首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential effects on human platelet function of thromboxane A2 (TXA2) synthetase inhibition singly and of TXA2 synthetase inhibition combined with TXA2/prostaglandin endoperoxide receptor antagonism were revealed, using ridogrel as a probe. Ridogrel combines selective TXA2 synthetase inhibition with TXA2/prostaglandin receptor antagonism in one molecule: in washed human platelets, the compound reduces the production of TXB2 (IC50 = 1.3 X 10(-8) M) and increases that of PGF2 alpha, PGE2, PGD2 from [14C]arachidonic acid. Additionally, at higher concentrations (Ki = 0.52 X 10(-6) M), it selectively antagonizes the breakdown of inositol phospholipids, subsequent to stimulation of TXA2/prostaglandin endoperoxide receptors with U 46619. The latter happens in a competitive way with fast receptor association-dissociation characteristics. At low concentrations (1 X 10(-9)-1 X 10(-7) M) producing single TXA2 synthetase inhibition, ridogrel reduces the collagen-induced formation of TXB2 by washed platelets, but enhances [32P]phosphatidic acid (PA) accumulation and [3H]5-hydroxytryptamine (5-HT) release. At higher concentrations (1 X 10(-6)-1 X 10(-5) M) which additionally block U 46619-induced [32P]PA accumulation, ridogrel inhibits the [32P]PA accumulation and release of [3H]5-HT by human platelets stimulated with collagen. These observations, corroborated by results obtained with OKY 1581, sulotroban, indomethacin and human serum albumin, suggest a causal role for prostaglandin endoperoxides in the stimulation by TXA2 synthetase inhibition of platelet reactions to collagen. They reinforce the concept that TXA2 synthetase inhibition-induced reorientation of cyclic endoperoxide metabolism, away from TXA2 into inhibitory prostanoids, requires additional TXA2/prostaglandin endoperoxide receptor antagonism to achieve optimal anti-platelet effects.  相似文献   

2.
1. The pharmacological effects of cinnamophilin, a new lignan, isolated from Cinnamomum philippinense, was determined in vitro in human platelet, rat isolated aorta and guinea-pig isolated trachea and in vivo in mice and guinea-pigs. 2. Cinnamophilin inhibited dose-dependently human platelet-rich plasma (PRP) aggregation induced by arachidonic acid (AA), collagen and U-46619 with IC50 of 5.0 +/- 0.4, 5.6 +/- 0.6 and 3.0 +/- 0.4 microM, respectively. The second wave of ADP- or adrenaline-induced platelet aggregation was inhibited by cinnamophilin, while the first wave was only slightly inhibited by cinnamophilin above 30 microM. 3. Cinnamophilin was found to be a thromboxane A2 (TXA2) receptor blocking agent in human platelet, rat aorta and guinea-pig trachea as revealed by its competitive antagonism of U-46619-induced aggregation of human-PRP, contraction of rat aortic rings and guinea-pig tracheal rings with pA2 values of 7.3 +/- 0.2, 6.3 +/- 0.1 and 5.2 +/- 0.2, respectively. 4. [3H]-inositol monophosphate formation and the rise of intracellular Ca2+ caused by U-46619 in human platelet was suppressed by cinnamophilin (10 microM). 5. Cinnamophilin induced a dose-dependent inhibition of thromboxane B2 (TXB2) formation, while the prostaglandin E2 (PGE2) formation was increased. Cinnamophilin did not affect unstimulated platelet adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels. When the platelets were challenged with AA, a dose-dependent rise in cyclic AMP was observed. Dazoxiben (a pure TX synthase inhibitor) and SQ 29548 (a pure TXA2 receptor antagonist) did not affect cyclic AMP levels in AA-treated platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
NQ12, an antithrombotic agent, has been reported to display a potent antiplatelet activity. This study was undertaken to reveal the effect of NQ12 on rabbit platelet aggregation and signal transduction involved in the arachidonic acid (AA) cascade. NQ12 concentration-dependently suppressed collagen-, AA-, and U46619-induced rabbit platelet aggregation, with IC(50) values of 0.71 +/- 0.2, 0.82 +/- 0.3, and 0.45 +/- 0.1 microM, respectively. In addition, the concentration-response curve of U46619 was shifted to the right after NQ12 treatment, indicating an antagonism on thromboxane (TX) A(2) receptors. The collagen-stimulated AA liberation was inhibited by NQ12 in the same pattern as its inhibition of platelet aggregation. Further study revealed that NQ12 potently suppressed AA-mediated TXA(2) formation, but had no effect on the PGD(2) production, indicating an inhibitory effect on TXA(2) synthase, which was supported by a TXA(2) synthase activity assay indicating that NQ12 concentration-dependently inhibited TXA(2) formation converted from PGH(2). On the other hand, the AA-stimulated 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) formation was also suppressed by NQ12. Taken together, these results suggest that NQ12 has a potential to inhibit TXA(2) synthase activity and TXA(2) receptors, and it can modulate AA liberation as well as 12-HETE formation in platelets. This may be a convincing mechanism for the antithrombotic action of NQ12.  相似文献   

