首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between HIV and opioid dependence therapies are known to occur. We sought to determine if such interactions occurred between methadone and elvitegravir boosted with cobicistat (EVG/COBI). We performed a within-subject open-label pharmacokinetic and pharmacodynamic study of 11 HIV-seronegative subjects stabilized on at least 2 weeks of methadone. Subjects underwent baseline and steady-state evaluation of the effect of elvitegravir 150 mg once a day (QD) boosted with 150 mg QD of cobicistat (EVG/COBI) on methadone pharmacokinetic parameters. Safety and pharmacodynamics were monitored throughout the study. Compared to baseline values, the R-methadone mean area under the concentration-time curve to the end of the dosing period (AUCtau) (5,550 versus 6,210 h · ng/ml) and mean maximum concentration of drug in serum (Cmax) (316 versus 337 ng/ml) did not significantly increase in the presence of EVG/COBI. Compared to baseline values, the S-methadone mean AUCtau (7,040 versus 7,540 h · ng/ml) and mean Cmax (446 versus 452 ng/ml) did not significantly increase in the presence of EVG/COBI. The AUCtau, Cmax, and Ctau of elvitegravir and cobicistat did not significantly differ from those of historical controls. Opioid withdrawal or overdose was not observed among subjects in this study. The addition of EVG/COBI to stabilized patients receiving methadone did not affect methadone pharmacokinetics and pharmacodynamics. These two agents can be safely coadministered.  相似文献   

2.
Frovatriptan: A Review of Drug-Drug Interactions   总被引:2,自引:0,他引:2  
P. Buchan  PhD  ; A. Wade  PhD  ; C. Ward  BSc  ; S.D. Oliver  BA  BChir  MB  MA  MRCGP    Mfpm;  A.J. Stewart  MB  MRCGP  DPM  ; S. Freestone  MD  FRCPEdin 《Headache》2002,42(S2):63-73
  相似文献   

3.
The effects of steady-state faldaprevir on the safety, pharmacokinetics, and pharmacodynamics of steady-state methadone and buprenorphine-naloxone were assessed in 34 healthy male and female subjects receiving stable addiction management therapy. Subjects continued receiving a stable oral dose of either methadone (up to a maximum dose of 180 mg per day) or buprenorphine-naloxone (up to a maximum dose of 24 mg-6 mg per day) and also received oral faldaprevir (240 mg) once daily (QD) for 8 days following a 480-mg loading dose. Serial blood samples were taken for pharmacokinetic analysis. The pharmacodynamics of the opioid maintenance regimens were evaluated by the objective and subjective opioid withdrawal scales. Coadministration of faldaprevir with methadone or buprenorphine-naloxone resulted in geometric mean ratios for the steady-state area under the concentration-time curve from 0 to 24 h (AUC0–24,ss), the steady-state maximum concentration of the drug in plasma (Cmax,ss), and the steady-state concentration of the drug in plasma at 24 h (C24,ss) of 0.92 to 1.18 for (R)-methadone, (S)-methadone, buprenorphine, norbuprenorphine, and naloxone, with 90% confidence intervals including, or very close to including, 1.00 (no effect), suggesting a limited overall effect of faldaprevir. Although individual data showed moderate variability in the exposures between subjects and treatments, there was no evidence of symptoms of opiate overdose or withdrawal either during the coadministration of faldaprevir with methadone or buprenorphine-naloxone or after faldaprevir dosing was stopped. Similar faldaprevir exposures were observed in the methadone- and buprenorphine-naloxone-treated subjects. In conclusion, faldaprevir at 240 mg QD can be coadministered with methadone or buprenorphine-naloxone without dose adjustment, although given the relatively narrow therapeutic windows of these agents, monitoring for opiate overdose and withdrawal may still be appropriate. (This study has been registered at ClinicalTrials.gov under registration no. NCT01637922.)  相似文献   

