首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
目的观察美满霉素(minocycline)对血管性认知功能损伤大鼠海马组织GFAP、COX-2、NF-κB、IL-1β和TNF-α表达的影响,探讨美满霉素对血管性认知功能损伤脑保护作用的机制。方法Wistar大鼠随机分为假手术组(S组)、血管性认知功能损伤模型组(M组)和美满霉素治疗组(MT组)。免疫组织化学法检测大鼠海马组织COX-2和NF-κB的表达,蛋白质印迹和免疫组织化学法检测大鼠海马组织GFAP的表达,ELISA法检测大鼠海马组织IL-1β和TNF-α的表达。结果MT 组 GFAP、COX-2、NF-κB、IL-1β和 TNF-α表达较 M 组均降低(P<0.01) ;MT 和 M 组GFAP、COX-2、NF-κB、IL-1β和 TNF-α表达均显著高于 S 组(P<0.01)。结论美满霉素能降低血管性认知功能损伤大鼠海马组织中GFAP、COX-2、NF-κB、IL-1β和TNF-α的表达,抑制血管性认知功能损伤大鼠海马星型胶质细胞活化和神经炎症,发挥脑保护作用。  相似文献   

2.
Chronic cerebral hypoperfusion (CCH) is common in the pathogenesis of cognitive impairment, in which oxidative stress plays an important role. Here we describe an alternative rat model for CCH that involves two-stage, three-vessel occlusion (2s-3VO) and compare its effects with those of permanent bilateral occlusion (2VO) of the common carotid arteries. Real-time cerebral blood flow (CBF) during the surgery was monitored. Spatial learning and memory were tested with the Morris water maze, and oxidative damage was evaluated by measuring malondialdehyde (MDA) levels in both the hippocampus and cortex. We found that the CBF drop in the early stage of the 2s-3VO model was more modest than that in the 2VO model. Like 2VO rats, 2s-3VO rats showed impaired spatial learning and memory and increased MDA levels 8 weeks after surgery. Interestingly, when pooling observations from previous studies, we confirmed that oxidative damage appeared later than spatial learning and memory deficits but lasted longer than did cerebral hypoperfusion. Thus, the 2s-3VO model appears to be a suitable model for the study of CCH. Moreover, data support the notion that cognitive impairment in CCH rat models may be induced early by cerebral hypoperfusion early and in a later phase by oxidative stress.  相似文献   

3.
Vascular growth and redistribution of flow can compensate for arterial occlusion and possibly reduce the effects of hypoperfusion. As yet there is limited information on the age-dependent nature of vasculature remodelling. In this study, we have monitored the vascular and morphologic changes using magnetic resonance imaging and histology in a chronic bilateral common carotid artery occlusion (BCCAO) model in both newborn and adult rats. Acutely, cerebral blood flow (CBF) decreased immediately after BCCAO, producing a state of oligemic hypoperfusion. At 6 months after BCCAO in both adult and neonatal rats, the CBF had normalised at control values. To investigate the underlying mechanism for the return of CBF to control values, intra- and extracerebral magnetic resonance angiograms (MRAs) were acquired. As expected, signal from the common carotid arteries was present in the sham-operated rats, but was absent in the BCCAO animals. India ink angiograms demonstrated more tortuous basilar arteries in the adult rats post-BCCAO and MRAs demonstrated more extracerebral midline collaterals in the neonatal rats post-BCCAO, indicating different modes of vascular adaptation dependent on the age at onset of the insult. Both groups had collateral vessels arising from the vertebral arteries, and BCCAO was also associated with increased diameter of basilar, posterior cerebral, posterior communicating, internal carotid, middle cerebral and anterior cerebral arteries. Our study suggests that the developing and mature animals exhibit different patterns of vascular remodelling and that the BCCAO hypoperfusion model will be useful for investigating age-dependent vascular events in response to vaso-occlusive disease.  相似文献   

