首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have revealed that following injuries, ligament tissues such as anterior cruciate ligaments (ACL), release large amounts of matrix metalloproteinases (MMPs). These enzymes have a devastating effect on the healing process of the injured ligaments. Although these enzymes are produced following ligament injuries, because of different healing capacities seen between the medial collateral ligament (MCL) and ACL, we were curious to find if the MMP activity was expressed and modulated differently in these tissues. For this purpose ACL and MCL fibroblasts were seeded on equi-biaxial stretch chambers and were stretched in different levels. The stretched cells were assayed using Zymography, Western Blot and global MMP activity assays. The results showed that within 72 h after injurious stretch, production of 72 kD pro-MMP-2 increased in both ACL and MCL. However, the ACL fibroblasts generated significantly more pro-MMP-2 than the MCL fibroblasts. Furthermore we found in ACL pro-MMP-2 was converted more into active form. With 4-aminophenyl mercuric acetate (APMA) treatment, large amounts of pro-MMP-2 were converted into active form in both. This indicates that there is no significant difference between ACL and MCL fibroblasts in post-translational modification of MMP-2. The fluorescent MMP activity assays revealed that the MMP family activities were higher in the injured ACL fibroblasts than the MCL. Since the MMPs are critically involved in extracellular matrix (ECM) turnover, these findings may explain one of the reasons why the injured ACL hardly repairs. The higher levels of active MMP-2 seen in the ACL injuries may disrupt the delicate balance of ECM remodeling process. These results suggest that the generation and modulation of MMP-2 may be directly involved in the different responses seen in ACL and MCL injuries.  相似文献   

2.
3.

Purpose  

The lysyl oxidase (LOX) family plays a crucial role in the formation and stabilisation of extracellular matrix (ECM) by catalysing the cross-linking of collagen and elastin, implicating its important fundamental roles in injury healing. A high level of transforming growth factor-β1 (TGF-β1) accompanies the inflammatory phase of an injury of the knee joint. Our purpose was to detect the expressions of the LOX family in anterior cruciate ligament (ACL) and medial collateral ligament (MCL) response to TGF-β1.  相似文献   

4.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/ MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30 degrees and 60 degrees of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60 degrees of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

5.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30° and 60° of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60° of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

6.
The optimal treatment for the MCL in the combined ACL and MCL-injured knee is still controversial. Therefore, we designed this study to examine the mechanical interaction between the ACL graft and the MCL in a goat model using a robotic/universal force-moment sensor testing system. The kinematics of intact, ACL-deficient, ACL-reconstructed, and ACL-reconstructed/MCL-deficient knees, as well as the in situ forces in the ACL, ACL graft, and MCL were determined in response to two external loading conditions: 1) anterior tibial load of 67 N and 2) valgus moment of 5 N-m. With an anterior tibial load, anterior tibial translation in the ACL-deficient knee significantly increased from 2.0 and 2.2 mm to 15.7 and 18.1 mm at 30° and 60° of knee flexion, respectively. The in situ forces in the MCL also increased from 8 to 27 N at 60° of knee flexion. ACL reconstruction reduced the anterior tibial translation to within 2 mm of the intact knee and significantly reduced the in situ force in the MCL to 17 N. However, in response to a valgus moment, the in situ forces in the ACL graft increased significantly by 34 N after transecting the MCL. These findings show that ACL deficiency can increase the in situ forces in the MCL while ACL reconstruction can reduce the in situ forces in the MCL in response to an anterior tibial load. On the other hand, the ACL graft is subjected to significantly higher in situ forces with MCL deficiency during an applied valgus moment. Therefore, the ACL-reconstructed knee with a combined ACL and MCL injury should be protected from high valgus moments during early healing to avoid excessive loading on the graft.  相似文献   

