首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchrotron stereotactic radiotherapy (SSR) consists in loading the tumour with a high atomic number element (Z), and exposing it to monochromatic x-rays from a synchrotron source (50-100 keV), in stereotactic conditions. The dose distribution results from both the stereotactic monochromatic x-ray irradiation and the presence of the high Z element. The purpose of this preliminary study was to evaluate the two-dimensional dose distribution resulting solely from the irradiation geometry, using Monte Carlo simulations and a Fricke gel dosimeter. The verification of a Monte Carlo-based dosimetry was first assessed by depth dose measurements in a water tank. We thereafter used a Fricke dosimeter to compare Monte Carlo simulations with dose measurements. The Fricke dosimeter is a solution containing ferrous ions which are oxidized to ferric ions under ionizing radiation, proportionally to the absorbed dose. A cylindrical phantom filled with Fricke gel was irradiated in stereotactic conditions over several slices with a continuous beam (beam section = 0.1 x 1 cm2). The phantom and calibration vessels were then imaged by nuclear magnetic resonance. The measured doses were fairly consistent with those predicted by Monte Carlo simulations. However, the measured maximum absolute dose was 10% underestimated regarding calculation. The loss of information in the higher region of dose is explained by the diffusion of ferric ions. Monte Carlo simulation is the most accurate tool for dosimetry including complex geometries made of heterogeneous materials. Although the technique requires improvements, gel dosimetry remains an essential tool for the experimental verification of dose distribution in SSR with millimetre precision.  相似文献   

2.
Cheung JY  Yu KN  Yu CP  Ho RT 《Medical physics》2002,29(10):2260-2261
In calculations for the Leksell Gamma Knife, GammaPlan employs a tissue equivalent material without the presence of a skull bone, while dosimetry work is based on a polystyrene phantom. The compatibility of these dose distributions is uncertain. The Monte Carlo technique was employed to determine the radial dose distributions from a single 14 mm collimator helmet in 160 mm diam phantoms with different materials. The materials studied were polystyrene, perspex, water, and water with skull bone. Results showed no significant differences among the radial doses in different phantom materials for the 14 mm collimator helmet. The Monte Carlo simulation was repeated with the inclusion of all 201 sources. Again, no significant differences were observed.  相似文献   

3.
Park YK  Ye SJ  Kim IH  Wee WR  Kim MK  Han HS  Son KJ  Park UJ 《Medical physics》2008,35(5):1854-1858
Postoperative beta-irradiation after pterygium excision has been considered a valuable therapeutic procedure to reduce the recurrence rate. Recently, it was reported that beta-irradiation also substantially reduced the risk of surgical failure after glaucoma surgery. Pure beta-irradiation using a 90Sr/Y applicator has been almost exclusively used for this purpose. As an alternative to 90Sr/Y beta-irradiation, we propose treatment with betas of a 32P source. While 32P has a lower maximum energy (1.71 MeV) than 90Sr/Y (2.27 MeV), it has an average energy comparable to that of 90Sr/Y. Furthermore, it can be produced easily in a nuclear reactor by neutron activation and is considered a less hazardous material. Monte Carlo simulations for the dosimetry of proposed 32P applicators were performed using the MCNP5 code. The structure and dimension of the 32P applicators were based on those of the 90Sr/Y applicators currently available, while medical plastic encapsulation and liquid source were chosen to enhance beta-dose to the surface of the conjunctiva. The 32P applicator showed that the surface dose distribution (up to 0.75 mm depth) is very similar to that of 90Sr/Y. However, beyond 0.75 mm depth, the 32P doses decrease with depths more rapidly than 90Sr/Y doses. In order to achieve the same surface dose rate, the required 32P activity is about three times that for a 90Sr/Y applicator. We conclude that the proposed 32P applicator can deliver therapeutic doses to the target lesion while sparing the lens better than the 90Sr/Y applicator. The 32P activity required to deliver therapeutic doses can be produced in a 30 MW reactor available at the Korea Atomic Energy Research Institute.  相似文献   

