首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genetics in medicine》2016,18(11):1119-1127
PurposeEhlers–Danlos syndrome (EDS) comprises a group of overlapping hereditary disorders of connective tissue with significant morbidity and mortality, including major vascular complications. We sought to identify the diagnostic utility of a next-generation sequencing (NGS) panel in a mixed EDS cohort.MethodsWe developed and applied PCR-based NGS assays for targeted, unbiased sequencing of 12 collagen and aortopathy genes to a cohort of 177 unrelated EDS patients. Variants were scored blind to previous genetic testing and then compared with results of previous Sanger sequencing.ResultsTwenty-eight pathogenic variants in COL5A1/2, COL3A1, FBN1, and COL1A1 and four likely pathogenic variants in COL1A1, TGFBR1/2, and SMAD3 were identified by the NGS assays. These included all previously detected single-nucleotide and other short pathogenic variants in these genes, and seven newly detected pathogenic or likely pathogenic variants leading to clinically significant diagnostic revisions. Twenty-two variants of uncertain significance were identified, seven of which were in aortopathy genes and required clinical follow-up.ConclusionUnbiased NGS-based sequencing made new molecular diagnoses outside the expected EDS genotype–phenotype relationship and identified previously undetected clinically actionable variants in aortopathy susceptibility genes. These data may be of value in guiding future clinical pathways for genetic diagnosis in EDS.Genet Med 18 11, 1119–1127.  相似文献   

2.
Cerebral small vessel disease (CSVD) is the most important cause of vascular cognitive impairment (VCI). Most CSVD cases are sporadic but familial monogenic forms of the disorder have also been described. Despite the variants identified, many CSVD cases remain unexplained genetically. We used whole-exome sequencing in an attempt to identify novel gene variants underlying CSVD. A cohort of 35 Finnish patients with suspected CSVD was analyzed. Patients were screened negative for the most common variants affecting function in NOTCH3 in Finland (p.Arg133Cys and p.Arg182Cys). Whole-exome sequencing was performed to search for a genetic cause of CSVD. Our study resulted in the detection of possibly pathogenic variants or variants of unknown significance in genes known to associate with CSVD in six patients, accounting for 17% of cases. Those genes included NOTCH3, HTRA1, COL4A1, and COL4A2. We also identified variants with predicted pathogenic effect in genes associated with other neurological or stroke-related conditions in seven patients, accounting for 20% of cases. This study supports pathogenic roles of variants in COL4A1, COL4A2, and HTRA1 in CSVD and VCI. Our results also suggest that vascular pathogenic mechanisms are linked to neurodegenerative conditions and provide novel insights into the molecular basis of VCI.Subject terms: Stroke, Sequencing, Genetics research, Dementia  相似文献   

3.
《Genetics in medicine》2020,22(9):1478-1488
PurposeSeveral hundred genetic muscle diseases have been described, all of which are rare. Their clinical and genetic heterogeneity means that a genetic diagnosis is challenging. We established an international consortium, MYO-SEQ, to aid the work-ups of muscle disease patients and to better understand disease etiology.MethodsExome sequencing was applied to 1001 undiagnosed patients recruited from more than 40 neuromuscular disease referral centers; standardized phenotypic information was collected for each patient. Exomes were examined for variants in 429 genes associated with muscle conditions.ResultsWe identified suspected pathogenic variants in 52% of patients across 87 genes. We detected 401 novel variants, 116 of which were recurrent. Variants in CAPN3, DYSF, ANO5, DMD, RYR1, TTN, COL6A2, and SGCA collectively accounted for over half of the solved cases; while variants in newer disease genes, such as BVES and POGLUT1, were also found. The remaining well-characterized unsolved patients (48%) need further investigation.ConclusionUsing our unique infrastructure, we developed a pathway to expedite muscle disease diagnoses. Our data suggest that exome sequencing should be used for pathogenic variant detection in patients with suspected genetic muscle diseases, focusing first on the most common disease genes described here, and subsequently in rarer and newly characterized disease genes.  相似文献   

