首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clyde K  Barrera J  Harris E 《Virology》2008,379(2):314-323
Dengue virus (DENV) and West Nile virus (WNV) are members of the Flavivirus genus of positive-strand RNA viruses. RNA sequences and structures, primarily in the untranslated regions, have been shown to modulate flaviviral gene expression and genome replication. Previously, we demonstrated that a structure in the DENV coding region (cHP) enhances translation start codon selection and is required for viral replication. Here we further characterize the role of the cHP in the DENV life cycle. We demonstrate that the cHP is required for efficient viral RNA synthesis in a sequence-independent manner. Viruses with a disrupted cHP are rescued by a spontaneous compensatory mutation that restabilizes the structure. Furthermore, the cHP, which is predicted to be conserved among arthropod-borne flaviviruses, is required for WNV replication. We propose that the cHP is a multifunctional determinant of flavivirus replication, functioning in both translation and RNA synthesis.  相似文献   

2.
Tilgner M  Deas TS  Shi PY 《Virology》2005,331(2):375-386
A reporting replicon of West Nile virus (WN) was used to distinguish between the function of the 3' untranslated region (UTR) in viral translation and RNA replication. Deletions of various regions of the 3' UTR of the replicon did not significantly affect viral translation, but abolished RNA replication. A systematic mutagenesis showed that the flavivirus-conserved penta-nucleotide (5'-CACAG-3' located at the top of the 3' stem-loop of the genome) requires a specific sequence and structure for WN RNA synthesis, but not for viral translation. (i) Basepair structure and sequence at the 1st position of the penta-nucleotide are critical for RNA replication. (ii) The conserved nucleotides at the 2nd, 3rd, and 5th positions, but not at the 4th position of the penta-nucleotide, are essential for RNA synthesis. (iii) The nucleotide U (which is partially conserved in the genus Flavivirus) immediately downstream of the penta-nucleotide is not essential for viral replication.  相似文献   

3.
Zhang B  Dong H  Stein DA  Iversen PL  Shi PY 《Virology》2008,373(1):1-13
West Nile virus (WNV) genome cyclization and replication require two pairs of long-distance RNA interactions. Besides the previously reported 5'CS/3'CSI (conserved sequence) interaction, a 5'UAR/3'UAR (upstream AUG region) interaction also contributes to genome cyclization and replication. WNVs containing mutant 5'UARs capable of forming the 5'/3' viral RNA interaction were replicative. In contrast, WNV containing a 5'UAR mutation that abolished the 5'/3' viral RNA interaction was non-replicative; however, the replication defect could be rescued by a single-nucleotide adaptation that restored the 5'/3' RNA interaction. The 5'UAR/3'UAR interaction is critical for RNA synthesis, but not for viral translation. Antisense oligomers targeting the 5'UAR/3'UAR interaction effectively inhibited WNV replication. Phylogenic analysis showed that the 3'UAR could alternate between pairing with the 5'UAR or with the 3' end of the flaviviral genome. Therefore, the 5'UAR/3'UAR pairing may release the 3' end of viral genome (as a template) during the initiation of minus-strand RNA synthesis.  相似文献   

4.
5.
Zhang B  Dong H  Stein DA  Shi PY 《Virology》2008,382(1):98-106
West Nile virus (WNV) genome cyclization is mediated by two pairs of long-distance RNA/RNA interactions: the 5′CS/3′CSI (conserved sequence) and the 5′UAR/3′UAR (upstream AUG region) base pairings. Antisense peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), designed to interfere with the 5′CS/3′CSI or 5′UAR/3′UAR base pairings, were previously shown to inhibit WNV. In this study, we selected and characterized WNVs resistant to a PPMO targeting the 3′UAR (3′UAR-PPMO). All resistant viruses accumulated one-nucleotide mutations within the 3′UAR, leading to a single-nucleotide mismatch or a weakened base-pairing interaction with the 3′UAR-PPMO. Remarkably, a one-nucleotide mutation within the 5′UAR was correspondingly co-selected; the 5′UAR mutation restored the base pairing with the 3′UAR mutation. Mutagenesis of WNV demonstrated that the single-nucleotide change within the 3′UAR-PPMO-target site conferred the resistance. RNA binding analysis indicated that the single-nucleotide change reduced the ability of 3′UAR-PPMO to block the RNA/RNA interaction required for genome cyclization. The results suggest a mechanism by which WNV develops resistance to 3′UAR-PPMO, through co-selection of the 5′UAR and 3′UAR, to create a mismatch or a weakened base-pairing interaction with the PPMO, while maintaining the 5′UAR/3′UAR base pairings.  相似文献   