4.
Although many kinds of rat and gerbil cerebral ischemic preconditioning models are available, only a focal ischemic preconditioning model in mice has been reported. As most genetic alterations have been performed in mice, it is urgent to develop mouse ischemic preconditioning models for investigating the molecular mechanisms of ischemic preconditioning in transgenic mice. In the present study, we developed a forebrain ischemic preconditioning model in C57Black/Crj6 (C57BL/6) mice. Forebrain ischemia was induced in C57BL/6 mice (8-10 weeks old) by bilateral common carotid artery occlusion (BCCAO) for 18 min. The conditioning ischemic insult lasting for 6 min was carried out 48 h before the 18-min BCCAO. On the seventh day after BCCAO, neuronal damage was visualized by microtubule-associated protein-2 immunohistochemistry and quantified by cresyl violet staining. Terminal deoxytransferase-mediated dUTP-nick end labeling (TUNEL) was performed 72 h after reperfusion to detect DNA fragmentation. Ischemia for 18 min resulted in injury to the striatum, cortex and hippocampus. In comparison to the hippocampus, striatal neuronal injury was more severe and reproducible. Although the conditioning ischemia itself caused neither noticeable striatal neuronal damage nor DNA fragmentation, it significantly reduced striatal neuronal damage and DNA fragmentation caused by the subsequent 18-min ischemia. These results indicate that striatal neuronal injury after transient BCCAO can be strongly reduced by a sublethal ischemic episode in C57BL/6 mice. As many kinds of gene-altered C57BL/6 mice are available, this preconditioning model may be useful for investigating the molecular mechanisms of ischemic preconditioning in transgenic mice.  相似文献   

5.
Abstract. Although transient ischemic attacks (TIAs) by definition do not cause lasting neurological deficits, cognitive impairment has been suggested in patients with carotid artery disease who have suffered from a TIA. The purpose of our study was to assess whether patients with carotid artery disease and TIAs are cognitively impaired, to describe the frequency, nature and severity of this impairment, and to search for associated patient characteristics.Thirty-nine consecutive patients with carotid occlusion and ipsilateral cerebral or retinal TIAs, and 46 healthy controls underwent extensive neuropsychological assessment. Performances were compared group-wise with analysis of variance. In addition, the presence of cognitive impairment in the individual patient was determined. Associations between illness characteristics and cognitive impairment were explored with regression analysis.Fifty-four percent of patients were cognitively impaired. Cognitive deficits were non-specific in nature and mild in severity. Impairment occurred also in patients with isolated retinal symptoms and in those without visible ischemic brain lesions on MRI. Neither the presence of any vascular risk factor, the side of the symptomatic carotid occlusion, the uni- or bilaterality of carotid occlusion, nor the number of cerebral ischemic lesions were predictors of cognitive impairment.We conclude that about half of the patients with carotid artery occlusion and ipsilateral TIAs are cognitively impaired. The presence of cognitive deficits in patients with isolated retinal symptoms and in those without cerebral ischemic lesions on MRI argues against an exclusive role for structural brain damage in the pathogenesis of these deficits.  相似文献   

6.
Chronic cerebral hypoperfusion (CCH) might account for the cognitive deficits associated with vascular cognitive impairment, but the mechanisms of hypoperfusion insulting to the cognition remain obscure. In the present study, Wistar rats underwent permanent occlusion of bilateral common carotid arteries to induce CCH. 2D-DIGE combined with MALDI-TOF MS was applied to determine the proteins that were differentially expressed in synaptosomes of prefrontal cortex and hippocampus. ATPsynβ, NDUFS1, UQCRC1 and Hsp70 were elevated both in synaptosomes of cortex and hippocampus at week 2 after operation, but subsided to baseline at week 4 except ATPsynβ which was still upregulated in synaptosomes of hippocampus at week 4. IDH3A and PDC-E2 were increased, respectively, in synaptosomes of prefrontal cortex and hippocampus at week 2, and showed no difference when compared to control at week 4. Malate dehydrogenase showed no difference in synaptosomes of prefrontal cortex and hippocampus at week 2, but showed an elevation in synaptosomes of prefrontal cortex at week 4. Our results imply that metabolic reserve and anti-oxidative stress might transiently exist in the early stage of CCH, which probably help cognitive save.  相似文献   