4.
Human platelets pre-exposed to arachidonic acid (AA) (0.1-1 mM) or to the endoperoxide analogue U46619 (1-3 microM) and then washed and resuspended, failed to respond with aggregation or secretion to a second challenge by either agonist. The response to thrombin at low (0.04-0.1 u ml-1) but not at high (2.5 u ml-1) concentrations was also inhibited by pre-exposure to AA and U46619. The ability of platelets to synthesize thromboxane (Tx) B2 from AA or upon challenge with thrombin persisted despite platelet desensitization. In the presence of the reversible cyclo-oxygenase (CO) inhibitors methyl salicylate (MS) or L8027, pre-exposure to AA had no effect on subsequent challenge by the same agonist or by U46619, whereas platelet desensitization by pre-exposure to U46619 persisted. However, platelet activation by, and desensitization to AA and U46619, was prevented by trimetoquinol and compound L636499, two thromboxane/endoperoxide receptor antagonists. In contrast to the CO inhibitors, the thromboxane synthetase inhibitor dazoxiben, which in 3 'responders' out of 5 subjects suppressed aggregation, secretion, and Tx formation induced by AA, failed to prevent AA-induced desensitization. Compared to quiescent cells the distances between platelets desensitized after re-exposure to AA were reduced in electron microscopy, but the tight connections associated with aggregated cells were not observed. Degranulation was also not observed and cell morphology resembled that of normal quiescent platelets. In conclusion, (a) AA and U46619 desensitize human platelets at a similar site sensitive to prostaglandin/thromboxane receptor antagonists, and show cross-desensitization; (b) desensitization by AA appears to be mediated by a CO-dependent metabolite, as CO inhibitors prevent desensitization by AA but not to U46619; (c) the failure of dazoxiben to prevent desensitization by AA suggests that a metabolite other than TxA2, possibly the endoperoxides, mediates the phenomenon; (d) desensitization does not involve inactivation of CO or thromboxane synthetase enzymes.  相似文献   

5.
We investigated the anti-platelet effect of a newly synthesized guanidine derivative KR-32560, a sodium/hydrogen exchanger-1 (NHE-1) inhibitor, together with the elucidation of the possible mode of action. KR-32560 concentration dependently inhibited the aggregation of washed rabbit platelets induced by collagen (10 microg mL(-1)) and arachidonic acid (AA; 100 microM), with IC50 values of 25 and 46 microM, respectively. Whereas, KR-32560 showed weaker potency against aggregation induced by thrombin (0.05 UmL(-1)) and U46619 (1 microM), and had no effect on thapsigargin (0.5 microM)- or A23187 (5 microM)-induced platelet aggregation up to 50 microM. KR-32560 inhibited the collagen-induced [3H]AA liberation in a concentration-dependent manner. In addition, KR-32560 significantly suppressed TXB2 formation in AA-exposed platelets, but had no effect on production of PGD2, indicating an inhibitory effect on TXA2 synthase. This finding was supported by a TXA2 synthase assay that KR-32560 inhibited the conversion of PGH2 into TXB2 with a similar magnitude to suppression of TXB2 formation. Furthermore, KR-32560 significantly inhibited the collagen-induced [Ca2+]i mobilization and serotonin secretion. Taken together, these observations suggest that the anti-platelet activity of KR-32560 may be mediated by the inhibition of cytoplasmic Ca2+ mobilization and AA liberation.  相似文献   

