首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Here, we investigated the effect of the trace element selenium (Se) on course and outcome of Eimeria-paplllata-induced coccidiosis in mice. Male mice were fed on Se-adequate (0.15 ppm), Se-deficient, and Se-high diets (1.0 ppm) for 6 weeks. Mice were orally infected with 1,000 oocysts. The prepatent period lasts for 3 days, but the course of infections varied. At Se-adequate diet, the maximum fecal output of oocysts amounted to 68,300 ooccysts/g feces on day 5 p.i.. However, fecal shedding of oocysts was accelerated in mice on Se-deficient diet and occurred already on day 4 p.i.. By contrast, maximal shedding is impaired in mice on high-Se diet, which takes place on day 5 p.i., but with a decreased output of only 7,300 oocysts/g feces. Light microscopy reveals that all developmental stages are affected: meronts, micro- and macrogamonts, and developing oocysts are increased in comparison with mice fed on selenium-adequate diet. At high Se, the number of parasitic stages in the jejunum is substantially higher than at Se-deficient diet. Se does not affect the number of jejunal Alcian blue-stained goblet cells. Se deficiency increased the number of apoptotic cells in the jejunum. Substantially increased histological injury scores reveal more injuries in jejunum tissue infected by E. papillata. Our data indicate that high dietary Se exerts potential anticoccidial activity. This may be taken advantage of in control measures towards Eimeriosis as a feed additive, potentially alleviating the need for concomitantly utilized anti-coccidial drugs in the feed.  相似文献   

2.
Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri worms from a challenge infection was delayed in selenium (Se)-deficient mice. In order to explore mechanisms associated with the delayed expulsion, 3-week-old female BALB/c mice were placed on a torula yeast-based diet with or without 0.2 ppm Se, and after 5 weeks, they were inoculated with H. bakeri infective third-stage larvae (L3s). Two weeks after inoculation, the mice were treated with an anthelmintic and then rested, reinoculated with L3s, and evaluated at various times after reinoculation. Analysis of gene expression in parasite-induced cysts and surrounding tissue isolated from the intestine of infected mice showed that the local-tissue Th2 response was decreased in Se-deficient mice compared to that in Se-adequate mice. In addition, adult worms recovered from Se-deficient mice had higher ATP levels than worms from Se-adequate mice, indicating greater metabolic activity in the face of a suboptimal Se-dependent local immune response. Notably, the process of worm expulsion was restored within 2 to 4 days after feeding a Se-adequate diet to Se-deficient mice. Expulsion was associated with an increased local expression of Th2-associated genes in the small intestine, intestinal glutathione peroxidase activity, secreted Relm-β protein, anti-H. bakeri IgG1 production, and reduced worm fecundity and ATP-dependent metabolic activity.  相似文献   

3.
Coxsackieviruses have been implicated as possible co-factors in the etiology of the selenium (Se)-responsive cardiomyopathy known as Keshan disease. Here we report that a cloned and sequenced amyocarditic coxsackievirus B3 (CVB3/0), which causes no pathology in the hearts of Se-adequate mice, induces extensive cardiac pathology in Se-deficient mice. CVB3/0 recovered from the hearts of Se-deficient mice inoculated into Se-adequate mice induced significant heart damage, suggesting mutation of the virus to a virulent genotype. We demonstrate the important role of host nutritional status in determining the severity of a viral infection. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Beginning at hatching, male Cornell K strain single comb white leghorn chickens were fed a basal diet, with or without vitamin E (100 IU/kg) and/or selenium (Se, 0.2 ppm). After 3 weeks of treatment, animals fed either the Se-deficient or basal diet had significantly reduced plasma Se-dependent glutathione peroxidase activities when compared to those fed a vitamin E and Se-supplemented diet. Similarly, animals fed the vitamin E-deficient or basal diet had significantly reduced plasma alpha-tocopherol levels. The effect of these treatments on plasma concentrations of thyroid hormones (T(3)/T(4)), growth hormone (GH), and thymic hormone (thymulin) was determined using radioimmunoassay and ELISA. A deficiency in Se, but not in vitamin E, resulted in an increase in plasma T(4) concentrations while plasma T(3) concentrations were decreased. Plasma GH levels showed some fluctuation as a result of the dietary treatments but there was no significant correlation between plasma GH levels and any of the other variables. A significant decrease in plasma thymulin levels was observed in Se-deficient birds compared to those receiving adequate Se in the diet. A vitamin E deficiency had no measurable effect on plasma thymulin levels. From these studies, we conclude that plasma thymulin concentrations directly correlate with plasma T(3) concentrations which are negatively affected by a Se deficiency.  相似文献   

