首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sleep is regulated by the interaction of a homeostatic (Process S) and a circadian component. The duration of prior wakefulness is the main factor influencing subsequent sleep duration and its intensity. We investigated in the rat whether the sleep-wake history before sleep deprivation (SD) contributes to the effects of sleep loss incurred during the SD. A 24-h baseline recording was followed by 6 h SD at light onset (SD-Light, n=7), or at dark onset (SD-Dark, n=8) and 18 h recovery. Both SDs led to a pronounced increase in slow wave activity (SWA, EEG power between 0.75 and 4.0 Hz) in NREM sleep and increased sleep consolidation. The prolongation of sleep episodes was associated with increased intra-episode SWA. The amount of waking before the SD correlated positively with the SWA increase during recovery, and SWA levels before SD were negatively correlated with their subsequent increase. The time-course of SWA (Process S) as well as of single frequency bins within the SWA band was successfully simulated based on vigilance-state distribution. The time constant of the exponential monotonic decay (Td) was higher for the 0.75-1.0 Hz bin compared to all remaining frequency bins of the SWA band, reflecting a slower process determining the slow EEG component during sleep. The data show that the homeostatic response after SD, consisting of increased sleep intensity and sleep consolidation is determined by a combination of SD and the preceding vigilance-state history. The slower dynamics of low frequency delta power compared to fast delta frequencies point to heterogeneity within the traditionally defined SWA band.  相似文献   

2.
OBJECTIVE: To investigate regional changes of the cortical sleep EEG in the rat, recordings were obtained from a frontal and an occipital derivation, on a baseline day (n = 14 male rats, Sprague-Dawley strain) and after 24 h sleep deprivation (SD, n = 7). METHODS: Spectral analysis of the vigilance states revealed state and frequency specific differences in EEG power by two-way ANOVA and post-hoc t tests. RESULTS: In the theta band (6.25-9.0 Hz) occipital power was larger than frontal power in waking and REM sleep, whereas frontal power was larger in the frequency range between 10.25-16.0 Hz in non-REM sleep and REM sleep. After SD frontal power in the 2-4 Hz band in non-REM sleep was increased more than occipital power and frontal power in the 10.25-16.0 Hz range was more attenuated. In REM sleep frontal power in the theta band and in the 10.25-16.0 Hz range was more increased than occipital power. Power in the waking EEG did not differ between the two derivations after SD. CONCLUSIONS: The differential responses to SD may reflect regional use-dependent aspects of sleep regulation. These observations support the notion that sleep is not only a global phenomenon but has also local, use-dependent features.  相似文献   

3.
Functional topography of the human nonREM sleep electroencephalogram   总被引:12,自引:0,他引:12  
The sleep EEG of healthy young men was recorded during baseline and recovery sleep after 40 h of waking. To analyse the EEG topography, power spectra were computed from 27 derivations. Mean power maps of the nonREM sleep EEG were calculated for 1-Hz bins between 1.0 and 24.75 Hz. Cluster analysis revealed a topographic segregation into distinct frequency bands which were similar for baseline and recovery sleep, and corresponded closely to the traditional frequency bands. Hallmarks of the power maps were the frontal predominance in the delta and alpha band, the occipital predominance in the theta band, and the sharply delineated vertex maximum in the sigma band. The effect of sleep deprivation on EEG topography was determined by calculating the recovery/baseline ratio of the power spectra. Prolonged waking induced an increase in power in the low-frequency range (1-10.75 Hz) which was largest over the frontal region, and a decrease in power in the sigma band (13-15.75 Hz) which was most pronounced over the vertex. The topographic pattern of the recovery/baseline power ratio was similar to the power ratio between the first and second half of the baseline night. These results indicate that changes in sleep propensity are reflected by specific regional differences in EEG power. The predominant increase of low-frequency power in frontal areas may be due to a high 'recovery need' of the frontal heteromodal association areas of the cortex.  相似文献   