4.
Delamanid is a medicinal product approved for treatment of multidrug-resistant tuberculosis. Three studies were conducted to evaluate the potential drug-drug interactions between delamanid and antiretroviral drugs, including ritonavir, a strong inhibitor of CYP3A4, and selected anti-TB drugs, including rifampin, a strong inducer of cytochrome P450 (CYP) isozymes. Multiple-dose studies were conducted in parallel groups of healthy subjects. Plasma samples were analyzed for delamanid, delamanid metabolite, and coadministered drug concentrations, and pharmacokinetic (PK) parameters were determined. The magnitude of the interaction was assessed by the ratio of the geometric means and 90% confidence intervals. Coadministration of delamanid with tenofovir or efavirenz did not affect the PK characteristics of delamanid. Coadministration of Kaletra (lopinavir/ritonavir) with delamanid resulted in an approximately 25% higher delamanid area under the concentration-time curve from time 0 to the end of the dosing interval (AUCτ). Tenofovir, efavirenz, lopinavir, and ritonavir exposure were not affected by delamanid. Coadministration of delamanid with the TB drugs (ethambutol plus Rifater [rifampin, pyrazinamide, and isoniazid]) resulted in lower delamanid exposures (47 and 42% for the AUCτ and Cmax [maximum concentration of a drug in plasma] values, respectively), as well as decreased exposure of three primary metabolites (approximately 30 to 50% lower AUCτ values). Delamanid did not affect rifampin, pyrazinamide, and isoniazid exposure; the ethambutol AUCτ and Cmax values were about 25% higher with delamanid coadministration. The lack of clinically significant drug-drug interactions between delamanid and selected antiretroviral agents (including the strong CYP inhibitor ritonavir) and a combination of anti-TB drugs was demonstrated. Although there was a decrease in the delamanid concentrations when coadministered with ethambutol plus Rifater, this is likely related to decreased delamanid absorption and not to CYP induction.  相似文献   

5.
6.
Amphotericin B (AmB) is excreted via the renal excretion route. This excretion process may result in nephrotoxicity. However, relevant information on the precise renal excretion mechanisms is not available. The aim of the study was to analyze the possible interaction of AmB or its prodrug AmB deoxycholate (AmB-DOC) with the typical renal organic anion transporters (OATs) and organic cation transporters (OCTs), using cellular and organ models. The relevant transport systems were then investigated in terms of the drug-drug interactions of AmB-DOC with antivirals that might potentially be used concomitantly. To analyze the renal excretion mechanisms of [3H]AmB, perfused rat kidney was employed. HeLa and MDCK II cells transiently transfected with human OAT1 (hOAT1) or hOCT2 were used as the cellular models. A significant tubular secretion of AmB was demonstrated in the perfused rat kidney. The cellular studies performed confirmed the active transport of AmB into cells. AmB did not interact with hOAT1 but strongly inhibited hOCT2. In contrast, AmB-DOC inhibited both hOAT1 and hOCT2. However, [3H]AmB cellular uptake by hOAT1 and hOCT2 was not found. AmB-DOC interacted significantly with adefovir, tenofovir, and cidofovir in hOAT1-transfected cells at supratherapeutic concentrations. In conclusion, the significant potency of AmB and AmB-DOC for inhibiting the transporters was demonstrated in this study. The secretion of AmB in the renal tubules is likely not related to the transporters here, since the drug was not proven to be a substrate for them. Drug-drug interactions of AmB and the antivirals used in this study on the investigated transporters are not probable.  相似文献   

7.
8.
9.
The three direct-acting antiviral agent (3D) regimen is a novel combination of direct-acting antiviral agents (DAAs) that has proven effective for the treatment of hepatitis C virus (HCV) infection. Given the potential for coadministration in patients with human immunodeficiency virus infection, possible drug interactions with antiretroviral drugs must be carefully considered. Four phase 1, multiple-dose pharmacokinetic studies were conducted in healthy volunteers (n = 66). The 3D regimen of 150/100 mg daily paritaprevir/ritonavir, 25 mg daily ombitasvir, and 400 mg twice-daily dasabuvir was administered alone or in combination with 200 mg daily of emtricitabine and 300 mg daily of tenofovir disoproxil fumarate (tenofovir DF), 25 mg daily of rilpivirine, or 400 mg of raltegravir twice daily. A 2-DAA regimen of 150/100 mg daily paritaprevir/ritonavir and 400 mg of dasabuvir twice daily was also studied in combination with efavirenz/emtricitabine/tenofovir DF at 600/200/300 mg daily, respectively (Atripla; Bristol-Myers Squibb). Pharmacokinetic parameters were determined from plasma drug concentrations. No clinically significant drug interactions were observed (≤32% change in exposure) between the 3D regimen and that of emtricitabine plus tenofovir DF. Raltegravir exposure was increased up to 134% when the drug was coadministered with the 3D regimen. Although coadministration with rilpivirine was well tolerated in healthy volunteers, observed elevations in rilpivirine exposures may increase the potential for adverse drug reactions. Concomitant use of the 2-DAA regimen and efavirenz/emtricitabine/tenofovir DF was discontinued owing to poor tolerability and adverse events. No dose adjustment is required during coadministration of raltegravir, tenofovir DF, or emtricitabine with the 3D regimen. Rilpivirine is not recommended and efavirenz is contraindicated for coadministration with the 3D regimen.  相似文献   