4.
The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.  相似文献   

5.
The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.  相似文献   

6.
This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer gel dosimetry measurements without generating misleading errors due to the limited spatial resolution.  相似文献   

7.
蒙特卡罗技术在辐射剂量学中的应用   总被引:4,自引:1,他引:4  
由于蒙特卡罗模拟能够细致地描述粒子在物质中的输运过程,辐射剂量学中的许多问题都可以利用蒙特卡罗技术来解决。本文讨论了蒙特卡罗技术在辐射剂量学中的主要应用方面以及近年来的发展方向,并通过实际的计算结果说明应用该技术能够对辐射剂量学的研究起到非常重要的推动作用。  相似文献   

8.
The purpose of this study was to calculate internal absorbed dose distribution in mice from pre-clinical small animal PET imaging procedures with fluorine-18 labeled compounds (18FDG, 18FLT, and fluoride ion). The GATE Monte Carlo software and a realistic, voxel-based mouse phantom that included a subcutaneous tumor were used to perform simulations. Discretized time-activity curves obtained from dynamic in vivo studies with each of the compounds were used to set the activity concentration in the simulations. For 18FDG, a realistic range of uptake ratios was considered for the heart and tumor. For each simulated time frame, the biodistribution of the radionuclide in the phantom was considered constant, and a sufficient number of decays were simulated to achieve low statistical uncertainty. Absorbed dose, which was scaled to take into account radioactive decay, integration with time, and changes in biological distribution was reported in mGy per MBq of administered activity for several organs and uptake scenarios. The mean absorbed dose ranged from a few mGy/MBq to hundreds of mGy/MBq. Major organs receive an absorbed dose in a range for which biological effects have been reported. The effects on a given investigation are hard to predict; however, investigators should be aware of potential perturbations especially when the studied organ receives high absorbed dose and when longitudinal imaging protocols are considered.  相似文献   

9.
The objective of this study is to use Monte Carlo simulations to assess the sensitivity of implant planning methods to seed misplacement. A model of seed misplacement is first developed. It is based upon data gathered after a study on source migration performed on 30 patients treated with I-125 transperineal implants. It consists of applying elementary transformations to every needle in a loading plan to produce a distorted implant mimicking the effect of migration. After being validated, the model has been used to tune the inverse planning system in use at our institution. The new planning system is now used clinically and actual results are compared with those predicted by simulations. Simulations were also used to compare our planning method with others. The new planning system increased the average postimplant dose-volume histogram DVH(160) from 82% to 93%, which is the value predicted by the simulations. This improvement is due to an increased dose margin providing coverage even in the presence of migration. At the same time, the dose to the urethra remained at 267 Gy because of a special protection feature included in the planning system. Some other implant planning methods are not as robust [average DVH(160) ranging from 76% to 85%] and deliver a higher dose to the urethra (close to 400 Gy). To conclude, a simple model of source migration can provide realistic feedback about sensitivity to migration of planning methods. It allowed a significant clinical improvement at our institution. The improved inverse planning system provided better coverage with fewer seeds (but equal total activity) than a manual method. Hence, a properly tuned inverse planning system has the potential to deliver the less sensitive plans. The model also helped demonstrate that planning methods are not equally robust to migration and that they should not be evaluated solely by the plans they produce, but also by their clinical (or simulated) results.  相似文献   