4.
Sleep was recorded under baseline conditions (waking prior to sleep 16 h; lights off 23.00 h) and during recovery sleep in the morning (waking prior to sleep 24 h; lights off 07.00 h). Slow-wave activity (SWA; EEG power density in the range of 0.75-4.5 Hz) declined progressively over consecutive nonREM-REM cycles in both conditions despite the different circadian phase at which sleep occurred. SWA in nonREM sleep in the first 5 h of sleep was significantly higher in recovery than in baseline. Also SWA within the first 20 min of nonREM-episodes 2 and 3 was significantly higher in recovery sleep, and a tendency in the same direction was seen for nonREM-episode 1. These data show that homeostatic processes are expressed in the EEG also when sleep is initiated at a circadian phase where REM sleep propensity is high. However, comparison of the power spectrum in the first cycle of day-time recovery sleep with published data on recovery sleep at various circadian phases suggests that circadian factors influence the EEG spectra.  相似文献   

5.
Vigilance states and EEG power density of the rat were determined after a 3- or 6-h sleep deprivation (SD) in the beginning of the 12-h light period. In comparison to baseline, non-rapid eye movement (REM) sleep showed a delayed and transitory increase after 3 h SD, and an immediate and persistent increase after 6 h SD. REM sleep was not affected. In non-REM sleep, EEG power density in the low-frequency range (0.75-6.0 Hz) was markedly enhanced after 6 h SD, but not significantly increased after 3 h SD. In REM sleep EEG activity in the 5-6 Hz band was increased after 6 h SD. We conclude that in the early part of the light period, 3 h waking prolongs non-REM sleep, whereas 6 h waking also enhances non-REM sleep intensity.  相似文献   

6.
Deboer T  Tobler I 《Neuroreport》2000,11(4):881-885
Animals emerging from hibernation or daily torpor show an initial increase in electroencephalogram slow-wave activity (SWA, power density between 0.75 and 4.0 Hz) in non-REM sleep, which subsequently declines. These typical features of sleep following prolonged waking led to the interpretation that the animals incur a sleep deprivation (SD) during torpor. This hypothesis has recently been questioned because the increase in SWA disappears in ground squirrels when sleep deprived immediately following hibernation. Here we show that in Djungarian hamsters subjected to SD immediately after daily torpor a predictable increase in SWA occurs during recovery. This supports the notion that the hamsters must sleep to dissipate the pressure for SWA incurred during torpor. The similarity between sleep after waking and torpor may provide a key for understanding sleep regulation.  相似文献   

7.
Effect of sleep deprivation on sleep and EEG power spectra in the rat   总被引:8,自引:0,他引:8  
EEG power spectra of the rat were computed for consecutive 4-s epochs of the daily light period and matched with the scores of the vigilance states. Sleep was characterized by a progressive decline of low frequency spectral values (i.e. slow wave activity) in non-rapid eye movement (non-REM) sleep, and a progressive increase in the amount of REM sleep. During recovery from 24-h total sleep deprivation (TSD) the following changes were observed: an increase of slow wave activity in non REM sleep with a persisting declining trend; an enhancement of theta activity (7.25-10.0 Hz) both in REM sleep and waking; a decrease of non-REM sleep and an increase of REM sleep. In addition, a slow wave EEG pattern prevailed in the awake and behaving animal during the initial recovery period. In selective sleep deprivation paradigms, either REM sleep or slow wave activity in non-REM sleep was prevented during a 2-h period following upon 24-h TSD. During both procedures, non-REM sleep spectra in the lowest frequency band showed no increase. There was no evidence for a further enhancement of slow wave activity after its selective deprivation. The results indicate that: (1) slow wave activity in non-REM sleep and theta activity in REM sleep may reflect sleep intensity; and (2) REM sleep and active waking, the two states with dominant theta activity, may be functionally related.  相似文献   