10.
ABSTRACT

Telaprevir (TVR) effects on P-glycloprotein and cytochrome P450 (CYP) may significantly elevate serum levels of morphine and methadone. Recent literature points to major interactions when combining TVR with warfarin or rifampin. Opioid interactions are especially dangerous in hepatitis C patients, as coinfection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) occurs in 50–90% of HIV-infected drug users that are prescribed opioids for chronic pain and/or methadone for maintenance. TVR has been shown to significantly inhibit the active transport enzyme pGP and may therefore increase intestinal morphine absorption. TVR also inhibits hepatic CYP3A4 that are responsible for metabolizing methadone. Patients requiring opioid analgesics must be carefully monitored because of potential for elevated opioid levels and overdose risk. Current recommendations minimize potential drug interactions between telaprevir and opioids, especially methadone, based on a single 7-day trial. We outline the various pharmacokinetic mechanisms involved when combining TVR with methadone or morphine and recommend that current data are not sufficiently robust to minimize the potentially significant interaction with opioids, especially methadone. Clinicians must be mindful of these understated interactions, know that the opioid dose may need to be significantly increased or reduced, and use caution during upward titration of opioids affected by these enzyme systems.  相似文献   

11.
Recent in vitro studies, clinical trials and epidemiological studies have suggested possible interactions between aspirin and other cyclo-oxygenase (COX) inhibitors, such as ibuprofen of the COX-2 inhibitors celecoxib and rofecoxib. The objective of this study was to test the effects of aspirin (1, 2.5 and 5 mg/kg), and ibuprofen (4 and 15 mg/kg), diclofenac (2.5 mg/kg), flurbiprofen (2 mg/kg), celecoxib (7.5 mg/kg), and rofecoxib (1 mg/kg), alone or combined on a rat model of arterial thrombosis. Drugs were given orally daily for 7 days, before insertion of an arterio-venous shunt thrombosis system, left in place for 15 min. Main parameter was thrombus weight. Five to 12 rats were used per experiment, and 35 controls overall. Aspirin inhibited thrombus formation in a dose-dependent manner. All NSAIDS given alone also inhibited thrombus formation to approximately the same level as aspirin 1 mg/kg/day. Ibuprofen, celecoxib and rofecoxib inhibited the effects of aspirin, but not diclofenac or flurbiprofen. The interactions with aspirin do not seem to affect all NSAIDs to equal levels. The clinical impact of this needs to be confirmed in adequately powered clinical trials or pharmaco-epidemiological studies.  相似文献   

12.
《Clinical therapeutics》2022,44(11):1536-1544
PurposeThis analysis aimed to identify all strong drug-drug interactions (DDIs) associated with drugs approved by the US Food and Drug Administration (FDA) in 2021.MethodsDDI data for small molecular drugs approved by the FDA in 2021 (N = 36) were analyzed using the University of Washington Drug Interaction Database. The mechanism(s) and clinical magnitude of these interactions were characterized based on information available in the new drug application reviews. Clinical studies and simulation results with mean AUC ratios (AUCRs) ≥5 for inhibition DDIs and ≤0.2 for induction (ie, strong interactions) were then fully analyzed. A total of 7 drugs had an AUC change ≥5-fold as victim drugs, with inhibition and induction of cytochrome P450 (CYP) 3A explaining all interactions.FindingsSix drugs, namely atogepant, finerenone, ibrexafungerp, infigratinib, mobocertinib, and voclosporin, were sensitive substrates of CYP3A, with AUCRs of 5.45 to 18.55 when co-administered with the strong inhibitors itraconazole or ketoconazole, whereas avacopan was a moderate sensitive substrate of CYP3A, most sensitive to induction (>5-fold change). Only 1 drug, viloxazine, was a strong perpetrator (CYP1A2 inhibition with caffeine AUCR of 5.83). No drug had strong inhibition of transporters and no strong induction of enzymes or transporters was detected. No dominant therapeutic class was identified. As expected, all these strong DDIs triggered strict labeling recommendations.ImplicationsOverall, identifying strong DDIs with newly approved drugs and understanding their mechanisms are critical to provide effective management strategies in patients who often receive multiple comedications.  相似文献   