7.
8.
目的:通过研究雌激素对体外培养的人皮肤成纤维细胞基质金属蛋白酶-12(MMP-12)及赖氨酸氧化酶(LOX)的mRNA转录水平的影响,探讨雌激素减缓皮肤老化的机制。方法:采用酶消化法进行体外人皮肤成纤维细胞原代培养,然后将不同浓度的雌激素(0mol/L,1×10^-5mol/L,1×10^-4mol/L)加入体外培养的人皮肤成纤维细胞中,待药物作用后,提取总RNA,通过逆转录反应获得eDNA并进行体外扩增,对扩增产物进行琼脂糖凝胶电泳,根据条带的平均光密度比值来判断人成纤维细胞中MMP-12及LOX mRNA的表达水平。结果:对体外培养的人成纤维细胞进行雌激素干预,经β—actin内参校正后,RT—PCR示对照组、低剂量组、高剂量组MMP-12表达水平三组间差异无统计学意义(F=3.711,P=0.056),LOXmRNA表达水平三组间差异具有统计学意义(F=4.337,P=-0.038),SNK-q检验显示,低剂量组与对照组、低剂量组与高剂量组相比,差异无统计学意义(P〉0.05)、高剂量组与对照组相比,差异具有统计学意义(P〈0.05)。结论:雌激素可以上调LOX基因的转录水平,提示雌激素可能具有促进皮肤成纤维细胞弹力纤维的合成,逆转或缓解皮肤老化的作用。  相似文献   

9.
The anterior cruciate ligament (ACL) has poor healing responses compared with those of the medial collateral ligament (MCL). It has been implied that this is partially due to the poor reparative capacity of ACL cells for ligament injury. The present study was designed to elucidate the reparative capacities of human ACL and MCL cells by investigating their cellular properties and their responses to growth factors. Human ACL and MCL were obtained from seven fresh human cadavers. The cells were isolated from each tissue, and primary cultures were used for the examination. The growth rates of all the human ACL cells were lower than those of the human MCL cells; consistent with this, the doubling time of the ACL cells was 30 ± 7.4% longer than that of the MCL cells. The chemotactic migration of human ACL cells was 33 ± 8.1% slower and the synthesis of DNA and collagen in human ACL cells was 29 ± 6.3% and 31 ± 9.7% lower, respectively, in comparison with those of MCL cells. Cellular responses, in terms of DNA synthesis, in human ACL cells to either basic-fibroblast growth factor (1.0 and 10.0 ng/ml) or transforming growth factor-β (1.0 ng/ml) were lower than those of human MCL cells. However, no differences in the cellular responses in terms of collagen synthesis were found. Composite data show that human ACL cells have poorer cellular properties and lower responses to growth factors compared with those of human MCL cells, which suggests that the reparative capacity of human ACL cells may be poorer than that of human MCL cells. Received for publication on Sept. 2, 1998; accepted on Jan. 29, 1999  相似文献   

10.
To assess the mRNA expression of extracellular matrix genes which might correlate with or contribute to mechanically weaker medial collateral ligament (MCL) scars in the ACL-deficient rabbit knee joint compared to those in anterior cruciate ligament (ACL) intact knee joints, a bilateral MCL injury was induced in 10 skeletally mature female NZW rabbits. As part of the same surgical procedure, the ACL was transected in one of the knees while the contralateral knee had a sham procedure. The side having the combined MCL and ACL injury was randomly assigned. After six weeks, the rabbits were euthanized. Histological assessments were performed on samples of the MCL scars from each operated knee (n = 3 animals) and mRNA levels for collagen type I, III, V, decorin, biglycan, lumican, fibromodulin, TGF-beta, IL-1, TNF-alpha, MMP-1, MMP-13, and a housekeeping gene (GAPDH) were assessed using semiquantitative RT-PCR on RNA isolated from the MCL scar tissue of the remaining animals (n = 7 animals). Levels of mRNA for each gene were normalized using the corresponding GAPDH value. Results showed that the total RNA yield (per mg wet weight) in the MCL scar of the ACL-deficient knee was significantly greater than that in the MCL scar from the ACL-intact knee. Collagen type I mRNA levels were significantly lower and mRNA levels for TNF-alpha were significantly greater in the scars of ACL-deficient knees compared to scars from ACL-intact joints. There were no significant differences between ACL-deficient and ACL-intact knees with respect to MCL scar mRNA levels for the remaining genes assessed. Histologically, the "flaw" area, which has been shown to correlate with mechanical properties in previous studies, was significantly greater in MCL scars from ACL-deficient knees than in the ACL-intact MCL scars. The mean number of cells/mm2 in MCL scars from ACL-deficient knees was significantly greater than in MCL scars from ACL-intact knees. The present study suggests that MCL scar cell metabolism is differentially influenced by the combined injury environment.  相似文献   