8.
Voltage-gated potassium channels containing the K.v.3.2 subunit are expressed in specific neuronal populations such as thalamocortical neurons and fast spiking GABAergic interneurons of the neocortex and hippocampus. These K(+)-channels play a major role in the regulation of firing properties in these neurons. We investigated whether the K.v.3.2 subunit contributes to the generation of the sleep electroencephalogram (EEG). The EEG of a frontal and occipital derivation of K.v.3.2-deficient mice and littermate controls was recorded during a 24-h baseline, 6-h sleep deprivation (SD) and subsequent 18-h recovery to assess also the effects of the K.v.3.2 subunit deficiency under physiological sleep pressure. The K.v.3.2-deficient mice had lower EEG power density in the frequencies between 3.25 and 6 Hz in nonREM (NREM) sleep and 3.25-5 Hz in REM sleep. These differences were more prominent in the frontal derivation than in the occipital derivation. The waking EEG spectrum was not affected by the deletion. In both genotypes SD induced a prominent increase in slow-wave activity in NREM sleep (mean EEG power density between 0.75 and 4.0 Hz), and a concomitant decrease in sleep fragmentation. The effects of SD did not differ significantly between the genotypes. The results indicate that K.v.3.2 channels may be involved in the generation of EEG oscillations in the high delta and low theta range in sleep. They support the notion that GABA-mediated synchronization of cortical activity contributes to the electroencephalogram.  相似文献   

9.
A computer-based sleep scoring algorithm was devised for the real time scoring of sleep-wake state in Wistar rats. Electroencephalogram (EEG) amplitude (microV(rms)) was measured in the following frequency bands: delta (delta; 1.5-6 Hz), theta (Theta; 6-10 Hz), alpha (alpha; 10.5-15 Hz), beta (beta; 22-30 Hz), and gamma (gamma; 35-45 Hz). Electromyographic (EMG) signals (microV(rms)) were recorded from the levator auris longus (neck) muscle, as this yielded a significantly higher algorithm accuracy than the spinodeltoid (shoulder) or temporalis (head) muscle EMGs (ANOVA; P=0.009). Data were obtained using either tethers (n=10) or telemetry (n=4). We developed a simple three-step algorithm that categorizes behavioural state as wake, non-rapid eye movement (NREM) sleep, rapid eye movement (REM) sleep, based on thresholds set during a manually-scored 90-min preliminary recording. Behavioural state was assigned in 5-s epochs. EMG amplitude and ratios of EEG frequency band amplitudes were measured, and compared with empirical thresholds in each animal.STEP 1: EMG amplitude greater than threshold? Yes: "active" wake, no: sleep or "quiet" wake. STEP 2: EEG amplitude ratio (delta x alpha)/(beta x gamma) greater than threshold? Yes: NREM, no: REM or "quiet" wake. STEP 3: EEG amplitude ratio Theta(2)/(delta x alpha) greater than threshold? Yes: REM, no: "quiet" wake. The algorithm was validated with one, two and three steps. The overall accuracy in discriminating wake and sleep (NREM and REM combined) using step one alone was found to be 90.1%. Overall accuracy using the first two steps was found to be 87.5% in scoring wake, NREM and REM sleep. When all three steps were used, overall accuracy in scoring wake, NREM and REM sleep was determined to be 87.9%. All accuracies were derived from comparisons with unequivocally-scored epochs from four 90-min recordings as defined by an experienced human rater. The algorithms were as reliable as the agreement between three human scorers (88%).  相似文献   

10.
The aim of the study was to investigate whether the electromagnetic field (EMF) emitted by digital radiotelephone handsets affects brain physiology. Healthy, young male subjects were exposed for 30 min to EMF (900 MHz; spatial peak specific absorption rate 1 W/kg) during the waking period preceding sleep. Compared with the control condition with sham exposure, spectral power of the EEG in non-rapid eye movement sleep was increased. The maximum rise occurred in the 9.75-11.25 Hz and 12.5-13.25 Hz band during the initial part of sleep. These changes correspond to those obtained in a previous study where EMF was intermittently applied during sleep. Unilateral exposure induced no hemispheric asymmetry of EEG power. The present results demonstrate that exposure during waking modifies the EEG during subsequent sleep. Thus the changes of brain function induced by pulsed high-frequency EMF outlast the exposure period.  相似文献   

