, 0.25, 0.5, 1.0, or 1.25 minimum alveolar concentration (MAC) isoflurane in separate groups. Isoflurane was administered for 30 min and discontinued 30 min before left anterior descending coronary artery occlusion. RESULTS: Infarct size (triphenyltetrazolium staining) was 29 +/- 2% of the area at risk in control experiments (0.0 MAC). Isoflurane produced significant (P < 0.05) reductions of infarct size (17 +/- 3, 13 +/- 1, 14 +/- 2, and 11 +/- 1% of the area at risk during 0.25, 0.5, 1.0, and 1.25 MAC, respectively). Infarct size was inversely related to coronary collateral blood flow (radioactive microspheres) in control experiments and during low (0.25 or 0.5 MAC) but not higher concentrations of isoflurane. Isoflurane shifted the linear regression relation between infarct size and collateral perfusion downward (indicating cardioprotection) in a dose-dependent fashion. CONCLUSIONS: Concentrations of isoflurane as low as 0.25 MAC are sufficient to precondition myocardium against infarction. High concentrations of isoflurane may have greater efficacy to protect myocardium during conditions of low coronary collateral blood flow.  相似文献   

19.
Background: The authors tested the hypotheses that protein kinase C (PKC)-specific isoform translocation and Src protein tyrosine kinase (PTK) activation play important roles in isoflurane-induced preconditioning in vivo.

Methods: Rats (n = 125) instrumented for measurement of hemodynamics underwent 30 min of coronary artery occlusion followed by 2 h of reperfusion and received 0.9% saline (control); PKC inhibitors chelerythrine (5 mg/kg), rottlerin (0.3 mg/kg), or PKC-[epsilon]V1-2 peptide (1 mg/kg); PTK inhibitors lavendustin A (1 mg/kg) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1; 1 mg/kg); mitochondrial adenosine triphosphate-sensitive potassium channel antagonist 5-hydroxydecanote (10 mg/kg); or reactive oxygen species scavenger N-acetylcysteine (150 mg/kg) in the absence and presence of a 30-min exposure to isoflurane (1.0 minimum alveolar concentration) in separate groups. Isoflurane was discontinued 15 min before coronary occlusion (memory period). Infarct size was determined using triphenyltetrazolium staining. Immunohistochemistry and confocal microscopic imaging were performed to examine PKC translocation in separate groups of rats.

Results: Isoflurane significantly (P < 0.05) reduced infarct size (40 +/- 3% [n = 13]) as compared with control experiments (58 +/- 2% [n = 12]). Chelerythrine, rottlerin, PKC-[epsilon]V1-2 peptide, lavendustin A, PP1, 5-hydroxydecanote, and N-acetylcysteine abolished the anti-ischemic actions of isoflurane (58 +/- 2% [n = 8], 50 +/- 3% [n = 9], 53 +/- 2% [n = 9], 59 +/- 3% [n = 6], 57 +/- 3% [n = 7], 60 +/- 3% [n = 7], and 53 +/- 3% [n = 6], respectively). Isoflurane stimulated translocation of the [delta] and [epsilon] isoforms of PKC to sarcolemmal and mitochondrial membranes, respectively.  相似文献   


20.
Is Isoflurane-induced Preconditioning Dose Related?   总被引:12,自引:0,他引:12  
Background: Volatile anesthetics precondition against myocardial infarction, but it is unknown whether this beneficial action is threshold- or dose-dependent. The authors tested the hypothesis that isoflurane decreases myocardial infarct size in a dose-dependent fashion in vivo.

Methods: Barbiturate-anesthetized dogs (n = 40) were instrumented for measurement of systemic hemodynamics including aortic and left ventricular pressures and rate of increase of left ventricular pressure. Dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion and were randomly assigned to receive either 0.0, 0.25, 0.5, 1.0, or 1.25 minimum alveolar concentration (MAC) isoflurane in separate groups. Isoflurane was administered for 30 min and discontinued 30 min before left anterior descending coronary artery occlusion.

Results: Infarct size (triphenyltetrazolium staining) was 29 +/- 2% of the area at risk in control experiments (0.0 MAC). Isoflurane produced significant (P < 0.05) reductions of infarct size (17 +/- 3, 13 +/- 1, 14 +/- 2, and 11 +/- 1% of the area at risk during 0.25, 0.5, 1.0, and 1.25 MAC, respectively). Infarct size was inversely related to coronary collateral blood flow (radioactive microspheres) in control experiments and during low (0.25 or 0.5 MAC) but not higher concentrations of isoflurane. Isoflurane shifted the linear regression relation between infarct size and collateral perfusion downward (indicating cardioprotection) in a dose-dependent fashion.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号