11.
Anterior cruciate ligament (ACL) injuries often lead to significant functional impairment, and are associated with increased risk for induction of degenerative joint disease. However, few studies have described the effect of ligament transection on the remaining intact knee ligaments. This study sought to determine specifically what impact combined ACL/medial collateral ligament (MCL) transection had on the remaining intact knee ligaments, particularly from the histological, biochemical, and molecular perspectives. Twenty weeks post-ACL/MCL transection, the cut ends of sheep MCLs were bridged by scar, while the posterior cruciate ligaments (PCLs) and lateral collateral ligaments (LCLs) seemed gross morphologically normal. Water content and cell density increased significantly in the MCL scars and the intact PCLs but were unchanged in the LCLs. Collagen fibril diameter distribution was significantly altered in both MCL scar tissue and uninjured PCLs from transected joints. MMP-13 mRNA levels in MCL scars and PCLs from ligament transected joints were increased, while TIMP-1 mRNA levels were significantly decreased in the PCLs only. This study has shown that some intact ligaments in injured joints are impacted by the injury. The joint appears to behave like an integrated organ system, with injury to one component affecting the other components as the "organ" attempts to adapt to the loss of integrity.  相似文献   

12.
Cognitive deficits associated with closed head injury (CHI) have been well studied. Less attention has been directed to the emotional consequences of CHI and subsequent attempts to cope with major life events. CHI typically constitutes a catastrophic injury, yet few studies have examined coping strategies used by individuals after CHI or the effects of CHI on family functioning that may mediate coping. Previous workers have speculated that time since injury is a crucial determinant of coping; however, this has not been investigated with regard to CHI. In this preliminary investigation, 40 patients with CHI were compared with 17 neurologically intact controls. The CHI group was divided into two groups according to time since injury. It was found that patients with CHI used information seeking as their most dominant coping strategy regardless of their time since injury. Patients with CHI had higher family cohesion scores than control subjects. Implications of these findings for psychological response to CHI are discussed.  相似文献   

13.

Introduction and hypothesis  

We measured promoter methylation in the LOX gene in women with pelvic organ prolapse and in women without prolapse.  相似文献   

14.
《Acta orthopaedica》2013,84(2):267-274
Background?Long-term follow-up studies have indi-cated that there is an increased incidence of arthrosis following anterior cruciate ligament (ACL) reconstruc-tion, suggesting that the reconstruction may not repro-duce intact ACL biomechanics. We studied not only the magnitude but also the orientation of the ACL and ACL graft forces

Methods?10 knee specimens were tested on a robotic testing system with the ACL intact, deficient, and recon-structed (using a bone-patella tendon-bone graft). The magnitude and orientation of the ACL and ACL graft forces were determined under an anterior tibial load of 130?N at full extension, and 15, 30, 60, and 90° of flexion. Orientation was described using elevation angle (the angle formed with the tibial plateau in the sagit-tal plane) and deviation angle (the angle formed with respect to the anteroposterior direction in the transverse plane)

Results?ACL reconstruction restored anterior tibial translation to within 2.6?mm of that of the intact knee under the 130-N anterior load. Average internal tibial rotation was reduced after ACL reconstruction at all flexion angles. The force vector of the ACL graft was significantly different from the ACL force vector. The average values of the elevation and deviation angles of the ACL graft forces were higher than that of the intact ACL at all flexion angles

Interpretation?Contemporary single bundle ACL reconstruction restores anterior tibial translation under anterior tibial load with different forces (both magni-tude and orientation) in the graft compared to the intact ACL. Such graft function might alter knee kinematics in other degrees of freedom and could overly constrain the tibial rotation. An anatomic ACL reconstruction should reproduce the magnitude and orientation of the intact ACL force vector, so that the 6-degrees-of-freedom knee kinematics and joint reaction forces can be restored.  相似文献   

15.

Background

Anterior cruciate ligament (ACL) injures incur over USD 2 billion in annual medical costs and prevention has become a topic of interest in biomechanics. However, literature conflicts persist over how knee rotations contribute to ACL strain and ligament injury. To maximize the efficacy of ACL injury prevention, the effects of underlying mechanics need to be better understood.

Questions/purposes

We applied robotically controlled, in vivo-derived kinematic stimuli to the knee to assess ligament biomechanics in a cadaver model. We asked: (1) Does the application of abduction rotation increase ACL and medial collateral ligament (MCL) strain relative to the normal condition? (2) Does the application of internal tibial rotation impact ACL strain relative to the neutral condition? (3) Does combined abduction and internal tibial rotation increase ligament strain more than either individual contribution?