10.
闫卓  徐榭    陈志 《中国医学物理学杂志》2020,37(12):1482-1489
目的:评估采用蒙特卡洛(MC)模拟方法和中国科学技术大学数字人体模型(USTC体模)在质子治疗设施中的辐射屏蔽优化设计。方法:使用MC模拟方法和USTC体模计算数字体模处于不同位置时在不同部位的当量剂量率(EDR),对安徽省合肥市离子医学中心(HIMC)的新型质子治疗设施的屏蔽设计进行评估,并将其与采用经验公式计算得出的EDR进行比较。结果:使用铁靶时,经验公式计算得出的EDR值比MC模拟方法得到的结果偏高27.6倍;使用水靶时,经验公式计算结果较MC模拟结果高36.6倍,说明使用经验公式进行屏蔽计算将使得剂量被高估,从而导致成本增加,不符合辐射防护最优化原则。结论:利用USTC体模对质子治疗设施进行基于MC模拟的屏蔽计算可以得到更加准确和优化的结果。  相似文献   

11.
Avalanche photodiodes (APDs), and in particular position-sensitive avalanche photodiodes (PSAPDs), are an attractive alternative to photomultiplier tubes (PMTs) for reading out scintillators for PET and SPECT. These solid-state devices offer high gain and quantum efficiency, and can potentially lead to more compact and robust imaging systems with improved spatial and energy resolution. In order to evaluate this performance improvement, we have conducted Monte Carlo simulations of gamma cameras based on avalanche photodiodes. Specifically, we investigated the relative merit of discrete and PSAPDs in a simple continuous crystal gamma camera. The simulated camera was composed of either a 4 x 4 array of four channels 8 x 8 mm2 PSAPDs or an 8 x 8 array of 4 x 4 mm2 discrete APDs. These configurations, requiring 64 channels readout each, were used to read the scintillation light from a 6 mm thick continuous CsI:Tl crystal covering the entire 3.6 x 3.6 cm2 photodiode array. The simulations, conducted with GEANT4, accounted for the optical properties of the materials, the noise characteristics of the photodiodes and the nonlinear charge division in PSAPDs. The performance of the simulated camera was evaluated in terms of spatial resolution, energy resolution and spatial uniformity at 99mTc (140 keV) and 125I ( approximately 30 keV) energies. Intrinsic spatial resolutions of 1.0 and 0.9 mm were obtained for the APD- and PSAPD-based cameras respectively for 99mTc, and corresponding values of 1.2 and 1.3 mm FWHM for 125I. The simulations yielded maximal energy resolutions of 7% and 23% for 99mTc and 125I, respectively. PSAPDs also provided better spatial uniformity than APDs in the simple system studied. These results suggest that APDs constitute an attractive technology especially suitable to build compact, small field of view gamma cameras dedicated, for example, to small animal or organ imaging.  相似文献   

12.
Nanodosimetric single-event distributions or their mean values may contribute to a better understanding of how radiation induced biological damages are produced. They may also provide means for radiation quality characterization in therapy beams. Experimental nanodosimetry is however technically challenging and Monte Carlo simulations are valuable as a complementary tool for such investigations. The dose-mean lineal energy was determined in a therapeutic p(65)+Be neutron beam and in a (60)Co gamma beam using low-pressure gas detectors and the variance-covariance method. The neutron beam was simulated using the condensed history Monte Carlo codes MCNPX and SHIELD-HIT. The dose-mean lineal energy was calculated using the simulated dose and fluence spectra together with published data from track-structure simulations. A comparison between simulated and measured results revealed some systematic differences and different dependencies on the simulated object size. The results show that both experimental and theoretical approaches are needed for an accurate dosimetry in the nanometer region. In line with previously reported results, the dose-mean lineal energy determined at 10 nm was shown to be related to clinical RBE values in the neutron beam and in a simulated 175 MeV proton beam as well.  相似文献   

13.
A radiation dose enhancement can be obtained in brain tumours after infusion of an iodinated contrast agent and irradiation with kilovoltage x-rays in tomography mode. The aim of this study was to assess dosimetric properties of the synchrotron stereotactic radiotherapy technique applied to humans (SSR) for preparing clinical trials. We designed an interface for dose computation based on a Monte Carlo code (MCNPX). A patient head was constructed from computed tomography (CT) data and a tumour volume was modelled. Dose distributions were calculated in SSR configuration for various energy beam and iodine content in the target volume. From the calculations, it appears that the iodine-filled target (10 mg ml(-1)) can be efficiently irradiated by a monochromatic beam of energy ranging from 50 to 85 keV. This paper demonstrates the feasibility of stereotactic radiotherapy for treating deep-seated brain tumours with monoenergetic x-rays from a synchrotron.  相似文献   