7.
Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxygenase1 signaling pathway in chronic cerebral ischemia. In this study, a rat model of chronic cerebral ischemia was established by permanent bilateral common carotid artery occlusion, and these rats were treated with intragastric cilostazol (30 mg/kg) for 9 weeks. Morris water maze results showed that cognitive impairment gradually worsened as the cerebral ischemia proceeded. Immunohistochemistry, semiquantitative PCR and western blot analysis showed that hypoxiainducible factorla and heme oxygenase1 expression levels in creased after chronic cerebral ischemia, with hypoxiainducible factorla expression peaking at 3 weeks and heme oxygenase1 expression peaking at 6 weeks. These results suggest that the elevated levels of hypoxiainducible factorla may upregulate heine oxygenase1 expression fol lowing chronic cerebral ischemia and that the hypoxiainducible factor1/heme oxygenase1 sig naling pathway is involved in the development of cognitive impairment induced by chronic cerebral ischemia. Cilostazol treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, decreased hypoxiainducible factorla and heme oxygenase1 expression levels, and reduced apoptosis in the frontal cortex. These findings demonstrate that cilostazol can protect against cognitive impairment induced by chronic cerebral ischemic injury through an antiapoptotic mechanism.  相似文献   

8.
The effects of chronic hypoperfusion of cerebral blood flow (CBF) on central cholinergic indices and intellectual functions were investigated in rats. Male Wistar rats, aged 9 weeks, were anesthetized with pentobarbital, and the bilateral common carotid arteries were permanently ligated. Cortical CBF in the hypoperfused rats was markedly decreased at 6 weeks after the operation. In the hypoperfused group, cholinergic indices were changed to consist two phases after the operation, before (acute) and after (chronic) 6 weeks after the operation. At 6 weeks, choline acetyltransferase activity was restored to the sham-operated level compared with the changes in the frontal cortex and thalamus + midbrain at 3 weeks. On the other hand, the maximum number of muscarinic acetylcholine receptors was reduced in the frontal cortex, hippocampus and striatum at 6 weeks and thereafter remained at this low level. In discrimination learning task, the percentage of correct responses in the hypoperfused rats was generally reduced in contrast with that of the sham-operated rats, although the number of total responses were not changed. As a consequence, cholinergic dysfunctions correlate with discrimination learning disabilities in the hypoperfused rats. These findings suggest that the hypoperfused rat may be useful for the cerebrovascular type dementia model to clarify pathophysiology.  相似文献   

9.
The histopathological and hemodynamic consequences of photochemically induced middle cerebral artery (MCA) thrombosis and recanalization were studied in the rat. Recanalization of the thrombosed MCA segment was achieved by the topical application of nimodipine at 1 h following photochemically induced occlusion. Pathological consequences of permanent and temporary occlusion were compared by morphometric procedures 7 days following thrombus formation. Rats with permanent thrombosis exhibited consistent infarction of both striatum and cortex. MCA recanalization at 1 h was associated with a significant reduction in total infarct volume. In recanalized rats, small cortical infarcts, confined to the peripheral MCA territory, were observed in only three of six rats. In contrast, a mixed pattern of infarction and ischemic cell damage was documented throughout the striatum in all rats. Local CBF (1CBF), measured autoradiographically, was significantly reduced in the MCA territory following 1 h of MCA occlusion, especially within the striatum. At 1 h after recanalization, 1CBF recovered within the previously ischemic brain regions to greater than 50% of control. Perfusion deficits were detected by carbon black infusion within focal areas of the striatum following reperfusion. Thus, cortical neurons appear to tolerate 1 h of MCA occlusion in this model. In contrast, reperfusion following 1 h of photochemically induced MCA occlusion gives rise to selective injury to the striatum.  相似文献   