Methods

A six-degree-of-freedom robotic manipulator was used to position 17 cadaveric specimens free from knee pathology outside of low-grade osteoarthritis (age, 47 ± 8 years; 13 males, four females) into orientations that mimic initial contact recorded from in vivo male and female drop vertical jump and sidestep cutting activities. Four-degree rotational perturbations were applied in both directions from the neutral alignment position (creating an 8° range) for each frontal, transverse, and combined planes while ACL and MCL strains were continuously recorded with DVRT strain gauges implanted directly on each ligament. Analysis of variance models with least significant difference post hoc analysis were used to assess differences in ligament strain and joint loading between sex, ligament condition, or motion task and rotation type.

Results

For the female drop vertical jump simulation in the intact knee, isolated abduction and combined abduction/internal rotational stimuli produced the greatest change in strain from the neutral position as compared with all other stimuli within the ACL (1.5% ± 1.0%, p ≤ 0.035; 1.8% ± 1.3%, p ≤ 0.005) and MCL (1.8% ± 1.0%, p < 0.001; 1.6% ± 1.3%, p < 0.001) compared with all other applied stimuli. There were no differences in mean peak ACL strain between any rotational stimuli (largest mean difference = 2.0%; 95% confidence interval [CI], ?0.9% to 5.0%; p = 0.070). These trends were consistent for all four simulated tasks. Peak ACL strain in the intact knee was larger than peak MCL strain for all applied rotational stimuli in the drop vertical jump simulations (smallest mean difference = 2.1%; 95% CI, ?0.4% to 4.5%; p = 0.047).

Conclusions

Kinematically constrained cadaveric knee models using peak strain as an outcome variable require greater than 4° rotational perturbations to elicit changes in intraarticular ligaments.

Clinical Relevance

Because combined rotations and isolated abduction produced greater change in strain relative to the neutral position for the ACL and MCL than any other rotational stimuli in this cadaver study, hypotheses for in vivo investigations aimed toward injury prevention that focuses on the reduction of frontal plane knee motion should be considered. Furthermore, reduced strain in the MCL versus the ACL may help explain why only 30% of ACL ruptures exhibit concomitant MCL injuries.
  相似文献   

16.
目的探讨碱性成纤维细胞生长因子(bFGF)、胰岛素样生长因子(IGF-1)、转化生长因子-β(TGF-β)、血小板源性生长因子-β(PDGF-β)和血管内皮细胞生长因子(VEGF)五种生长因子在肌腱及粘连组织中的基因表达差别。方法取20只Leghorn鸡,制作肌腱损伤粘连模型,术后8周分别取损伤部位肌腱及粘连组织,提取mRNA,进行RT-PCR反应和电泳。对电泳上基因表达条带做密度测定,并进行统计学分析。结果bFGF、IGF-1和TGF-β基因在粘连组织中的相对表达量分别为0.29±0.06,0.51±0.14和0.27±0.04,在肌腱组织中的相对表达量分别为0.96±0.13,3.14±0.86和9.02±0.68。此三种生长因子基因在修复肌腱组织中的表达量均大于粘连组织中的表达量,差异有统计学意义(P〈0.05)。PDGF-β和VEGF基因仅在粘连组织中有部分样本表达,且表达量很少。结论bFGF、IGF-1和TGF-β基因在损伤后的肌腱组织中的表达强于粘连组织,PDGF-β和VEGF基因仅在粘连组织中有微弱表达。  相似文献   

17.
Background Long-term follow-up studies have indi-cated that there is an increased incidence of arthrosis following anterior cruciate ligament (ACL) reconstruc-tion, suggesting that the reconstruction may not repro-duce intact ACL biomechanics. We studied not only the magnitude but also the orientation of the ACL and ACL graft forces

Methods 10 knee specimens were tested on a robotic testing system with the ACL intact, deficient, and recon-structed (using a bone-patella tendon-bone graft). The magnitude and orientation of the ACL and ACL graft forces were determined under an anterior tibial load of 130 N at full extension, and 15, 30, 60, and 90° of flexion. Orientation was described using elevation angle (the angle formed with the tibial plateau in the sagit-tal plane) and deviation angle (the angle formed with respect to the anteroposterior direction in the transverse plane)

Results ACL reconstruction restored anterior tibial translation to within 2.6 mm of that of the intact knee under the 130-N anterior load. Average internal tibial rotation was reduced after ACL reconstruction at all flexion angles. The force vector of the ACL graft was significantly different from the ACL force vector. The average values of the elevation and deviation angles of the ACL graft forces were higher than that of the intact ACL at all flexion angles

Interpretation Contemporary single bundle ACL reconstruction restores anterior tibial translation under anterior tibial load with different forces (both magni-tude and orientation) in the graft compared to the intact ACL. Such graft function might alter knee kinematics in other degrees of freedom and could overly constrain the tibial rotation. An anatomic ACL reconstruction should reproduce the magnitude and orientation of the intact ACL force vector, so that the 6-degrees-of-freedom knee kinematics and joint reaction forces can be restored.  相似文献   

18.
Objectives: To identify predictors of family system functioning after acquired brain injury (ABI).

Research design: Retrospective design.