5.
6.
Selenium (Se) deficiency has been reported to increase platelet-activating factor (PAF) production in human endothelial cells; however, the mechanism is unclear. This study demonstrated that tumor necrosis factor-alpha (TNF-alpha) stimulated Se-deficient bovine aortic endothelial cells (BAEC) produced significantly more PAF than Se-supplemented cells. Moreover, the increase in the level of PAF was associated with enhanced activity of two anabolic enzymes in the remodeling pathway: phospholipase A2 and Lyso-PAF:acetyl-coenzyme A acetyltransferase (Lyso-PAF-AcT). In contrast, the activity of the PAF catabolic enzyme, PAF-acetylhydrolase, was not affected by Se status. Interestingly, prostacyclin, a potent vasodilator and inhibitor of platelet aggregation, inhibited the activity of Lyso-PAF-AcT and reduced the PAF production in TNF-alpha-stimulated BAEC. Therefore, we conclude that Se deficiency alters PAF production in TNF-alpha-stimulated BAEC by altering the activity of anabolic enzymes involved in the remodeling pathway partially through the inhibition of prostacyclin production.  相似文献   

7.
Selenium (Se) is an essential trace element in mammals that has been shown to exert its function through selenoproteins. Whereas optimal levels of Se in the diet have important health benefits, a recent clinical trial has suggested that supplemental intake of Se above the adequate level potentially may raise the risk of type 2 diabetes mellitus. However, the molecular mechanisms for the effect of dietary Se on the development of this disease are not understood. In the present study, we examined the contribution of selenoproteins to increased risk of developing diabetes using animal models. C57BL/6J mice (n=6-7 per group) were fed either Se-deficient Torula yeast-based diet or diets supplemented with 0.1 and 0.4 parts per million Se. Our data show that mice maintained on an Se-supplemented diet develop hyperinsulinemia and have decreased insulin sensitivity. These effects are accompanied by elevated expression of a selective group of selenoproteins. We also observed that reduced synthesis of these selenoproteins caused by overexpression of an i(6)A(-) mutant selenocysteine tRNA promotes glucose intolerance and leads to a diabetes-like phenotype. These findings indicate that both high expression of selenoproteins and selenoprotein deficiency may dysregulate glucose homeostasis and suggest a role for selenoproteins in development of diabetes.  相似文献   

8.
We investigated the mechanisms underlying abnormal vascular endothelial growth factor (VEGF) production in amyotrophic lateral sclerosis (ALS). We immunohistochemically studied VEGF, its receptors VEGFR1 and 2, and hypoxia‐inducible factor‐1α (HIF‐1α) in autopsied ALS spinal cords. We also chronologically assessed the expression of HIF‐1α, karyopherin β1, karyopherin β‐cargo protein complex inhibitors and nuclear pore complex proteins in G93A mutant superoxide dismutase 1 (mSOD1) transgenic mice at presymptomatic, symptomatic and end stages. In ALS patients, compared with controls, HIF‐1α immunoreactivity in the cytoplasm of anterior horn cells (AHCs) was significantly increased, while immunoreactivities for VEGF and VEGFRs were significantly decreased. Similar changes in HIF‐1α and VEGF levels were observed in mSOD1 transgenic mice. HIF‐1α co‐localized with karyopherin β1 in the cytoplasm of AHCs and karyopherin β1 co‐localized with nucleoporin 62 (Nup62) on the nuclear envelope. From the presymptomatic stage of mSOD1 transgenic mice, karyopherin β1 immunoreactivity in AHC nuclei significantly decreased and morphological irregularities of the Nup62‐immunostained nuclear envelope became more pronounced with disease progression. Thus, in AHCs from mSOD1 transgenic mice, transport of cytoplasmic HIF‐1α to the nuclear envelope and into the nucleus is impaired from the presymptomatic stage, suggesting that impaired cytoplasmic–nuclear transport of HIF‐1α through the nuclear pore might precede motor neuron degeneration.  相似文献   