6.
The inhibitory effect of cyclic GMP on collagen-induced platelet activation was studied using 8-bromo cyclic GMP (8brcGMP) in washed rabbit platelets. Addition of collagen (1 micrograms/ml) to platelet suspension caused shape change and aggregation associated with thromboxane (TX) A2 formation. 8brcGMP (10-1000 microM) inhibited collagen-induced platelet aggregation and TXA2 formation in a concentration-dependent manner. 8brcGMP did not affect platelet cyclooxygenase pathways, but markedly inhibited collagen-induced arachidonic acid (AA) liberation from membrane phospholipids in [3H]AA-prelabeled platelets, indicating that the inhibitory effect of 8brcGMP on collagen-induced aggregation is due to an inhibition of AA liberation. In [32P]orthophosphate-labeled platelets, collagen stimulated phosphorylation of a 20,000 dalton (20-kD) and 40-kD proteins. 8BrcGMP stimulated phosphorylation of a specific protein having molecular weight of 46-kD and inhibited collagen-induced both 20- and 40-kD protein phosphorylation. Collagen could stimulate the AA liberation without activation of phospholipase C or Na+-H+ exchange, but could not in the absence of extracellular Ca2+. These findings suggest that cyclic GMP inhibits collagen-induced AA liberation which is mediated by an extracellular Ca2+-dependent phospholipase A2. However, cyclic GMP seems to inhibit the Ca2+-activated phospholipase A2 indirectly, since 8brcGMP had no effect on Ca2+ ionophore A23187-induced platelet aggregation or AA liberation. It is therefore suggested that cyclic GMP may regulate collagen-induced increase in an availability of extracellular Ca2+ which is responsible for phospholipase A2 activation in rabbit platelets.  相似文献   

7.
8.
1. The present study was undertaken to analyse the mechanism of the contractile response induced by the bioflavonoid myricetin in isolated rat aortic rings. 2. Myricetin induced endothelium-dependent contractile responses (maximal value=21+/-2% of the response induced by 80 mM KCl and pD2=5.12+/-0.03). This effect developed slowly, reached a peak within 6 min and then declined progressively. 3. Myricetin-induced contractions were almost abolished by the phospholipase A2 (PLA2) inhibitor, quinacrine (10 microM), the cyclo-oxygenase inhibitor, indomethacin (10 microM), the thromboxane synthase inhibitor, dazoxiben (100 microM), the putative thromboxane A2 (TXA2)/prostaglandin endoperoxide receptor antagonist, ifetroban (3 microM). These contractions were abolished in Ca2+-free medium but were not affected by the Ca2+ channel blocker verapamil (10 microM). 4. In cultured bovine endothelial cells (BAEC), myricetin (50 microM) produced an increase in cytosolic free calcium ([Ca2+]i) which peaked within 1 min and remained sustained for 6 min, as determined by the fluorescent probe fura 2. This rise in [Ca2+]i was abolished after removal of extracellular Ca2+ in the medium. 5. Myricetin (50 microM) significantly increased TXB2 production both in aortic rings with and without endothelium and in BAEC. These increases were abolished both by Ca2+-free media and by indomethacin. 6. Taken together, these results suggests that myricetin stimulates Ca2+ influx and subsequently triggers the activation of the PLA2 and cyclo-oxygenase pathways releasing TXA2 from the endothelium to contract rat aortic rings. The latter response occurs via the activation of Tp receptors on vascular smooth muscle cells.  相似文献   