4.
《Genetics in medicine》2019,21(8):1832-1841
PurposeHeritable factors play an important etiologic role in connective tissue disorders (CTD) with vascular involvement, and a genetic diagnosis is getting increasingly important for gene-tailored, personalized patient management.MethodsWe analyzed 32 disease-associated genes by using targeted next-generation sequencing and exome sequencing in a clinically relevant cohort of 199 individuals. We classified and refined sequence variants according to their likelihood for pathogenicity.ResultsWe identified 1 pathogenic variant (PV; in FBN1 or SMAD3) in 15 patients (7.5%) and ≥1 likely pathogenic variant (LPV; in COL3A1, FBN1, FBN2, LOX, MYH11, SMAD3, TGFBR1, or TGFBR2) in 19 individuals (9.6%), together resulting in 17.1% diagnostic yield. Thirteen PV/LPV were novel. Of PV/LPV-negative patients 47 (23.6%) showed ≥1 variant of uncertain significance (VUS). Twenty-five patients had concomitant variants. In-depth evaluation of reported/calculated variant classes resulted in reclassification of 19.8% of variants.ConclusionVariant classification and refinement are essential for shaping mutational spectra of disease genes, thereby improving clinical sensitivity. Obligate stringent multigene analysis is a powerful tool for identifying genetic causes of clinically related CTDs. Nonetheless, the relatively high rate of PV/LPV/VUS-negative patients underscores the existence of yet unknown disease loci and/or oligogenic/polygenic inheritance.  相似文献   

5.
Alport syndrome (AS) is caused by pathogenic mutations in the genes encoding α3, α4 or α5 chains of collagen IV (COL4A3/COL4A4/COL4A5), resulting in hematuria, chronic renal failure (CRF), sensorineural hearing loss (SNHL) and ocular abnormalities. Mutations in the X‐linked COL4A5 gene have been identified in 85% of the families (XLAS). In this study, 22 of 60 probands (37%) of unrelated Portuguese families, with clinical diagnosis of AS and no evidence of autosomal inheritance, had pathogenic COL4A5 mutations detected by Sanger sequencing and/or multiplex‐ligation probe amplification, of which 12 (57%) are novel. Males had more severe and earlier renal and extrarenal complications, but microscopic hematuria was a constant finding irrespective of gender. Nonsense and splice site mutations, as well as small and large deletions, were associated with younger age of onset of SNHL in males, and with higher risk of CRF and SNHL in females. Pathogenic COL4A3 or COL4A4 mutations were subsequently identified in more than half of the families without a pathogenic mutation in COL4A5. The lower than expected prevalence of XLAS in Portuguese families warrants the use of next‐generation sequencing for simultaneous COL4A3/COL4A4/COL4A5 analysis, as first‐tier approach to the genetic diagnosis of collagen type IV‐related nephropathies.  相似文献   

6.
Aortic dilatation/dissection (AD) can occur spontaneously or in association with genetic syndromes, such as Marfan syndrome (MFS; caused by FBN1 mutations), MFS type 2 and Loeys–Dietz syndrome (associated with TGFBR1/TGFBR2 mutations), and Ehlers–Danlos syndrome (EDS) vascular type (caused by COL3A1 mutations). Although mutations in FBN1 and TGFBR1/TGFBR2 account for the majority of AD cases referred to us for molecular genetic testing, we have obtained negative results for these genes in a large cohort of AD patients, suggesting the involvement of additional genes or acquired factors. In this study we assessed the effect of COL3A1 deletions/duplications in this cohort. Multiplex ligation-dependent probe amplification (MLPA) analysis of 100 unrelated patients identified one hemizygous deletion of the entire COL3A1 gene. Subsequent microarray analyses and sequencing of breakpoints revealed the deletion size of 3 408 306 bp at 2q32.1q32.3. This deletion affects not only COL3A1 but also 21 other known genes (GULP1, DIRC1, COL5A2, WDR75, SLC40A1, ASNSD1, ANKAR, OSGEPL1, ORMDL1, LOC100129592, PMS1, MSTN, C2orf88, HIBCH, INPP1, MFSD6, TMEM194B, NAB1, GLS, STAT1, and STAT4), mutations in three of which (COL5A2, SLC40A1, and MSTN) have also been associated with an autosomal dominant disorder (EDS classical type, hemochromatosis type 4, and muscle hypertrophy). Physical and laboratory examinations revealed that true haploinsufficiency of COL3A1, COL5A2, and MSTN, but not that of SLC40A1, leads to a clinical phenotype. Our data not only emphasize the impact/role of COL3A1 in AD patients but also extend the molecular etiology of several disorders by providing hitherto unreported evidence for true haploinsufficiency of the underlying gene.  相似文献   