10.
A preliminary work with in vivo voltammetry (IVV) in the ischemic brain had been performed by the authors in rats after cardiac arrest, which showed that the IVV system is useful to investigate ischemic brain. In the present report, IVV was applied to ischemic brain by 4-vessel occlusion in rat and changes in dopamine and serotonin metabolism were investigated by measuring peak 2 (3,4-dihydroxyphenylacetic acid, DOPAC) and peak 3 (5-hydroxyindoleacetic acid, 5-HIAA) in the striatum. The change of cerebral blood flow (CBF) were also assessed by a temperature-controlled thermoelectrical method in the striatum of the same model. The heights of peaks 2 and 3 were significantly increased to 600-900% and 200-300% respectively in the striatum during 30 minutes of 4-vessel occlusion. The increase of each peak was maximum at 10 minutes after occlusion. These changes may reflect that release of monoamine neurotransmitters is increased by the ischemia and outward transport of their metabolites are disturbed. On the other hand, after reperfusion by release of carotid occlusion, the heights of peaks 2 and 3 rapidly decreased below the control values, thereafter, peaks 2 and 3 gradually increased to over control values at 180-210 minutes after reperfusion. rCBF in the striatum decreased to almost 0 ml/100 g/min during 4-vessel occlusion ischemia and increased to over control values transiently for 30 minutes after reperfusion, followed by gradual decrease for about 240 minutes. Since monoamine neurotransmitters are known to have various effects on cerebral metabolism and CBF, their disorders may contribute to the change of CBF and the development of postischemic brain damage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of oligemia (moderate ischemia) on the brain need to be explored because of the potential role of subtle microvascular changes in vascular cognitive impairment and dementia. Chronic bilateral common carotid artery occlusion (BCCAO) in adult rats has been used to study effects of oligemia (hypoperfusion) using neuropathological and neurochemical analysis as well as behavioral tests. In this study, BCCAO was induced for 1 week, or 2, 4, and 6 months. Sensitive immunohistochemistry with marker proteins was used to study reactions of astrocytes (GFAP, nestin), and lectin binding to study microglial cells during BCCAO. Overt neuronal loss was visualized with NeuN antibodies. Astrocytes reacted to changes in the optic tract at all time points, and strong glial reactions also occurred in the target areas of retinal fibers, indicating damage to the retina and optic nerve. Astrocytes indicated a change in the corpus callosum from early to late time points. Diffuse increases in GFAP labeling occurred in parts of the neocortex after 1 week of BCCAO, in the absence of focal changes of neuronal marker proteins. No significant differences emerged in the cortex at longer time points. Nestin labeling was elevated in the optic tract. Reactions of microglia cells were seen in the cortex after 1 week. Measurements of the basilar artery indicated a considerable hypertrophy, indicative of macrovascular compensation in the chronic occlusion model. These results indicate that chronic BCCAO and, by inference, oligemia have a transient effect on the neocortex and a long-lasting effect on white matter structures.  相似文献   