9.
1. The present study has compared the relative anti-aggregatory effect of various compounds which interfere with thromboxane (Tx) A2-dependent aggregation of human platelets in whole blood in vitro. These included the cyclo-oxygenase inhibitor aspirin, the TxA2 synthase inhibitor dazoxiben, the TxA2 (TP-) receptor blocking drug GR32191 and two compounds, R.68070 ((E)-5-[[[(3-pyridinyl) [3-(trifluoromethyl)phenyl]-methylen] amino]oxy] pentanoic acid) and CV-4151 [E)-7-phenyl-7-(3-pyridyl)-6-heptenoic acid), which possess both TP-receptor blocking and TxA2 synthase inhibitory activities in the same molecule. 2. GR32191, R.68070 and CV-4151 all antagonized aggregation to the TxA2 mimetic U-46619, with pA2 values of approximately 8.2, 5.4 and 4.8 respectively. This effect was specific, platelet aggregation induced by adenosine 5'-diphosphate (ADP) being unaffected by concentrations up to 10, 1000 and 300 microM respectively. In contrast, neither aspirin nor dazoxiben exhibited any measurable TP-receptor blocking activity. 3. The rank order of potency (pIC50) for inhibition of TxA2 formation in serum was R.68070 (7.4) greater than CV-4151 (6.9) greater than dazoxiben (5.7) greater than aspirin (5.3). In addition, all four drugs abolished collagen-induced platelet TxA2 formation. In contrast, GR32191 produced no consistent inhibition of TxA2 formation in either system up to concentrations of 10-30 microM. 4. The specificity of R.68070, CV-4151 and dazoxiben for TxA2 synthase was indicated by their ability to increase serum levels of prostaglandin E2 (PGE2) and PGD2 in parallel with decreases in TxA2 formation. This profile was not observed with aspirin or GR32191.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Dazoxiben, a thromboxane synthase inhibitor, inhibits arachidonic acid induced aggregation in platelet-rich plasma from some donors only (“responders”). We have studied the effect of dazoxiben in vitro on platelet aggregation and prostaglandin (PG) metabolism and the influence of the incubation period and of exogenously added serum albumin (SA). SA, which increases the production of anti-aggregatory PGD2 from cyclic endoperoxides, induced “non-responder” human platelets to respond. With rabbit platelets, however, that are insensitive to PGD2, exogenous SA failed to potentiate dazoxiben-induced inhibition. The ratio between PGD2 and TXB2 + PGE2 formed was crucial in determining the response of human platelets to dazoxiben: whenever this ratio was high, platelet aggregation was inhibited. SQ 22536, an adenylate cyclase inhibitor, and NO164, a PGD2 antagonist, reversed the inhibition by dazoxiben in human platelet-rich plasma, stressing the importance of a PGD2 mediated rise of cyclic AMP for the effectiveness of a thromboxane synthase inhibitor.  相似文献   

11.
Atherothrombosis is the major cause of mortality and morbidity in Western countries. Several clinical conditions are characterized by increased incidence of cardiovascular events and enhanced thromboxane (TX)-dependent platelet activation. Enhanced TX generation may be explained by mechanisms relatively insensitive to aspirin. More potent drugs possibly overcoming aspirin efficacy may be desirable. Thromboxane synthase inhibitors (TXSI) and thromboxane receptor antagonists (TXRA) have the potential to prove more effective than aspirin due to their different mechanism of action along the pathway of TXA(2). TXSI prevent the conversion of PGH(2) to TXA(2), reducing TXA(2) synthesis mainly in platelets, whereas TXRA block the downstream consequences of TXA(2) receptors (TP) activation.TXA(2) is a potent inducer of platelet activation through its interaction with TP on platelets. TP are activated not only by TXA(2), but also by prostaglandin (PG) D(2), PGE(2), PGF(2α), PGH(2), PG endoperoxides (i.e., 20-HETE), and isoprostanes, all representing aspirin-insensitive mechanisms of TP activation. Moreover, TP are also expressed on several cell types such as macrophages or monocytes, and vascular endothelial cells, and exert antiatherosclerotic, antivasoconstrictive, and antithrombotic effects, depending on the cellular target.Thus, targeting TP receptor, a common downstream pathway for both platelet and extraplatelet TXA(2) as well as for endoperoxides and isoprostanes, may be a useful antiatherosclerotic and a more powerful antithrombotic intervention in clinical settings, such as diabetes mellitus, characterized by persistently enhanced thromboxane (TX)-dependent platelet activation through isoprostane formation and low-grade inflammation, leading to extraplatelet sources of TXA(2). Among TXRA, terutroban is an orally active drug in clinical development for use in secondary prevention of thrombotic events in cardiovascular disease. Despite great expectations on this drug supported by a large body of preclinical and clinical evidence and pathophysiological rationale, the PERFORM trial failed to demonstrate the superiority of terutroban over aspirin in secondary prevention of cerebrovascular and cardiovascular events among ~20,000 patients with stroke. However, the clinical setting and the design of the study in which the drug has been challenged may explain, at least in part, this unexpected finding.Drugs with dual action, such as dual TXS inhibitors/TP antagonist and dual COXIB/TP antagonists are currently in clinical development. The theoretical rationale for their benefit and the ongoing clinical studies are herein discussed.  相似文献   