6.
Dong H  Zhang B  Shi PY 《Virology》2008,381(1):123-135
Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5′-terminal 190 nucleotides and the 3′-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5′CS/3′CSI and 5′UAR/3′UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3′-terminal nucleotides of the genome (position − 8 to − 16) to be single-stranded. Viral NS5 binds specifically to the 5′-terminal stem-loop (SL1) of the genomic RNA. The 5′SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5′SL1 RNA interaction facilitate NS5 binding to the 3′ end of the genome for the initiation of viral minus-strand RNA synthesis.  相似文献   

7.
Dengue virus (DEN) is a major public health problem worldwide and causes a spectrum of diseases, for which no antiviral treatments exist. Peptide-conjugated phosphorodiamidate morpholino oligomers (P-PMOs) complementary to the DEN 5' stem-loop (5'SL) and to the DEN 3' cyclization sequence (3'CS) inhibit DEN replication, presumably by blocking critical RNA-RNA or RNA-protein interactions involved in viral translation and/or RNA synthesis. Here, a third P-PMO, complementary to the top of the 3' stem-loop (3'SLT), inhibited DEN replication in BHK cells. Using a novel DEN2 reporter replicon and a DEN2 reporter mRNA, we determined that the 5'SL P-PMO inhibited viral translation, the 3'CS P-PMO blocked viral RNA synthesis but not viral translation, and the 3'SLT P-PMO inhibited both viral translation and RNA synthesis. These results show that the 3'CS and the 3'SL domains regulate DEN translation and RNA synthesis and further demonstrate that P-PMOs are potentially useful as antiviral agents.  相似文献   

8.
West Nile virus (WNV) has become firmly established in northeastern US, reemerging every summer since its introduction into North America in 1999. To determine whether WNV overwinters locally or is reseeded annually, we examined the patterns of viral lineage persistence and replacement in Connecticut over 10 consecutive transmission seasons by phylogenetic analysis. In addition, we compared the full protein coding sequence among WNV isolates to search for evidence of convergent and adaptive evolution. Viruses sampled from Connecticut segregated into a number of well-supported subclades by year of isolation with few clades persisting ≥ 2 years. Similar viral strains were dispersed in different locations across the state and divergent strains appeared within a single location during a single transmission season, implying widespread movement and rapid colonization of virus. Numerous amino acid substitutions arose in the population but only one change, V → A at position 159 of the envelope protein, became permanently fixed. Several instances of parallel evolution were identified in independent lineages, including one amino acid change in the NS4A protein that appears to be positively selected. Our results suggest that annual reemergence of WNV is driven by both reintroduction and local-overwintering of virus. Despite ongoing evolution of WNV, most amino acid variants occurred at low frequencies and were transient in the virus population.  相似文献   

9.
Uchil PD  Satchidanandam V 《Virology》2003,307(2):358-371
In vitro RNA-dependent RNA polymerase assays revealed that the JEV replication complex (RC) synthesized viral RNA utilizing a semiconservative and asymmetric mechanism. Peak viral replicase activity and levels of viral RNA observed 15-18 h postinfection (h p.i.) preceded maximum viral titers in the culture medium seen 21 h p.i. Among divalent cations, Mg(2+) was essential and exhibited cooperative binding for its two replicase-binding sites. Mn(2+), despite sixfold higher affinity for the replicase, elicited only 70% of the maximum Mg(2+)-dependent activity, and deficit of either cation led to synthesis of incomplete RNA products. We also determined as a first instance for a flavivirus RC, kinetic parameters using cytoplasmic "virus-induced heavy membranes" after depleting endogenous nucleotides. Exhaustive trypsin treatment, which degraded the bulk of NS3 and NS5, had no effect on replicase activity, suggesting that the active flaviviral RC resides behind a membrane barrier and recruits minuscule proportions of the replicase proteins.  相似文献   