12.
Nitric oxide synthase-containing neurons are presumed to be resistant to neurodegeneration and neurotoxicity, however this resistance has not been demonstrated after focal cerebral ischemia. We therefore measured the temporal profile of neuronal nitric oxide synthase (NOS-I) mRNA and immunoreactivity and NADPH-diaphorase reactivity over a one week period after permanent middle cerebral artery (MCA) occlusion in 48 male Wistar rats and compared these data to ischemic cell damage as evaluated on hematoxylin and eosin (H & E) stained sections by light microscopy. NOS-I mRNA increased as early as 15 min after MCA occlusion in the ipsilateral striatum and maximal expression of NOS-I was found in the ipsilateral cortex and striatum 1 h after MCA occlusion. The numbers of NOS-I-containing neurons in the ipsilateral cortex and striatum were significantly greater (P < 0.05) than NOS-I-containing neurons in the contralateral hemisphere at 2–48 h after the onset of ischemia. The number of NOS-I-containing neurons peaked at 4 h after MCA occlusion. Neurons exhibited shrinkage or were swollen at 1 to 4 h after MCA occlusion. At 24–48 h after ischemia, neurons in the ischemia lesion appeared to be eosinophilic or ghost like on H & E stained sections. However, some of these neurons retained morphological integrity on the NOS-I immunohistochemical sections. At 168 h after ischemia, all neurons within the lesion appeared necrotic on H & E stained sections; however, scatterred neurons expressed NOS-I and NADPH-diaphorase. The rapid upregulation of NOS-I and mRNA in the ischemic lesion suggests that NOS-I is involved in focal cerebral ischemic injury; the expression of NOS-I by neurons that retain their morphological structure in the area of the infarct suggests that NOS-I-containing neurons are more resistant to the ischemic insult. Our data also indicate a close association of NOS-I immunoreactivity and NADPH-diaphorase reactivity in ischemic brain.  相似文献   

13.
Unilateral cerebral hypoxia-oligemia was produced in anesthetized mice using carotid artery occlusion combined with systemic hypoxia (10% O2). In the cerebral cortex ipsilateral to the carotid occlusion, ATP levels were depleted during a 30-min insult, but were restored to 64% of control during 60 min of recovery. Pretreatment of animals with glucose diminished the restoration of ATP in a dose-dependent manner. Thus, when blood glucose levels exceeded 12-13 mM (225 mg/dl), ATP recovery was greatly impaired. Neither galactose nor 3-O-methylglucose mimicked the detrimental effect of glucose. However, pretreatment with mannose, which is readily metabolized by brain, impaired restoration of ATP. The impairment, therefore, appears to be specific for substrates of cerebral metabolism. The ischemic accumulation of lactate in the ipsilateral cortex was augmented by only 30% at blood glucose levels well above the threshold for ATP recovery. Thus, unless recovery of energy metabolism is sensitive to small increments in brain lactate, it is difficult to explain the glucose-induced energy failure on the basis of enhanced lactic acidosis. Ipsilateral cerebral blood flow (CBF), measured with [14C]iodoantipyrine during hypoxia and recovery, was lower in glucose-pretreated than in saline-pretreated animals. However, the poor correlation between CBF and ATP, measured in the same tissue samples at 15 min recovery, failed to substantiate that regeneration of ATP was flow-limited early in recovery.  相似文献   

14.
Pathological effects of moderate ischemia (oligemia, hypoperfusion) are relevant in relation to vascular factors in dementia. Chronic bilateral common carotid artery occlusion (BCCAO) in adult Wistar rats induces oligemia and leads to acute changes in gene expression, subacute changes in cortical astrocytes and prolonged changes in white matter tracts, while largely sparing neurons in the forebrain areas. Dilation and remodeling of the basilar artery ensures blood flow to the forebrain. The present study examined the hypoxia-sensitive Purkinje cells in the cerebellum after 6 months of BCCAO using conventional neuropathological analysis, immunohistochemistry and high-precision design-based stereologic methods. Purkinje cells in the vermis region revealed abnormally shaped nuclei. A stereologic analysis showed that the mean total number of Purkinje cells within the vermis was statistically significantly smaller in the BCCAO animals than in the control animals (d = 11.8%; P < 0.0001). BCCAO had no significant effect on the mean volumes of the molecular layer, granule cell layer and white matter in the vermis or the entire cerebellum. Remodeling of the basilar artery indicated that secondary vascular perturbations might be responsible for the effects of BCCAO on the cerebellar Purkinje cells.  相似文献   