12.
A series of 1H-imidazol-1-yl- and 3-pyridyl-substituted 3,4-dihydroquinolin-2(1H)-ones was designed and synthesized as combined inhibitors of thromboxane (TXA2) synthase and cAMP phosphodiesterase (PDE) in human blood platelets. A number of structures, e.g. 4b, 7a, 7e, 13a, and 21-25, were superior to dazoxiben 26 as inhibitors of TXA2 synthase in in vitro ADP-induced aggregation experiments with human blood platelets. The TXA2 synthase inhibitory activity was confirmed by measurement of the prostanoid metabolites derived from 14C-labeled arachidonic acid. Three compounds (7a, 7e, and 25) demonstrated in vitro inhibition of human platelet cAMP PDE at micromolar concentrations in conjunction with their TXA2 synthase inhibitory activity. Synergistic enhancement of antiaggregatory and antithrombotic actions was expected when simultaneous stimulation of adenylate cyclase (through increased PGI2 production) and inhibition of platelet cAMP PDE were possible from the same compound. Ex vivo and in vivo experiments were conducted in rats and mice, respectively, to evaluate the effects of compounds 7e and 23 on platelet aggregation and thrombotic events within these animals. Compound 7e, which has a comparable level of TXA2 synthase (IC50 1.2 microM) and human platelet cAMP PDE (IC50 6.4 microM) inhibitory activities, was found to be orally bioavailable with a long duration of action and offered effective protection against mortality in a collagen-epinephrine-induced pulmonary thromboembolism model in mice. Significant blood pressure and heart rate effects were observed for several compounds, e.g. 7e, 9e, 13a, 13d, 18, 20, 21, and 23, when dosed orally in conscious spontaneously hypertensive rats.  相似文献   

13.
14.
New trends in thromboxane and prostacyclin modulators   总被引:2,自引:0,他引:2  
Thromboxane A2 (TXA2) and prostacyclin (PGI2) are two labile products formed from arachidonic acid by the way of cyclooxygenase. An overproduction of thromboxane A2 has been detected in a series of diseases whereby this prostanoid is assumed to contribute to the underlying pathomechanisms by its potent stimulation of platelet aggregation and smooth muscle contraction. This increased TXA2 biosynthesis is frequently accompanied by a stimulation of prostacyclin formation which is one of the most potent inhibitors of platelet aggregation and smooth muscle contraction. Therefore, TXA2 / prostaglandin endoperoxide H2 receptor antagonists, thromboxane synthase inhibitors and drugs which combine both activities have been developed with the aim to suppress the formation and/or the action of thromboxane A2. Since prostacyclin has been demonstrated to counterbalance the pathological effects of TXA2, several PGI2 agonists have also been developed. This review will highlight the evolution and some of the latest findings in the field of prostacyclin and thromboxane A2 modulators mainly those which are under clinical evaluation or marketed.  相似文献   