13.
Saquinavir, a potent human immunodeficiency virus protease inhibitor, is extensively metabolized by CYP3A4. Saquinavir is coadministered with ritonavir, a strong CYP3A4 inhibitor, to boost its exposure. Ketoconazole is a potent CYP3A inhibitor. The objectives of this study were to investigate the effect of ketoconazole on the pharmacokinetics of saquinavir/ritonavir and vice versa using the approved dosage regimens of saquinavir/ritonavir at 1,000/100 mg twice daily and ketoconazole at 200 mg once daily. This was an open-label, randomized two-arm, one-sequence, two-period crossover study in healthy subjects. In study arm 1, 20 subjects received saquinavir/ritonavir treatment alone for 14 days, followed in combination with ketoconazole treatment for 14 days. In arm 2, 12 subjects received ketoconazole treatment for 6 days, followed in combination with saquinavir/ritonavir treatment for 14 days. The pharmacokinetics were assessed on the last day of each treatment (days 14 and 28 in arm 1 and days 6 and 20 in arm 2). The exposures Cmax and the area under the concentration-time curve from 0 to 12 h (AUC0-12) of saquinavir and ritonavir with or without ketoconazole were not substantially altered after 2 weeks of concomitant dosing with ketoconazole. The Cmax and AUC0-12 of ketoconazole, dosed at 200 mg once daily, were increased by 45% (90% confidence interval = 32 to 59%) and 168% (90% confidence interval = 146 to 193%), respectively, after 2 weeks of concomitant dosing with ritonavir-boosted saquinavir (1,000 mg of saquinavir/100 mg of ritonavir given twice daily). The greater exposure to ketoconazole when given in combination with saquinavir/ritonavir was not associated with unacceptable safety or tolerability. No dose adjustment for saquinavir/ritonavir (1,000/100 mg twice daily) is required when coadministered with 200 mg of ketoconazole once daily, and high doses of ketoconazole (>200 mg/day) are not recommended.  相似文献   

14.
15.
16.
17.
According to the 2012 WHO global tuberculosis (TB) report (http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf), the death rate for tuberculosis was over 1.4 million patients in 2011, with ∼9 million new cases diagnosed. Moreover, the frequency of comorbidity with human immunodeficiency virus (HIV) and with diabetes is on the rise, increasing the risk of these patients for experiencing drug-drug interactions (DDIs) due to polypharmacy. Ethambutol is considered a first-line antituberculosis drug. Ethambutol is an organic cation at physiological pH, and its major metabolite, 2,2′-(ethylenediimino)dibutyric acid (EDA), is zwitterionic. Therefore, we assessed the effects of ethambutol and EDA on the function of human organic cation transporter 1 (hOCT1), hOCT2, and hOCT3 and that of EDA on organic anion transporter 1 (hOAT1) and hOAT3. Potent inhibition of hOCT1- and hOCT2-mediated transport by ethambutol (50% inhibitory concentration [IC50] = 92.6 ± 10.9 and 253.8 ± 90.8 μM, respectively) was observed. Ethambutol exhibited much weaker inhibition of hOCT3 (IC50 = 4.1 ± 1.6 mM); however, significant inhibition (>80%) was observed at physiologically relevant concentrations in the gastrointestinal (GI) tract after oral dosing. EDA failed to exhibit any inhibitory effects that warranted further investigation. DDI analysis indicated a strong potential for ethambutol interaction on hOCT1 expressed in enterocytes and hepatocytes and on hOCT3 in enterocytes, which would alter absorption, distribution, and excretion of coadministered cationic drugs, suggesting that in vivo pharmacokinetic studies are necessary to confirm drug safety and efficacy. In particular, TB patients with coexisting HIV or diabetes might experience significant DDIs in situations of coadministration of ethambutol and clinical therapeutics known to be hOCT1/hOCT3 substrates (e.g., lamivudine or metformin).  相似文献   

18.