11.
Timofeeva OA  Gordon CJ 《Brain research》2001,893(1-2):165-177
Organophosphates (OPs) inhibit acetylcholinesterase (AChE) activity causing cholinergic stimulation in the central nervous system (CNS). Cholinergic systems are crucial in electroencephalogram (EEG) generation and regulation of behavior; however, little is known about how OP exposure affects the EEG and behavioral states. We recorded EEG, core temperature and motor activity before and after exposure to the OP pesticide chlorpyrifos (CHP) in adult female rats implanted with telemetric transmitters. The recording and reference electrodes were placed in the occipital and frontal bones, respectively. The animals received CHP, 25 mg/kg, p.o., or oxotremorine (OX), 0.2 mg/kg, s.c. CHP led to a significant increase in delta (0.1-3.5 Hz), slow theta (4-6.5 Hz), gamma 2 (35.5-50 Hz), reduction in fast theta (7-8.5 Hz), alpha/sigma (9-14 Hz), beta 1 (14.5-24 Hz), beta 2 (24.5-30 Hz) and gamma 1 (30.5-35 Hz) powers, slowing of peak frequencies in 1-9 Hz range, hypothermia and decrease in motor activity. The drop in 7-14 Hz was associated with cholinergic suppression of sleep spindles. Changes in behavioral state were characterized by dramatic diminution of sleep postures and exploring activity and prolongation of quiet waking. There was recovery in all bands in spite of continued inhibition of AChE activity [44,45] in rats exposed to CHP. OX-induced EEG and behavioral alterations were similar to CHP except there was no increase in delta and the onset and recovery were more rapid. We did not find a correlation between the EEG and core temperature alterations. Overall, changes in EEG (except in delta band) and behavior following CHP were attributable to muscarinic stimulation. Cortical arousal together with increased quiet waking and decreased sleep after CHP occurred independently from inhibition of motor activity and lowering of core temperature.  相似文献   

12.
The dynamics of EEG spindle frequency activity (SFA; spectral power density in the 12.25–15.0 Hz range) and its relationship to slow-wave activity (SWA; 0.75–4.5 Hz) were investigated in long sleep episodes (>12 h). Young healthy men went to bed at either 19:00 h (early sleep; prior waking 36 h, n=9) or 24:00 h (late sleep; prior waking 17 h, n=8). In both nights, SWA in non-rapid-eye-movement sleep (NREMS) decreased over the first three to four 1.5-h intervals and remained at a low level in the subsequent five to six 1.5-h intervals. In contrast, the changes of SFA were more variable and differed between the lower (12.25–13.0 Hz), middle (13.25–14.0 Hz) and higher frequency bin (14.25–15.0 Hz). A pronounced influence of time of day was present in the lower and higher SFA bin, when the dynamics were analyzed with respect to clock time. In both the early and late sleep condition, power density in the lower bin was highest between 2:00 and 5:00 h in the morning and decreased thereafter. In the higher bin, power density was low in the early morning hours and increased as sleep was extended into the daytime hours. The results provide further evidence for a frequency-specific circadian modulation of SFA which becomes more evident at a time when SWA is low.  相似文献   

13.
In these studies, power spectral analysis techniques were utilized to quantify the EEG obtained from rats reared on either an 8% or 25% casein diet during various vigilance states at two stages of development: (1) adulthood-90 to 120 days old; and (2) immediately after weaning-22 to 23 days old. It was found that the cortical EEG contained relatively more power in the low frequencies (ie., 0.5 to 10 Hz) for the 22-23 day old animals than for the 90-120 day old rats, especially during the slow wave sleep states-SWS1 and SWS2. Theta activity (5-8 Hz) in the hippocampus was shown to have greater power for the 22-23 day old group than for the older animals during both REM sleep and waking. Analyses of power spectral data and other indices of the frequency distribution of the hippocampal EEG indicated that those animals subjected to protein malnutrition have significantly more power in the theta band during REM sleep than the normal adult group. Since it was also noted that the hippocampal EEG obtained from the 22-23 day old group contained relatively more power in the theta band than the 90-120 day old group, the dietary treatment effect might be intrepreted as an instance of retarded development associated with protein malnutrition. Thus, a significant effect of the dietary manipulation used in the study may be largely on the system responsible for regulating theta activity.  相似文献   