15.
目的 研究8-(N,N-二乙胺)-n-辛基-3,4,5-三甲氧基苯甲酸酯(TMB-8)对局灶性脑缺血大鼠脑血流量(CBF)的作用。方法 用激光多谱勒血流仪测量大脑中动脉阻断(MCAO)大鼠脑血流量。分别于阻断前30分钟和阻断后20分钟给予TMB-8进行干预。结果 MCAO后,CBF迅速下降,维持恒定。阻断前30分钟给予TMB-8 0.5、1和2mg/kg,可剂量依赖性抑制CBF下降,阻断后20分钟给予TMB-8 1mg/kg,也能明显增加CBF。结论 TMB-8能预防和治疗MCAO局灶性脑缺血大鼠CBF减少,改善缺血区血供。  相似文献   

16.
The principal aim of this study was to examine the relative contributions from the neuronal and endothelial isoforms of nitric oxide synthase (nNOS and eNOS, respectively) in their capacity to modulate intra-ischemic cerebral blood flow (CBF) changes, in the ischemically vulnerable hippocampus and striatum. CBF changes were monitored, using laser-Doppler flowmetry, in rats subjected to 30 min of forebrain ischemia (right common carotid occlusion+hemorrhagic hypotension). Rats were pretreated with a selective nNOS inhibitor (ARR 17477), a NOS inhibitor that blocks both eNOS and nNOS (N(G)-nitro-L-arginine; L-NNA), or saline (control). In initial experiments, where ischemic MABP was targeted to exactly 30 mmHg, NOS inhibition reduced intra-ischemic cortical CBF from the control level of approximately 20% of baseline to 3% (L-NNA) or 6% (ARR 17477) of baseline. The statistically similar effects of the two NOS inhibitors confirmed that nNOS is the predominant NO source supporting intra-ischemic vasodilation in the cortex. In subsequent experiments, CBF was measured in the right hippocampus, and striatum, as well as the cortex, and, to reduce data variability, blood withdrawal was adjusted to achieve an intra-ischemic cortical CBF of 20% (controls) or 5% (NOS inhibited rats) of baseline. In those groups, mean ischemic MABP levels ranged from 28 to 32 mmHg. In controls, intra-ischemic CBF fell to 20%, 45%, and 47% of baseline in the cortex, hippocampus, and striatum, respectively. With nNOS inhibition, intra-ischemic CBF was further reduced to 5%, 15%, and 18% of baseline, respectively. However, with combined eNOS/nNOS inhibition, the CBF values were 5%, 37%, and 21%, respectively. These results suggest that the nNOS contribution to intra-ischemic vasodilation in vulnerable regions is substantially greater than eNOS. The significantly higher intra-ischemic CBF level in the hippocampus in combined eNOS/nNOS vs nNOS-inhibited rats may relate, in contrast to other regions, to a low eNOS influence on vascular function in that structure and CBF redistribution to the hippocampus when eNOS activity is blocked globally.  相似文献   

17.
Characterization of a recovery global cerebral ischemia model in the mouse.   总被引:9,自引:0,他引:9  
Transgenic/knockout murine variants allow roles of specific proteins to be studied in cerebral ischemia. Because of the size of mice, however, study of prolonged recovery from global ischemia has been limited. This project characterized an adaptation of the rat two-vessel occlusion model of global ischemia for use in the mouse. C57B1/6J mice (8 weeks old; 21 +/- 1 g) were overnight fasted, anesthetized with halothane, intubated and mechanically ventilated. The right internal jugular vein and femoral artery were cannulated. Pericranial temperature was held at 37.0 degrees C. The carotid arteries were occluded and mean arterial pressure was reduced to 35 mmHg with 0.3 mg intra-arterial trimethaphan and venous exsanguination. Electroencephalographic isoelectricity was confirmed in cohort mice. Ten minutes later ischemia was reversed. Mice were allowed 1, 3 or 5 days survival followed by histologic analysis. Regional cerebral blood flow (CBF) was determined autoradiographically. Outcome effects of intra-ischemic hyperglycemia (approximately 350 mg/dl) or hypothermia (34 degrees C) were also examined. The mortality rate was less than 10% in all recovery groups. Ischemia caused reduction of CBF to < 2% of sham values in cortex, hippocampus, and caudoputamen. CBF was unchanged in thalamus, brainstem and cerebellum. CA1 damage, greater after 3 days vs. 1 day reperfusion, was not further increased at 5 days. Histologic injury was increased by hyperglycemia although seizures did not occur. Hypothermia reduced CA1 damage. This study demonstrates feasibility of using the two-vessel occlusion + hypotension recovery model in the mouse. Recovery intervals of > or = 3 days are required to account for delayed CA1 neuronal necrosis. Histologic outcome can be modulated by known physiologic determinants of ischemic brain damage.  相似文献   