9.
Jun EJ  Ye JS  Hwang IS  Kim YK  Lee H 《Acta virologica》2011,55(1):23-29
Both coxsackievirus B3 (CVB3) infection and selenium (Se) deficiency play a pivotal role in Keshan disease of the heart. The Se deficiency was known to contribute to the CVB3-induced myocarditis in acute and subacute phase of infection. However, its effect on the myocarditis in chronic phase of infection has not been examined yet. To address this question, we kept mice on a Se-replete or Se-deficient diet for 28 days, infected them intraperitoneally with CVB3 and maintaining previous diets, we examined them for next 90 days for several parameters indicative of the infection or disease. We found out that the mice on the Se-deficient diet exhibited a higher mortality, lower serum glutathione peroxidase (GPx) activity, evident histopathological changes indicative of myocarditis, and a higher level of viral RNA in the heart. Summing up, these data suggest that the Se-deficiency creates a chronic myocarditis-prone condition by fostering the active virus replication.  相似文献   

10.
Hypoxia‐inducible factor‐1α (HIF‐1α) plays a critical role in immune and inflammatory responses. One of the HIF‐1α target genes is vascular endothelial growth factor (VEGF), which is a potent stimulator of inflammation, airway remodeling, and physiologic dysregulation in allergic airway diseases. Using OVA‐treated mice and murine tracheal epithelial cells, the signaling networks involved in HIF‐1α activation and the role of HIF‐1α in the pathogenesis of allergic airway disease were investigated. Transfection of airway epithelial cells with HIF‐1α siRNA suppressed VEGF expression. In addition, the increased levels of HIF‐1α and VEGF in lung tissues after OVA inhalation were substantially decreased by an HIF‐1α inhibitor, 2‐methoxyestradiol. Our data also show that the increased numbers of inflammatory cells, increased airway hyperresponsiveness, levels of IL‐4, IL‐5, IL‐13, and vascular permeability in the lungs after OVA inhalation were significantly reduced by 2‐methoxyestradiol or a VEGF inhibitor, CBO‐P11. Moreover, we found that inhibition of the PI3K p110δ isoform (PI3K‐δ) or HIF‐1α reduced OVA‐induced HIF‐1α activation in airway epithelial cells. These findings indicate that HIF‐1α inhibition may attenuate antigen‐induced airway inflammation and hyperresponsiveness through the modulation of vascular leakage mediated by VEGF, and that PI3K‐δ signaling may be involved in the allergen‐induced HIF‐1α activation.  相似文献   

11.
In inflammatory bowel disease (IBD), inflammation can occur beyond the intestine and spread systemically causing complications such as arthritis, cachexia, and anemia. Here, we determine the impact of CD45, a pan-leukocyte marker and tyrosine phosphatase, on IBD. Using a mouse model of T cell transfer colitis, CD25CD45RBhighCD4+ T cells were transferred into Rag1-deficient mice (RAGKO) and CD45-deficient RAGKO mice (CD45RAGKO). Weight loss and systemic wasting syndrome were delayed in CD45RAGKO mice compared to RAGKO mice, despite equivalent inflammation in the colon. CD45RAGKO mice had reduced serum levels of TNF-α, and reduced TNF-α production by splenic myeloid cells. CD45RAGKO mice also had increased numbers of erythroid progenitors in the spleen, which had previously been shown to be immunosuppressive. Adoptive transfer of these erythroid progenitors into RAGKO mice reduced their weight loss and TNF-α expression by splenic red pulp macrophages. In vitro, erythroid cells suppressed TNF-α expression in red pulp macrophages in a phagocytosis-dependent manner. These findings show a novel role for erythroid progenitors in suppressing the pro-inflammatory function of splenic macrophages and cachexia associated with IBD.  相似文献   

12.
13.
The effect of selenium (Se) deficiency, produced by feeding a Se-deficient diet, on the development of central nervous system (CNS) lesions was studied in mice infected with Listeria monocytogenes, administered in drinking water for 1 or 7 days in a daily dose of 10(9)organisms, or for 7 days in a daily dose of 10(7). Se-deficient mice differed from Se-normal controls in developing CNS lesions significantly more frequently. Moreover, regardless of Se status, mice receiving repeated doses of 10(9)organisms differed from those receiving a single 10(9)dose in showing CNS lesions at least twice as often. The majority of animals with CNS lesions showed an inflammatory pattern of rhombencephalitis (17/24), while only two of 24 showed choroiditis-ventriculitis-meningitis; five of 24 animals showed both inflammatory patterns. Listeria monocytogenes antigen was identified within the areas of inflammation by an immunoperoxidase technique. Neuritis of the trigeminal nerve was present in eight animals. The relative lack of pathological changes in the liver and spleen validates this murine model for the study of CNS listeriosis.  相似文献   