7.
Collagen VI‐related myopathy, caused by pathogenic variants in the genes encoding collagen VI, represents a clinical continuum from Ullrich congenital muscular dystrophy (UCMD) to Bethlem myopathy (BM). Clinical data of 60 probands and their family members were collected and muscle biopsies of 26 patients were analyzed. COL6A1, COL6A2 and COL6A3 exons were analyzed by direct sequencing or next generation sequencing (NGS). Sixty patients were characterized by delayed motor milestones, muscle weakness, skin and joint changes with 40 UCMD and 20 BM. Muscle with biopsies revealed dystrophic changes and showed completely deficiency of collagen VI or sarcolemma specific collagen VI deficiency. We identified 62 different pathogenic variants in these 60 patients, with 34 were first reported while 28 were previously known; 72 allelic pathogenic variants in COL6A1 (25/72, 34.7%), COL6A2 (33/72, 45.8%) and COL6A3 (14/72, 19.4%). We also found somatic mosaic variant in the parent of 1 proband by personal genome machine amplicon deep sequencing for mosaicism. Here we provide clinical, histological and genetic evidence of collagen VI‐related myopathy in 60 Chinese patients. NGS is a valuable approach for diagnosis and accurate diagnosis provides useful information for genetic counseling of related families.  相似文献   

8.

Background

Steroid resistant nephrotic syndrome (SRNS) is a genetically heterogeneous disease with significant phenotypic variability. More than 53 podocyte-expressed genes are implicated in SRNS which complicates the routine use of genetic screening in the clinic. Next generation sequencing technology (NGS) allows rapid screening of multiple genes in large number of patients in a cost-effective manner.

Methods

We developed a targeted panel of 17 genes to determine relative frequency of mutations in south Indian ethnicity and feasibility of using the assay in a clinical setting. Twenty-five children with SRNS and 3 healthy individuals were screened.

Results

In this study, novel variants including 1 pathogenic variant (2 patients) and 3 likely pathogenic variants (3 patients) were identified. In addition, 2 novel variants of unknown significance (VUS) in 2 patients (8% of total patients) were also identified.

Conclusions

The results show that genetic screening in SRNS using NGS is feasible in a clinical setting. However the panel needs to be screened in a larger cohort of children with SRNS in order to assess the utility of the customised targeted panel in Indian children with SRNS. Determining the prevalence of variants in Indian population and improvising the bioinformatics-based filtering strategy for a more accurate differentiation of pathogenic variants from those that are benign among the VUS will help in improving medical and genetic counselling in SRNS.
  相似文献   

9.
Genetic diagnostics of phenylketonuria (PKU) and tetrahydrobiopterin (BH4) deficient hyperphenylalaninemia (BH4DH) rely on methods that scan for known mutations or on laborious molecular tools that use Sanger sequencing. We have implemented a novel and much more efficient strategy based on high-throughput multiplex-targeted resequencing of four genes (PAH, GCH1, PTS, and QDPR) that, when affected by loss-of-function mutations, cause PKU and BH4DH. We have validated this approach in a cohort of 95 samples with the previously known PAH, GCH1, PTS, and QDPR mutations and one control sample. Pooled barcoded DNA libraries were enriched using a custom NimbleGen SeqCap EZ Choice array and sequenced using a HiSeq2000 sequencer. The combination of several robust bioinformatics tools allowed us to detect all known pathogenic mutations (point mutations, short insertions/deletions, and large genomic rearrangements) in the 95 samples, without detecting spurious calls in these genes in the control sample. We then used the same capture assay in a discovery cohort of 11 uncharacterized HPA patients using a MiSeq sequencer. In addition, we report the precise characterization of the breakpoints of four genomic rearrangements in PAH, including a novel deletion of 899 bp in intron 3. Our study is a proof-of-principle that high-throughput-targeted resequencing is ready to substitute classical molecular methods to perform differential genetic diagnosis of hyperphenylalaninemias, allowing the establishment of specifically tailored treatments a few days after birth.  相似文献   