18.
Chronic bilateral common carotid artery occlusion (BCCAO) induces moderate ischemia (oligemia) in the rat forebrain in the absence of overt neuronal damage. In situ hybridization for brain-derived neurotrophic factor (BDNF) mRNA was used to search for a molecular response to moderate ischemia. BDNF mRNA was significantly increased in the hippocampal granule cells at 6 h of occlusion (ANOVA, Tukey test P<0.05). At 1, 7 and 14 days BDNF mRNA levels returned to control levels. The frequency of BDNF gene expression at 6 h was 83%, which was significantly higher than the 7% incidence of histological injury in the hippocampus (Fisher's exact test, P<0.002). Cerebral blood flow was reduced to 75% of control levels in the hippocampus after 1 week of BCCAO when measured with the autoradiographic method. Measurements of tissue flow with a microprobe for laser Doppler flow excluded decreases into the ischemic range during the period when elevated gene expression was observed. Prolonged moderate ischemia (oligemia) is a sufficient stimulus for BDNF gene expression in the hippocampus. These molecular studies provide direct evidence for an involvement of the hippocampus in the BCCAO model.  相似文献   

19.
The change of cerebral blood flow (CBF) after glycerol infusion was analyzed in 10 cases of lacunar infarction and 11 cases of ischemic disease of major artery: 6 cases of internal carotid artery occlusion and 5 cases of middle cerebral artery occlusion. In lacunar infarction, CBF increased generally except for the corona radiata and the increased ratio was about 20%. In cases with ischemic disease of a major artery, the CBF tended to increase in the non-affected hemisphere after glycerol infusion. But CBF did not always increase in the affected hemisphere; rather it decreased in the temporal and parietal lobes and especially in the corona radiata. The blood flow of the affected hemisphere might be stealed to the non-affected hemisphere after glycerol infusion. This phenomenon might be caused by a poor cerebrovascular reserve capacity of the maximally dilated vessels in the affected side.  相似文献   

20.
The effect of unilateral, incomplete cerebral ischemia on CBF, unidirectional flux of alpha-aminoisobutyric acid (AIB) and sodium, and number of perfused capillaries during ischemia and reperfusion was measured in the cortex of gerbils with symptomatic ischemia. Three hours of unilateral carotid occlusion reduced the CBF to the ipsilateral cortex by 81%, with a smaller 30% decrease in the contralateral cortex. Following 11 min of reperfusion, CBF in the ipsilateral cortex returned to the preischemic value, while the contralateral blood flow decreased to 50% of control. The transfer constants for AIB and sodium in the ipsilateral cortex were reduced by 67 and 53%, respectively, after 3 h of ischemia, with no change in the contralateral cortex. The transfer constant for AIB remained decreased by 48% during the first 20 min of reperfusion, while that for sodium returned to its control value. The number of perfused capillaries was reduced 54% by 3 h of ischemia and remained decreased by 20% after 11 min of reperfusion. These data indicate that 3 h of unilateral carotid occlusion reduces the number of perfused capillaries in the ipsilateral cortex during the ischemic period. Further, the early reperfusion phase is characterized by a mismatch between capillary perfusion and CBF. Finally, early in the postischemic phase, sodium transport undergoes a selective stimulation, probably as a result of stimulation of ion transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号