14.
15.
16.
Dietary selenium (Se) deficiency may influence the calcium (Ca) homeostasis in broilers. Our objective was to investigate the effects of Se deficiency on Ca regulation-related genes in broiler hearts. In the present study, 1-day-old broilers were fed either a commercial diet (as control group) with 0.15?mg/kg Se or a Se-deficient diet (as L group) with 0.033?mg/kg Se for 35 days. We examined the mRNA expression levels of 15 Ca regulation-related genes (ITPR 1, ITPR 2, ITPR3, RyR2, RyR3, SERCA1s, SLC8A1, PMCA1, CACNA1S, TRPC1, TRPC3, stromal interacting molecule 1, ORAI1, calmodulin (CaLM) and calreticulin (CRT) in broiler hearts. Then, Kyoto Encyclopedia of Genes and Genomes analysis, protein–protein interactions (PPI) analysis and correlation analysis were performed to analyse the relationships between these genes. The results showed that the mRNA expression levels of ITPR 1, ITPR 2, RyR2, RyR3, SERCA1s, SLC8A1, PMCA1, CACNA1S, CaLM and CRT were generally decreased by Se deficiency, while mRNA expression levels of TRPC1, TRPC3, stromal interacting molecule 1, ORAI1 and ITPR3 were increased by Se deficiency. Kyoto Encyclopedia of Genes and Genomes and PPI analysis showed that these Ca regulation-related genes are involved in the Ca signalling pathway and a total of 15 PPIs with a combined score of >0.4 were obtained. In conclusion, the results demonstrated that Se deficiency might cause heart injury via modulating the Ca-related pathway genes, and then induce Ca2+ overload in the heart of broilers.  相似文献   

17.
Mastitis is characterized by an inflammation of the mammary gland of dairy animals and humans; this condition is one of the major causes of economic losses in dairy industries. Selenium (Se), a biological trace element, modulates the functions of many regulatory proteins in signal transduction and provides advantages for animals with inflammatory diseases, including mastitis. The current study aimed to assess the protective effects and the active mechanism of Na2SeO3 against lipopolysaccharide (LPS)-induced inflammation in mouse mammary epithelial cells (MMECs). Our results showed that LPS-induced expressions of cyclooxygenase-2 and tumor necrosis factor-α significantly decreased after Se was supplemented to Se-deficient MMECs. Na2SeO3 also suppressed LPS-induced nuclear factor-κB activation, inhibitory kappa B degradation, and ERK, JNK, and P38 phosphorylation in a dose-dependent manner. These results suggested that Se functions as an anti-inflammatory agent in mastitis.  相似文献   

18.
Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor‐1α (HIF‐1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC‐derived HIF‐1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF‐1α and IL‐33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)?33 were correlated positively with that of HIF‐1α. A HIF‐1α‐interacting element was identified in the promoter region of IL‐33, indicating that HIF‐1α activity regulates IL‐33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF‐1α‐dependent IL‐33 expression in IEC. Our data thus demonstrate that HIF‐1α‐dependent IL‐33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis.  相似文献   

19.
20.
Systemic lupus erythematosus (SLE) is a debilitating multi-factorial immunological disorder characterized by increased inflammation and development of anti-nuclear autoantibodies. Selenium (Se) is an essential trace element with beneficial anti-cancer and anti-inflammatory immunological functions. In our previous proteomics study, analysis of Se-responsive markers in the circulation of Se-supplemented healthy men showed a significant increase in complement proteins. Additionally, Se supplementation prolonged the life span of lupus prone NZB/NZW-F1 mice. To better understand the protective immunological role of Se in SLE pathogenesis, we have investigated the impact of Se on B cells and macrophages using in vitro Se supplementation assays and the B6.Sle1b mouse model of lupus with an oral Se or placebo supplementation regimen. Analysis of Se-treated B6.Sle1b mice showed reduced splenomegaly and splenic cellularity compared to untreated B6. Sle1b mice. A significant reduction in total B cells and notably germinal center (GC) B cell numbers was observed. However, other cell types including T cells, Tregs, DCs and pDCs were unaffected. Consistent with reduced GC B cells there was a significant reduction in autoantibodies to dsDNA and SmRNP of the IgG2b and IgG2c subclass upon Se supplementation. We found that increased Se availability leads to impaired differentiation and maturation of macrophages from mouse bone marrow derived progenitors in vitro. Additionally, Se treatment during in vitro activation of B cells with anti-CD40L and LPS inhibited optimal B cell activation. Overall our data indicate that Se supplementation inhibits activation, differentiation and maturation of B cells and macrophages. Its specific inhibitory effect on B cell activation and GC B cell differentiation could be explored as a potential therapeutic supplement for SLE patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号