10.
《Genetics in medicine》2016,18(10):1037-1043
PurposeGlycogen storage disease (GSD) is an umbrella term for a group of genetic disorders that involve the abnormal metabolism of glycogen; to date, 23 types of GSD have been identified. The nonspecific clinical presentation of GSD and the lack of specific biomarkers mean that Sanger sequencing is now widely relied on for making a diagnosis. However, this gene-by-gene sequencing technique is both laborious and costly, which is a consequence of the number of genes to be sequenced and the large size of some genes.MethodsThis work reports the use of massive parallel sequencing to diagnose patients at our laboratory in Spain using either a customized gene panel (targeted exome sequencing) or the Illumina Clinical-Exome TruSight One Gene Panel (clinical exome sequencing (CES)). Sequence variants were matched against biochemical and clinical hallmarks.ResultsPathogenic mutations were detected in 23 patients. Twenty-two mutations were recognized (mostly loss-of-function mutations), including 11 that were novel in GSD-associated genes. In addition, CES detected five patients with mutations in ALDOB, LIPA, NKX2-5, CPT2, or ANO5. Although these genes are not involved in GSD, they are associated with overlapping phenotypic characteristics such as hepatic, muscular, and cardiac dysfunction.ConclusionsThese results show that next-generation sequencing, in combination with the detection of biochemical and clinical hallmarks, provides an accurate, high-throughput means of making genetic diagnoses of GSD and related diseases.Genet Med 18 10, 1037–1043.  相似文献   

11.
《Genetics in medicine》2019,21(3):553-563
PurposeTo investigate the genetic basis of congenital ataxias (CAs), a unique group of cerebellar ataxias with a nonprogressive course, in 20 patients from consanguineous families, and to identify new CA genes.MethodsSingleton -exome sequencing on these 20 well-clinically characterized CA patients. We first checked for rare homozygous pathogenic variants, then, for variants from a list of genes known to be associated with CA or very early-onset ataxia, regardless of their mode of inheritance. Our replication cohort of 180 CA patients was used to validate the new CA genes.ResultsWe identified a causal gene in 16/20 families: six known CA genes (7 patients); four genes previously implicated in another neurological phenotype (7 patients); two new candidate genes (2 patients). Despite the consanguinity, 4/20 patients harbored a heterozygous de novo pathogenic variant.ConclusionSingleton exome sequencing in 20 consanguineous CA families led to molecular diagnosis in 80% of cases. This study confirms the genetic heterogeneity of CA and identifies two new candidate genes (PIGS and SKOR2). Our work illustrates the diversity of the pathophysiological pathways in CA, and highlights the pathogenic link between some CA and early infantile epileptic encephalopathies related to the same genes (STXBP1, BRAT1, CACNA1A and CACNA2D2).  相似文献   

12.
《Genetics in medicine》2015,17(4):262-270
PurposeStargardt macular dystrophy (STGD) results in early central vision loss. We sought to explain the genetic cause of STGD in a cohort of 88 patients from three different cultural backgrounds.MethodsNext-generation sequencing using a novel capture panel was used to search for disease-causing mutations. Patients with undetermined causes were clinically reexamined and tested for copy-number variations as well as intronic mutations.ResultsWe determined the cause of disease in 67% of our patients. Our analysis identified 35 novel ABCA4 alleles. Eleven patients had mutations in genes not previously reported to cause STGD. Finally, 45% of our patients with unsolved causes had single deleterious mutations in ABCA4, a recessive disease gene. No likely pathogenic copy-number variations were identified.ConclusionThis study expands our knowledge of STGD by identifying dozens of novel alleles that cause the disease. The frequency of single mutations in ABCA4 among STGD patients is higher than that among controls, indicating that these mutations contribute to disease. Disease in 11 patients was explained by mutations outside ABCA4, underlining the need to genotype all retinal disease genes to maximize genetic diagnostic rates. Few ABCA4 mutations were observed in our French Canadian patients. This population may contain an unidentified founder mutation. Our results indicate that copy-number variations are unlikely to be a major cause of STGD.Genet Med 17 4, 262–270.  相似文献   

13.
Familial microscopic hematuria (FMH) is associated with a genetically heterogeneous group of conditions including the collagen‐IV nephropathies, the heritable C3/CFHR5 nephropathy and the glomerulopathy with fibronectin deposits. The clinical course varies widely, ranging from isolated benign familial hematuria to end‐stage renal disease (ESRD) later in life. We investigated 24 families using next generation sequencing (NGS) for 5 genes: COL4A3, COL4A4, COL4A5, CFHR5 and FN1. In 17 families (71%), we found 15 pathogenic mutations in COL4A3/A4/A5, 9 of them novel. In 5 families patients inherited classical AS with hemizygous X‐linked COL4A5 mutations. Even more patients developed later‐onset Alport‐related nephropathy having inherited heterozygous COL4A3/A4 mutations that cause thin basement membranes. Amongst 62 heterozygous or hemizygous patients, 8 (13%) reached ESRD, while 25% of patients with heterozygous COL4A3/A4 mutations, aged >50‐years, reached ESRD. In conclusion, COL4A mutations comprise a frequent cause of FMH. Heterozygous COL4A3/A4 mutations predispose to renal function impairment, supporting that thin basement membrane nephropathy is not always benign. The molecular diagnosis is essential for differentiating the X‐linked from the autosomal recessive and dominant inheritance. Finally, NGS technology is established as the gold standard for the diagnosis of FMH and associated collagen‐IV glomerulopathies, frequently averting the need for invasive renal biopsies.  相似文献   