15.
Carnosol, a naturally occurring phenolic diterpene found in rosemary, has been reported to exhibit antioxidant, anticancer and hepatoprotective effects. In the present study, the antiplatelet activity of carnosol was investigated. Carnosol concentration-dependently inhibited washed rabbit platelet aggregation induced by collagen and arachidonic acid (AA), with IC(50) values of 5.5+/-0.3 and 42.5+/-0.9 microM, respectively, while failed to inhibit that induced by, ADP and thrombin. Consist with inhibition of collagen-induced platelet aggregation, carnosol revealed blocking of collagen-mediated cytosolic calcium mobilization, serotonin secretion and arachidonic acid liberation. However, contrary to the inhibition of AA-induced platelet aggregation, carnosol has no effect on AA-mediated TXA(2) and PGD(2) formation, indicating carnosol may directly inhibit TXA(2) receptor, which was supported by the finding that carnosol potently inhibited U46619 (a TXA(2) mimic)-induced platelet aggregation, with an IC(50) value of 22.0+/-2.5 microM. In addition, the U46619-induced concentration-response curve was downward shifted by the application of carnosol at concentrations of 22 and 50 microM, indicating a typical non-competitive antagonism on TXA(2) receptor. Taken together, these results suggest that antiplatelet activity of carnosol may be mediated by the inhibition of TXA(2) receptor and cytosolic calcium mobilization, and carnosol has a potential to be developed as a novel-antiplatelet agent.  相似文献   

16.
1. Canine jugular and femoral veins were studied to determine the possible importance of thromboxane (TXA2) and prostaglandin endoperoxides (prostaglandin H2, PGH2) in mediating bradykinin(BK)-induced contraction. 2. Isolated vein rings incubated in modified Krebs solution contracted to TXA2/PGH2 analogs SQ26655 and U44069 with potency of contraction exceeding that for BK. The potency ranking for both veins was SQ26655 greater than U44069 greater than BK greater than PGF2 alpha greater than TXB2 much greater than PGD2. 3. The cyclo-oxygenase inhibitors indomethacin (3 x 10(-7) M) and flufenamic acid (10(-5) M) reduced BK contractions without affecting those induced by noradrenaline (NA). 4. TXA2/PGH2 receptor antagonists SQ29548 (10(-8) M) and BM13177 (10(-6) M) strongly inhibited BK-induced tension. The action of antagonists was reversible with negligible influence on NA-elicited contraction. Selective removal of endothelium had no effect on BK-induced contraction or the action of the antagonists. 5. The thromboxane synthase inhibitors dazoxiben (10(-4) M) and CGS 12970 (10(-5) M) had no significant inhibitory effect on BK-induced tension. 6. These results suggest that in canine jugular and femoral vein, the action of BK is largely dependent upon stimulation of the cyclo-oxygenase pathway to produce PGH2 and possibly TXA2, which can activate a smooth muscle TXA2/PGH2 receptor to elicit vasoconstriction.  相似文献   

17.
LG 82-4-00 (5-(2-(1-imidazolyl)-ethoxy)-thiophene-2-carboxylate) and LG 82-4-01 (4-chloro-thiophenic-substituted derivative) were examined for specific inhibition of thromboxane (TX) synthetase. Thromboxane formation was measured by a radioimmunoassay specific for TXB2. In thrombin (0.6 IU/ml)-stimulated, washed human platelet suspensions (WPS) the IC50 (microM) for inhibition of TX formation were 1.1 (LG 82-4-00), 1.3 (LG 82-4-01) and 0.7 (dazoxiben). LG 82-4-00, LG 82-4-01 and dazoxiben also inhibited collagen (0.6-2.5 micrograms/ml)-induced TXB2 formation and platelet aggregation in human platelet-rich plasma. Neither LG 82-4-00 nor LG 82-4-01 had vasoconstrictor, proaggregatory or TX antagonistic activity or affected primary wave ADP aggregation. There was less than 10% inhibition of PGI2 formation from bovine coronary artery slices with concentrations up to 100 microM. At 100 microM, dazoxiben inhibited thrombin-induced 12-HPETE formation in WPS by 81 +/- 10% whereas LG 82-4-00 and LG 82-4-01 were much less active. These data indicate that LG 82-4-00 and LG 82-4-01 are specific inhibitors of thromboxane synthetase in human platelets.  相似文献   