10.
An adaptive mutation (E249G) within West Nile virus (WNV) NS4B gene was consistently recovered from replicon RNAs in C3H/He mouse cells. The E249G is located at the C-terminal tail of NS4B predicted to be on the cytoplasmic side of the endoplasmic reticulum membrane. The E249G substitution reduced replicon RNA synthesis. Compared with the wild-type NS4B, the E249G mutant protein exhibited a similar efficiency in evasion of interferon-beta response. Recombinant E249G virus exhibited smaller plaques, slower growth kinetics, and lower RNA synthesis than the wild-type virus in a host-dependent manner, with the greatest difference in rodent cells (C3H/He and BHK-21) and the least difference in mosquito cells (C3/36). Selection of revertants of E249G virus identified a second site mutation at residue 246, which could compensate for the low replication phenotype in cell culture. These results demonstrate that distinct residues within the C-terminal tail of flavivirus NS4B are critical for viral replication.  相似文献   

11.
Yang H  Gottlieb P  Wei H  Bamford DH  Makeyev EV 《Virology》2003,314(2):706-715
To continue the molecular characterization of RNA-dependent RNA polymerases of dsRNA bacteriophages (Cystoviridae), we purified and biochemically characterized the wild-type (wt) and a temperature-sensitive (ts) point mutant of the polymerase subunit (Pol) from bacteriophage phi12. Interestingly, initiation by both wt and the ts phi12 Pol was notably more sensitive to increased temperatures than the elongation step, the absolute value of the nonpermissive temperature being lower for the ts enzyme. Experiments with the Pol subunit of related cystovirus phi6 revealed a similar differential sensitivity of the initiation and elongation steps. This is consistent with the previous result showing that de novo initiation by RdRp from dengue virus is inhibited at elevated temperatures, whereas the elongation phase is relatively thermostable. Overall, these data suggest that de novo RNA-dependent RNA synthesis in many viral systems includes a specialized thermolabile state of the RdRp initiation complex.  相似文献   

12.
Mengnan An  Akira Mine 《Virology》2010,405(1):100-309
Red clover necrotic mosaic virus (RCNMV) is a positive-strand RNA virus with a bipartite genome. RNA1 encodes N-terminally overlapping replication proteins, p27 and p88. RNA2 is replicated efficiently by the replication proteins supplied in trans, whereas RNA1 needs p88 preferentially in cis for its replication. cis-Acting elements required for RNA2 replication have been mapped to the 3′ terminal stem-loop structure conserved between RNA1 and RNA2, and to the protein-coding region including the trans-activator. Here, we have identified a Y-shaped RNA structure with three-way RNA junctions predicted in the 3′ untranslated region of RNA2 as a novel element required for negative-strand synthesis using an in vitro translation/replication system. We also show that, in addition to the 3′ terminal core promoter, several RNA elements including the trans-activator are also required for negative-strand synthesis. Functional roles and structural requirements of these cis-acting elements in RCNMV RNA replication are discussed.  相似文献   

13.
14.
K. Govind 《Virology》2010,401(2):280-2985
Sesbania mosaic virus (SeMV), a single-strand positive-sense RNA plant virus, belongs to the genus Sobemoviruses. Mechanism of replication in Sobemoviruses is poorly understood. In the present study, SeMV RNA-dependent RNA polymerase (RdRp) was overexpressed and purified as a thioredoxin-tagged protein. The recombinant SeMV RdRp could synthesize RNA from genomic or subgenomic RNA templates, even in the absence of the protein primer, VPg. Analysis of the product indicated that it was double-stranded and that the mode of initiation was de novo. Mutational analysis of the 3′ UTR of subgenomic RNA revealed that a stem-loop structure at the 3′ end was important. Further, analysis of this stem-loop showed that the SeMV RdRp was capable of recognizing stem-loop structures of various lengths and forms. These results demonstrate that the SeMV RdRp is capable of primer-independent RNA synthesis in vitro.  相似文献   