14.
Pathogenic mutations in genes COL4A3/COL4A4 are responsible for autosomal Alport syndrome (AS) and thin basement membrane nephropathy (TBMN). We used Sanger sequencing to analyze all exons and splice site regions of COL4A3/COL4A4, in 40 unrelated Portuguese probands with clinical suspicion of AS/TBMN. To assess genotype–phenotype correlations, we compared clinically relevant phenotypes/outcomes between homozygous/compound heterozygous and apparently heterozygous patients. Seventeen novel and four reportedly pathogenic COL4A3/COL4A4 mutations were identified in 62.5% (25/40) of the probands. Regardless of the mutated gene, all patients with ARAS manifested chronic renal failure (CRF) and hearing loss, whereas a minority of the apparently heterozygous patients had CRF or extrarenal symptoms. CRF was diagnosed at a significantly younger age in patients with ARAS. In our families, the occurrence of COL4A3/COL4A4 mutations was higher, while the prevalence of XLAS was lower than expected. Overall, a pathogenic COL4A3/COL4A4/COL4A5 mutation was identified in >50% of patients with fewer than three of the standard diagnostic criteria of AS. With such a population background, simultaneous next‐generation sequencing of all three genes may be recommended as the most expedite approach to diagnose collagen IV‐related glomerular basement membrane nephropathies.  相似文献   

15.
Introduction: Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD). BM is a relatively mild dominantly inherited disorder with proximal weakness and distal joint contractures. UCMD is an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity. Methods: We developed a method for rapid direct sequence analysis of all 107 coding exons of the COL6 genes using single condition amplification/internal primer (SCAIP) sequencing. We have sequenced all three COL6 genes from genomic DNA in 79 patients with UCMD or BM. Results: We found putative mutations in one of the COL6 genes in 62% of patients. This more than doubles the number of identified COL6 mutations. Most of these changes are consistent with straightforward autosomal dominant or recessive inheritance. However, some patients showed changes in more than one of the COL6 genes, and our results suggest that some UCMD patients may have dominantly acting mutations rather than recessive disease. Discussion: Our findings may explain some or all of the cases of UCMD that are unlinked to the COL6 loci under a recessive model. The large number of single nucleotide polymorphisms which we generated in the course of this work may be of importance in determining the major phenotypic variability seen in this group of disorders.  相似文献   

16.
Background: The Schmid type of metaphyseal chondrodysplasia (MCDS) is generally due to mutations in COL10A1 encoding for type X collagen of cartilage.

Methods: We performed a study on the genes coding for the RNA components of RNase MRP (MRPR) and RNase P (H1RNA) among 20 patients with diagnosis of MCDS and no mutations in COL10A1.

Results: Two patients were found to be homozygous for a base substitution G for A at nucleotide 70 of RMRP, which is the major mutation causing cartilage–hair hypoplasia. No pathogenic mutations were detected in H1RNA.

Conclusion: Cartilage–hair hypoplasia diagnosis should be considered in patients with metaphyseal chondrodysplasia even in the absence of any extra-skeletal manifestations if no mutation in COL10A1 can be found and the family history is compatible with autosomal recessive inheritance. Correct diagnosis is important for genetic counselling and for proper follow up of the patients.

  相似文献   

17.
《Genetics in medicine》2017,19(8):955-958
PurposeEwing sarcoma is a small round blue cell tumor that is highly malignant and predominantly affects the adolescent and young adult population. It has long been suspected that a genetic predisposition exists for this cancer, but the germ-line genetic underpinnings of this disease have not been well established.MethodsWe performed germline variant analysis of whole-genome or whole-exome sequencing of samples from 175 patients affected by Ewing sarcoma.ResultsWe discovered pathogenic or likely pathogenic germline mutations in 13.1% of our cohort. Pathogenic mutations were highly enriched for genes involved with DNA damage repair and for genes associated with cancer predisposition syndromes.ConclusionOur findings reported here have important clinical implications for patients and families affected by Ewing sarcoma. Genetic counseling should be considered for patients and families affected by this disease to take advantage of existing risk management strategies. Our study also highlights the importance of germline sequencing for patients enrolled in precision-medicine protocols.Genet Med advance online publication 26 January 2017  相似文献   