18.
1. We have used dose-response curves to quantitate the potentiation of adenosine 5'-diphosphate (ADP)-induced aggregation and thromboxane (TXA2) generation by 5-hydroxytryptamine (5-HT) and adrenaline in human citrated platelet-rich plasma. We have also quantitated the inhibition of these responses by aspirin, ketanserin and yohimbine, singly and in pairs. 2. Ketanserin (5 microM) inhibited TXA2 production and the second wave of platelet aggregation induced by a range of concentrations of ADP alone. This indicates that endogenous 5-HT, released from the platelet dense granules, contributes significantly to responses induced by ADP. 3. When 5-HT (10 microM) was added before ADP, a lower concentration of ADP was required to cause 50% aggregation and TXA2 generation. The ratio of ADP concentrations (CR) to cause 50% aggregation in the presence and absence of 5-HT was 2.1 when only added 5-HT was considered, and 5.0 when endogenous 5-HT was also taken into account. 4. Potentiation of ADP-induced aggregation by 5-HT also occurred in the presence of aspirin, resulting in a CR of 2.3. As expected, ketanserin inhibited potentiation by 5-HT in the presence and absence of aspirin. Although aspirin caused substantial inhibition of aggregation induced by ADP and 5-HT (CR 3.4), further inhibition occurred when ketanserin was also present (CR 6.5). 5. A subthreshold concentration of adrenaline (0.25 microM) caused substantial potentiation of ADP-induced aggregation in the absence (CR 4.0) and presence (CR 2.0) of aspirin. As expected, yohimbine (9 microM) inhibited this potentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The inhibitory effect of etafenone hydrochloride (etafenone) on platelet aggregation in rabbit platelet rich plasma and the involvement of the arachidonic acid (AA) cascade in the inhibitory mechanism for etafenone on platelet aggregation were studied. 1) Etafenone exhibited a dose-dependent inhibitory effect on collagen (15--20 micrograms/ml)-induced platelet aggregation, and its median inhibitory concentration (IC50) was 1.7 X 10(-5)M. 2) In ADP (20 microM)-induced aggregation, etafenone also exhibited a dose-dependent inhibitory effect, but its IC50 was 2.7 X 10(-4)M and was significantly higher than that in the case of collagen. 3) Etafenone inhibited AA (0.3--0.5mM)-induced platelet aggregation dose-dependently. Its IC50 was 2.8 X 10(-5)M. 4) In thromboxane (TX) A2-induced aggregation, etafenone exhibited a dose-dependent inhibition, and the IC50 was 3.2 X 10(-4)M. 5) Trapidil which was reported to inhibit platelet aggregation via phosphodiesterase (PDE) inhibition had a similar IC50 on ADP- and TXA2-induced platelet aggregation to that of etafenone, but in collagen- and AA-induced aggregation, its IC50 was higher than that of etafenone. 6) Etafenone (3 X 10(-6)--3 X 10(-4)M) dose-dependently inhibited the production of TXB2 in PRP induced by collagen. 7) Etafenone scarcely affected TXA2 synthetase activity in rabbit platelet homogenate. 8) The correlation between the inhibitory effect of etafenone on platelet aggregation and inhibition of AA metabolism activation and PDE inhibition was discussed.  相似文献   

20.
The effect of fibrinopeptides on platelet aggregation is reported. Fibrinopeptide A (minimal effective concentration, 0.65 microM) aggregated human (but not rat) platelets suspended in plasma and at lower concentrations (0.01-0.1 microM) potentiated platelet aggregation due to ADP and collagen in both species. Fibrinogen mimicked these effects of fibrinopeptide A. P-bromophenacyl bromide (100 microM), mepacrine (10 microM), indomethacin (10 microM) and dazoxiben (10 microM) inhibited human platelet aggregation induced by fibrinopeptide A and fibrinogen. In both species, fibrinopeptide B (0.65-6.5 microM) antagonised the platelet inhibitory effect of PGI2 and PGD2 but not adenosine. Antagonism was non-competitive in nature. The concentration of fibrinopeptide A required to potentiate platelet aggregation occurs naturally in the plasma of patients with thrombotic disease suggesting this effect may be of physiological significance during the formation of a thrombus. The novel action of fibrinopeptide B to reduce the platelet inhibitory effect of PGI2 and PGD2 may also contribute to the control of thrombus formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号