14.
The quality assurance of stereotactic radiotherapy and radiosurgery treatments requires the use of small-field dose measurements that can be experimentally challenging. This study used Monte Carlo simulations to establish that PAGAT dosimetry gel can be used to provide accurate, high-resolution, three-dimensional dose measurements of stereotactic radiotherapy fields. A small cylindrical container (4 cm height, 4.2 cm diameter) was filled with PAGAT gel, placed in the parietal region inside a CIRS head phantom and irradiated with a 12-field stereotactic radiotherapy plan. The resulting three-dimensional dose measurement was read out using an optical CT scanner and compared with the treatment planning prediction of the dose delivered to the gel during the treatment. A BEAMnrc/DOSXYZnrc simulation of this treatment was completed, to provide a standard against which the accuracy of the gel measurement could be gauged. The three-dimensional dose distributions obtained from Monte Carlo and from the gel measurement were found to be in better agreement with each other than with the dose distribution provided by the treatment planning system's pencil beam calculation. Both sets of data showed close agreement with the treatment planning system's dose distribution through the centre of the irradiated volume and substantial disagreement with the treatment planning system at the penumbrae. The Monte Carlo calculations and gel measurements both indicated that the treated volume was up to 3 mm narrower, with steeper penumbrae and more variable out-of-field dose, than predicted by the treatment planning system. The Monte Carlo simulations allowed the accuracy of the PAGAT gel dosimeter to be verified in this case, allowing PAGAT gel to be utilized in the measurement of dose from stereotactic and other radiotherapy treatments, with greater confidence in the future.  相似文献   

15.
Our aim in this work was to investigate the methodology used in the determination of the entrance surface dose (ESD) in diagnostic radiology. In kV x-rays for low-energy photons (tube potential up to 160 kV, HVL: 1-8 mm Al), the ESD is based on the use of the ratio of mass-energy absorption coefficients and backscatter factors. A full simulation of the photon and electron transport in a kilovoltage x-ray unit, using the Monte Carlo code BEAM/EGS4, was performed to obtain an accurate beam phase space for use in dose calculation. The modelled phase space was experimentally validated for the beam qualities (measured HVL: 3.3 mm Al-2.2 mm Cu) and showed good agreement between calculated and measured HVLs, air kerma and relative dose distributions. We have computed the conversion factors from air kerma to water or soft tissue absorbed dose at the surface of a phantom for beam qualities (HVL: 3.3-8.35 mm Al). The same model was also used to calculate the ESD in water and in soft tissue for the low-energy photon range considered. The results show that the numerical differences between the air kerma and the water kerma based backscatter factors are insignificant. The same conclusion was reached for the (mu(en)/rho) ratios, for soft tissue to air, evaluated using either the primary photon spectra or the spectra at the surface of a phantom. Furthermore, the good agreement obtained for the computation of the conversion factors with a full BEAM/EGS4 model confirms the previous studies which are based on different sources for the spectral distribution and different beam geometries (pencil beam or point source assumptions). On the other hand, the ESD in water or soft tissue is well described either with the B(air) or the B(w) formalism. Conversion factors from air kerma to ESD in these media are proposed in this work for several beam qualities in diagnostic radiology.  相似文献   