18.
Hypertrophic Cardiomyopathy (HCM), a common and clinically heterogeneous disease characterized by unexplained ventricular myocardial hypertrophy and a high risk of sudden cardiac death, is mostly caused by mutations in sarcomeric genes but modifiers genes may also modulate the phenotypic expression of HCM mutations. The aim of the current study was to report the frequency of single and multiple gene mutations in a large French cohort of HCM patients and to evaluate the influence of polymorphisms previously suggested to be potential disease modifiers in this myocardial pathology. We report the molecular screening of 192 unrelated HCM patients using denaturing high-performance liquid chromatography/sequencing analysis of the MYBPC3, MYH7, TNNT2 and TNNI3 genes. Genotyping of 6 gene polymorphisms previously reported as putative HCM modifiers (5 RAAS polymorphisms and TNF-α -308 G/A) was also performed. Seventy-five mutations were identified in 92 index patients (48%); 32 were novel. MYBPC3 mutations (25%) represent the most prevalent cause of inherited HCM whereas MYH7 mutations (12%) rank second in the pathogenesis. The onset age was older in patients carrying MYBPC3 mutations than in those with MYH7 mutations. The MYBPC3 IVS20-2A>G splice mutation was identified in 7% of our HCM population. Multiple gene mutations were identified in 9 probands (5%), highlighting the importance of screening other HCM-causing genes even after a first mutation has been identified, particularly in young patients with a severe phenotype. No single or cumulative genetic modifier effect could be evidenced in this HCM cohort.  相似文献   

19.
The heritable cardiovascular disorder long QT syndrome (LQTS), characterized by prolongation of the QT interval on electrocardiogram, carries a high risk of sudden cardiac death. We sought to add new data to the existing knowledge of genetic mutations contributing to LQTS to both expand our understanding of its genetic basis and assess the value of genetic testing in clinical decision-making. Direct sequencing of the five major contributing genes, KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2, was performed in a cohort of 115 non-related LQTS patients. Pathogenicity of the variants was analyzed using family segregation, allele frequency from public databases, conservation analysis, and Condel and Provean in silico predictors. Phenotype-genotype correlations were analyzed statistically. Sequencing identified 36 previously described and 18 novel mutations. In 51.3% of the index cases, mutations were found, mostly in KCNQ1, KCNH2, and SCN5A; 5.2% of cases had multiple mutations. Pathogenicity analysis revealed 39 mutations as likely pathogenic, 12 as VUS, and 3 as non-pathogenic. Clinical analysis revealed that 75.6% of patients with QTc≥500 ms were genetically confirmed. Our results support the use of genetic testing of KCNQ1, KCNH2, and SCN5A as part of the diagnosis of LQTS and to help identify relatives at risk of SCD. Further, the genetic tools appear more valuable as disease severity increases. However, the identification of genetic variations in the clinical investigation of single patients using bioinformatic tools can produce erroneous conclusions regarding pathogenicity. Therefore segregation studies are key to determining causality.  相似文献   

20.
《Genetics in medicine》2020,22(12):1956-1966
PurposeAzoospermia affects 1% of men and it can be the consequence of spermatogenic maturation arrest (MA). Although the etiology of MA is likely to be of genetic origin, only 13 genes have been reported as recurrent potential causes of MA.MethodsExome sequencing in 147 selected MA patients (discovery cohort and two validation cohorts).ResultsWe found strong evidence for five novel genes likely responsible for MA (ADAD2, TERB1, SHOC1, MSH4, and RAD21L1), for which mouse knockout (KO) models are concordant with the human phenotype. Four of them were validated in the two independent MA cohorts. In addition, nine patients carried pathogenic variants in seven previously reported genes—TEX14, DMRT1, TEX11, SYCE1, MEIOB, MEI1, and STAG3—allowing to upgrade the clinical significance of these genes for diagnostic purposes. Our meiotic studies provide novel insight into the functional consequences of the variants, supporting their pathogenic role.ConclusionOur findings contribute substantially to the development of a pre–testicular sperm extraction (TESE) prognostic gene panel. If properly validated, the genetic diagnosis of complete MA prior to surgical interventions is clinically relevant. Wider implications include the understanding of potential genetic links between nonobstructive azoospermia (NOA) and cancer predisposition, and between NOA and premature ovarian failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号