Methods and procedures: Data on ABI-related impairments, level of awareness, neuropsychological functioning, caregiver strain and family system functioning were extracted from the files of 66 individuals with ABI and 148 family members who had enrolled in a community-based support programme.

Main outcomes and results: Individuals with ABI, mothers, spouses, siblings and the family as a unit reported significant distress in family functioning compared to the norm. Higher caregiver strain and client gender (i.e. female) were predictive of poorer family system functioning. Neither ABI impairments nor neuropsychological variables were correlated with family functioning.

Conclusions: The effects of ABI extend beyond the injured person and primary caregiver. The need for a family systems approach to family intervention after ABI is supported. Implications for practice and future research are discussed.  相似文献   

19.
OBJECT: The possible role of the polyamine interconversion pathway on edema formation, traumatic injury volume, and tissue polyamine levels after traumatic brain injury (TBI) was studied using an inhibitor of the interconversion pathway enzyme, polyamine oxidase. METHODS: Experimental TBI was induced in Sprague-Dawley rats by using a controlled cortical impact device at a velocity of 3 m/second, resulting in a 2-mm deformation. Immediately after TBI was induced, 100 mg/kg of N1,N4-bis(2,3-butadienyl)-1,4-butanediamine 2HCl (MDL 72527) or saline was injected intraperitoneally. Brain water content and tissue polyamine levels were measured at 24 hours after TBI. Traumatic injury volume was evaluated using 2% cresyl violet solution 7 days after TBI occurred. The MDL 72527 treatment significantly reduced brain edema (80.4+/-0.8% compared with 81.2+/-1.2%, p < 0.05) and injury volume (30.1+/-6.6 mm3 compared with 42.7+/-13.3 mm3, p < 0.05) compared with the saline treatment. The TBI caused a significant increase in tissue putrescine levels at the traumatized site (65.5+/-26.5 nmol/g [corrected] in the cortex and 70.9+/-22.4 nmol/g [corrected] in the hippocampus) compared with the nontraumatized site (7+/-2.4 nmol/g [corrected] in the cortex and 11.4+/-6.4 nmol/g [corrected] in the hippocampus). The increase in putrescine levels in both the traumatized and nontraumatized cortex and hippocampus was reduced by a mean of 60% with MDL 72527 treatment. CONCLUSIONS: These results demonstrate, for the first time, that the polyamine interconversion pathway has an important role in the increase of putrescine levels after TBI and that the polyamine oxidase inhibitors, blockers of the interconversion pathway, can be neuroprotective against edema formation and necrotic cavitation after TBI.  相似文献   

20.
[目的]研究肘关节内侧副韧带(medial collateral-ligament,MCL)前束的生物力学作用,探讨肘关节内侧不稳定的发生机制。[方法]将人体肘关节尸体标本按照前束的完整程度分为3组:完整组、部分切断组、完全切断组,测量肘关节在不同屈曲角度下及不同程度前束损伤后关节松弛度(关节在极限以内的力或扭矩作用下的活动量或旋转[1])、肱尺关节平均压强和关节接触面积。[结果](1)前束完整组内外翻松弛度及全部切断组内平均压强和关节接触面积比较无统计学差异(P>0.05);(2)部分切断组及完全切断组外翻松弛度组内比较有统计学差异(P<0.05);前束完整组及前束部分切断组平均压强及接触面积组内比较均有统计学差异(P<0.05);(3)三组在关节松弛度、肱尺关节平均压强和关节接触面积的组间比较均存有统计学差异(P<0.05)。[结论](1)前束是肘关节内侧稳定的主要结构;(2)关节松弛度与关节内压强呈正相关关系,与关节接触面积呈负相关关系;(3)肘外翻应力试验应在屈肘>30°时进行,如外翻松弛度接近10°考虑MCL前束不完全断裂;如外翻松弛度达15°左右考虑MCL前束完全断裂;(4)前束部分损伤时是治疗肘内侧不稳的关键时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号