Context

Most patients with advanced malignant disease need to take several drugs to control symptoms. This treatment raises risks of serious adverse effects and drug-drug interactions (DDIs).

Objectives

To identify studies reporting clinically significant DDIs involving medications used for symptom control, other than opioids used for pain management, in adult patients with advanced malignant disease.

Methods

Systematic review with searches in Embase, MEDLINE, and the Cochrane Central Register of Controlled Trials, from the start of the databases (Embase from 1980) through June 21, 2018. In addition, reference lists of relevant full-text articles were hand-searched.

Results

Of 9699 retrieved citations, 462 were considered potentially eligible. After full-text reading, 29 were included in the final analysis, together with 13 articles from reference lists. The 42 included publications were case reports, letters to the Editor, and one retrospective study. Drugs most often involved were antiepileptics, antidepressants, corticosteroids, and nonopioid analgesics. Clinical manifestations of identified DDIs included sedation, respiratory depression, serotonin syndrome, neuroleptic malignant syndrome, delirium, seizures, ataxia, liver and kidney failure, bleeding, cardiac arrhythmias, rhabdomyolysis, and others. The most common mechanisms eliciting DDIs were alteration of CYP450-dependent metabolism and overstimulation of serotonin receptors in the central nervous system.

Conclusion

Drugs used for symptom control in patients with advanced cancer may cause serious DDIs. Although there is limited evidence for the risk of clinically significant DDIs, physicians treating patients with cancer should try to limit polypharmacy, avoid drug combinations with a high risk of DDIs, and closely monitor patients for adverse drug reactions.  相似文献   

19.
A kinetic and hemodynamic study of digoxin was performed in six healthy subjects and similar studies were performed during digoxin with spironolactone and with triamterene. Spironolactone reduced renal tubular secretion of digoxin and attenuated its positive inotropic effect (evaluated by systolic time intervals and echocardiography) and triamterene reduced the extrarenal elimination of digoxin, but induced no changes in digoxin-elicited inotrophy. It is suggested that the renal handling of digoxin is influenced by the intracellular potassium concentration in the renal tubular cell. The results indicate a drug-receptor interaction between spironolactone metabolites and digoxin at the hypothetical inotropic digitalis receptor. Amiloride has been reported to suppress digoxin inotropism, whereas spironolactone induces minor inhibition and triamterene does not affect digoxin inotropism.  相似文献   

20.
Interactions between Pacemakers and Security Systems   总被引:1,自引:0,他引:1  
Electromagnetic fields arising from a variety of different sources have been shown to interfere with normal pacemaker function. This study evaluated the possible interactions between two modern security systems and different pacemaker types. Fifty–three patients (27 single chamber pacemakers, 25 dual chamber pacemakers) have been tested routinely for their pacemaker function. Thirty–eight patients presented with unipolar sensing and 15 with bipolar sensing. The patients were asked to walk through an installed security system, an antitheft device, and electromagnetic access device with different field strengths while a six–channel ECG monitored the patients. The pacemaker systems were first measured in their basic programmed modes, then the intervention frequency was changed to 100/min and, thereafter, the maximum sensitivity without T wave over– sensing was added. In the security system with the highest field strength (2,700 mA/m), a pacemaker malfunction could be observed in 13% of the monitored patients. In one case, a pacemaker (VVIR) switched to ventricular safety pacing (VOO mode). In the security system with the lower field strength (1,600 mA/m) we found a pacemaker malfunction in 4% of the tested patients. In the antitheft device (50 mA/m). in the electromagnetic access device (300 mA/m), and in pacemaker systems with bipolar sensing, none of these dysfunctions were observed. Phantom programming as described previously did not occur in any of the systems. Persons who are often in the vicinity of security systems should be equipped with a bipolar pacemaker system. Our findings indicate that patients with pacemakers should avoid contact with security systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号