15.
16.
Stork J  Kovalev N  Sasvari Z  Nagy PD 《Virology》2011,409(2):338-347
Small plus-stranded RNA viruses do not code for RNA helicases that would facilitate the proper folding of viral RNAs during replication. Instead, these viruses might use RNA chaperones as shown here for the essential p33 replication protein of Tomato bushy stunt virus (TBSV). In vitro experiments demonstrate that the purified recombinant p33 promotes strand separation of a DNA/RNA duplex. In addition, p33 renders dsRNA templates sensitive to single-strand specific S1 nuclease, suggesting that p33 can destabilize highly structured RNAs. We also demonstrate that the RNA chaperone activity of p33 facilitates self-cleavage by a ribozyme in vitro. In addition, purified p33 facilitates in vitro RNA synthesis on double-stranded (ds)RNA templates up to 5-fold by a viral RNA-dependent RNA polymerase. We propose that the RNA chaperone activity of p33 facilitates the initiation of plus-strand synthesis as well as affects RNA recombination. Altogether, the TBSV RNA chaperone might perform similar biological functions to the helicases of other RNA viruses with much larger coding capacity.  相似文献   

17.
Dengue virus (DENV) is an enveloped flavivirus with a positive-sense RNA genome transmitted by Aedes mosquitoes, causing the most important arthropod-borne viral disease affecting humans. Relatively few cis-acting RNA regulatory elements have been described in the DENV coding-region. Here, by introducing silent mutations into a DENV-2 infectious clone, we identify the conserved capsid-coding region 1 (CCR1), an RNA sequence element that regulates viral replication in mammalian cells and to a greater extent in Ae. albopictus mosquito cells. These defects were confirmed in vivo, resulting in decreased replication in Ae. aegypti mosquito bodies and dissemination to the salivary glands. Furthermore, CCR1 does not regulate translation, RNA synthesis or virion retention but likely modulates assembly, as mutations resulted in the release of non-infectious viral particles from both cell types. Understanding the role of CCR1 could help characterize the poorly-defined stage of assembly in the DENV life cycle and uncover novel anti-viral targets.  相似文献   

18.
19.
The requirement to replicate in both vertebrate and invertebrate hosts is thought to limit the introduction of genetic changes into the genome of arboviruses. Serial passage under laboratory conditions will overcome this limitation allowing for genetic changes to be introduced and affecting the virulence of the virus for animals. In the studies detailed here, the consequence of removing the restriction of alternate replication was demonstrated to be different depending on the virus. Passing Venezuelan equine encephalitis virus in tissue culture cells, eggs or mice resulted in up to 11 nucleotide or amino acid changes but no significant change in the virulence of the virus for mice. Passing Japanese encephalitis virus (JEV) under the identical conditions resulted in as many as 22 nucleotide or amino acid changes that often resulted in improved survival probabilities. For JEV, most genetic changes along with the attenuated phenotype were selected within 5 passes.  相似文献   

20.
Most human filarial nematode parasites and arthropods are hosts for a bacterial endosymbiont, Wolbachia. In filaria, Wolbachia are required for normal development, fertility and survival, whereas in arthropods, they are largely parasitic and can influence development and reproduction, but are generally not required for host survival. Due to their obligate nature in filarial parasites, Wolbachia have been a target for drug discovery initiatives using several approaches including diversity and focused library screening and genomic sequence analysis. In vitro and in vivo anti-Wolbachia antibiotic treatments have been shown to have adulticidal activity, a long sought goal of filarial parasite drug discovery. In mosquitoes, it has been shown that the presence of Wolbachia can inhibit the transmission of certain viruses, such as Dengue, Chikungunya, Yellow Fever, West Nile, as well as the infectivity of the malaria-causing protozoan, Plasmodium and filarial nematodes. Furthermore, Wolbachia can cause a form of conditional sterility that can be used to suppress populations of mosquitoes and additional medically important insects. Thus Wolbachia, a pandemic endosymbiont offers great potential for elimination of a wide-variety of devastating human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号