16.
In this study we investigate radiochromic film dosimetry around air cavities with particular focus on the perturbation of the dose distribution by the film when the film is parallel to the beam axis. We considered a layered polystyrene phantom containing an air cavity as a model for the air-soft tissue geometry that may occur after surgical resection of a paranasal sinus tumour. A radiochromic film type MD-55 was positioned within the phantom so that it intersected the cavity. Two phantom set-ups were examined. In the first case, the air cavity is at the centre of the phantom, thus the film is lying along the central beam axis. In the second case, the cavity and film are located 2 cm offset from the phantom centre and the central beam axis. In order to examine the influence of the film on the dose distribution and to interpret the film-measured results, Monte Carlo simulations were performed. The film was modelled rigorously to incorporate the composition and structure of the film. Two field configurations, a 1 x 10 cm2 field and a 10 x 10 cm2 field, were examined. The dose behind the air cavity is reduced by 6 to 7% for both field configurations when a film that intersects the cavity contains the central beam axis. This is due to the attenuation exerted by the film when photons cross the cavity. Offsetting the beam to the cavity and the film by 2 cm removes the dose reduction behind the air cavity completely. Another result was that the rebuild-up behind the cavity for the 10 x 10 cm2 field, albeit less significant than for the 1 x 10 cm2 field, could only be measured by the film that was placed offset with respect to the central beam axis. Although radiochromic film is approximately soft-tissue equivalent and energy independent as compared to radiographic films, care should be taken in the case of inhomogeneous phantoms when the film intersects air cavities and contains the beam central axis. Errors in dose measurement can be expected distal to the air cavity due to attenuation in the film itself. This attenuation would not occur in the absence of the film. Both experiments and Monte Carlo computations support this conclusion.  相似文献   

17.
We investigate the feasibility of using diode laser gas spectroscopy for sinusitis diagnostics. We simulate light propagation using the Monte Carlo concept, as implemented by the Advanced Systems Analysis Program (ASAP) software. Simulations and experimental data are compared for a model based on two scattering bodies representing human tissue, with an air gap in-between representing the sinus cavity. Simulations are also performed to investigate the detection geometries used in the experiments, as well as the influence of the optical properties of the scattering bodies. Finally, we explore the possibility of performing imaging measurements of the sinuses. Results suggest that a diagnostic technique complementary to already existing ones could be developed.  相似文献   

18.
Monte Carlo techniques have become ubiquitous in medical physics over the last 50 years with a doubling of papers on the subject every 5 years between the first PMB paper in 1967 and 2000 when the numbers levelled off. While recognizing the many other roles that Monte Carlo techniques have played in medical physics, this review emphasizes techniques for electron-photon transport simulations. The broad range of codes available is mentioned but there is special emphasis on the EGS4/EGSnrc code system which the author has helped develop for 25 years. The importance of the 1987 Erice Summer School on Monte Carlo techniques is highlighted. As an illustrative example of the role Monte Carlo techniques have played, the history of the correction for wall attenuation and scatter in an ion chamber is presented as it demonstrates the interplay between a specific problem and the development of tools to solve the problem which in turn leads to applications in other areas.  相似文献   

19.
The use of isotropic light dosimetry probes is being increasingly advocated to monitor the light dose during photodynamic therapy. In this paper Monte Carlo simulations were used to study the potential error resulting from the disturbance of the local fluence due to presence of the probe. External irradiation of a plane slab of tissue was modelled for two sets of tissue optical properties. A highly scattering, nearly spherical detector probe, approximately 1 mm in diameter, positioned just above the tissue surface and at several depths below the surface, was incorporated into the simulation. Tissue fluence distributions were generated in the absence of the detector probe, and with the probe in situ. The presence of the probe caused negligible disturbance to the ambient fluence distribution when embedded in the tissue. The fluence measured at the centre of the detector probe showed a good correlation with the tissue fluence measured in the absence of the probe. With the detector probe positioned just above the tissue surface some reduction in surface tissue fluence was observed, although this effect was negligible at greater tissue depths. It was concluded that, when embedded in tissue, isotropic detector probes produce an accurate measure of tissue fluence or fluence rate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号