14.
Sleep deprivation: effect on sleep stages and EEG power density in man   总被引:8,自引:0,他引:8  
Sleep was analysed in 8 young adults subjects during two baseline nights and two recovery nights following 40.5 h sleep deprivation. Sleep stages were scored from the polygraph records according to conventional criteria. In addition, the EEG records of the entire nights were subjected to spectral analysis to compute the frequency distribution of the power density in the 0.25-25 Hz range for 0.5 Hz or 1.0 Hz bins. In the first recovery night, the power density in the delta band was significantly higher than baseline for total sleep time as well as for sleep stages 2, 3 and 4, 4 and REM. These changes were not restricted to the delta band, but extended to higher frequency bands. Minor, but significant, effects of sleep deprivation were seen in the power density distribution of the second recovery night. In the baseline nights, a progressive reduction of power density in the delta/theta range was present for successive non-REM-REM sleep cycles for total sleep time and stages 2, 3 and 4, and 4. The results show that effects of sleep deprivation as well as trends within the sleep periods are readily apparent from spectral analysis, but are inadequately reflected by conventional sleep scoring. When the power density values were integrated over the entire frequency range (0.75-25 Hz) for each non-REM-REM sleep cycle, an exponential decline from cycle 1 to cycle 3 was suggested. The present findings support the hypothesis that the EEG power density in the low frequency range is an indicator of a progressively declining process during sleep whose initial value is determined by the duration of prior waking.  相似文献   

15.
EEG slow-wave activity (SWA; spectral power in the 0.75–4.5 Hz band) is a function of the duration of prior waking and, thereby, an indicator of sleep homeostasis. We present a model that accounts for both the declining trend of SWA during sleep and for its variation within the successive nonrapid eye movement (non-REM) sleep episodes. The values of the model parameters were estimated by an optimization procedure in which empirical SWA of baseline nights (16 subjects, 26 nights) served as a reference. A sensitivity analysis revealed the model to be quite robust to small changes (±5%) of the parameter values. The estimated parameter values were used to simulate data sets from three different experimental protocols (sleep in the evening or sleep in the morning after prolonged waking, or extended sleep initiated at the habitual bedtime;n = 8 or 9). The timing of the REM trigger parameter was derived from the empirical data. A close fit was obtained between the simulated and empirical SWA data, and even the occasional late SWA peaks during extended sleep could be reproduced. Minor discrepancies suggest indirect or direct circadian influences on SWA. The simulations demonstrate that the concept of sleep homeostasis as proposed in the two-process model of sleep regulation can be refined to account in quantitative terms for empirical data and to predict the changes induced by the prolongation of waking or sleep.  相似文献   

16.
OBJECTIVE: This study investigated if obstructive sleep apnea syndrome (OSAS) may be associated with higher activity in different frequency bands of the EEG during a sustained wakefulness paradigm. METHODS: Twelve OSA patients and 8 healthy controls were studied with the Karolinska Drowsiness Test (KDT) and subjective ratings of sleepiness (VAS and KSS) conducted every hour during 24 h of sustained wakefulness. RESULTS: The waking EEG activity, mainly in the low (0.5-7.8 Hz) and fast (12.7-29.2 Hz) frequency band, increased as time awake progressed in both groups but more obviously in OSA patients. A similar pattern was observed for rated sleepiness in both groups. Moreover, VAS ratings of alertness were closely related to the awake theta, fast alpha and beta bands in controls but not in OSA patients. CONCLUSIONS: OSAS was associated with a wake-dependent increase in low (0.5-7.8 Hz) and fast (12.7-29.2 Hz) frequency range activity. Variations in behavioural sleepiness measured by VAS ratings closely reflect most of the waking EEG parameters in controls but not in OSA patients. SIGNIFICANCE: In a sustained wakefulness paradigm, higher activity in delta, theta and beta bands associated with OSAS indicates that OSA patients show marked signs of higher sleepiness and stronger efforts than controls to stay awake, even though they tend to underestimate their sleepiness.  相似文献   

17.
In order to study the involvement of NMDA-receptor activation in brain development, rat pups were chronically treated with the non-competitive NMDA antagonist MK-801 during the neonatal period. We recorded the cortical EEG at various vigilance states throughout the treatment period. Spectral analysis of the EEG showed reduced power in the delta (delta) frequency range (1.5-4 Hz) during quiet sleep and less power in the theta (theta) range (4-7 Hz) during REM-sleep in MK-801 animals than in controls. No significant differences were found for the total time spent in each of the different vigilance states. We conclude that chronic MK-801 treatment probably causes a developmental retardation in state-related brain activities.  相似文献   

18.
Our recent finding of a meditation‐related increase in low‐frequency NREM sleep EEG oscillatory activities peaking in the theta‐alpha range (4–12 Hz) was not predicted. From a consolidated body of research on sleep homeostasis, we would expect a change peaking in slow wave activity (1–4 Hz) following an intense meditation session. Here we compared these changes in sleep with the post‐meditation changes in waking rest scalp power to further characterize their functional significance. High‐density EEG recordings were acquired from 27 long‐term meditators (LTM) on three separate days at baseline and following two 8‐hr sessions of either mindfulness or compassion‐and‐loving‐kindness meditation. Thirty‐one meditation‐naïve participants (MNP) were recorded at the same time points. As a common effect of meditation practice, we found increases in low and fast waking EEG oscillations for LTM only, peaking at eight and 15 Hz respectively, over prefrontal, and left centro‐parietal electrodes. Paralleling our previous findings in sleep, there was no significant difference between meditation styles in LTM as well as no difference between matched sessions in MNP. Meditation‐related changes in wakefulness and NREM sleep were correlated across space and frequency. A significant correlation was found in the EEG low frequencies (<12 Hz). Since the peak of coupling was observed in the theta‐alpha oscillatory range, sleep homeostatic response to meditation practice is not sufficient to explain our findings. Another likely phenomenon into play is a reverberation of meditation‐related processes during subsequent sleep. Future studies should ascertain the interplay between these processes in promoting the beneficial effects of meditation practice.  相似文献   

19.
M Lancel  H van Riezen  A Glatt 《Brain research》1991,548(1-2):206-214
The electroencephalogram (EEG) of cats was recorded under baseline conditions (LD 12:12) and after 4 and 8 h of sleep deprivation (SD). The EEG was analyzed by visual scoring and by spectral analysis. Under baseline conditions the 24-h distribution of sleep was bimodal: the smallest amounts of sleep occurred at the light-dark and dark-light transitions. EEG slow-wave activity (power density in the delta frequency range: 0.5-4.0 Hz) in non-rapid-eye-movement sleep (NREMS) showed a small variation over the 24-h period. When recovery sleep, following 4 h and 8 h of SD, started at the beginning of the dark period, no significant rebound of NREMS and REMS occurred during the 24-h recovery period. When recovery sleep, after 4 h of SD, started at the fifth hour of the light period, the amount of NREMS was increased. In all experiments the EEG power density in NREMS was enhanced after SD in the entire frequency range studied (0.5-31.5 Hz), but more prominently in the delta and theta (4.5-7.0 Hz) frequency bands. The effects dissipated in the course of the recovery period. The magnitude and duration of the enhancements of EEG power densities were dependent on the duration of SD and on the circadian phase at which SD was scheduled. It is concluded that in the cat sleep is a function of both circadian and homeostatic processes and that especially the EEG power density in NREMS is highly responsive to sleep loss.  相似文献   

20.
The effect of age on sleep and the sleep EEG was investigated in middle-aged men (mean age: 62.0 years) and in young men (mean age: 22.4 years). Even though the older men reported a higher number of nocturnal awakenings, subjective sleep quality did not differ. Total sleep time, sleep efficiency, and slow wave sleep were lower in the middle-aged, while stage 1 and wakefulness after sleep onset were higher. The difference in wakefulness within nonREM-REM sleep cycles was most pronounced in the third and fourth cycle. In the older men, EEG power density in nonREM sleep was reduced in frequencies below 14.0 Hz, whereas in REM sleep age-related reductions were limited to the delta-theta (0.25 – 7.0 Hz) and low alpha (8.25 – 10.0 Hz) band. Slow-wave activity (SWA, power density in the 0.75 – 4.5 Hz range) decreased in the course of sleep in both age groups. The between-group difference in SWA diminished in the course of sleep, whereas the difference in activity in the frequency range of sleep spindles (12.25 – 14.0 Hz) increased. It is concluded that frequency and state specific changes occur as a function of age, and that the sleep dependent decline in SWA and increase in sleep spindle activity are attenuated with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号