首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly concentrated aqueous solutions of various hydrotropic agents like sodium benzoate, sodium salicylate, sodium acetate, sodium citrate, nicotinamide and sodium ascorbate have been observed to enhance aqueous solubilities of a large number of poorly water-soluble drugs. In the present investigation hydrotropic solubilization technique has been employed to solubilize poorly water-soluble aspirin (analgesic and antipyretic drug) by 0.5 M ibuprofen sodium solution to carry out titrimetric analysis of aspirin in tablet dosage form. Results of analysis by proposed method and Phamacopoeial method are very comparable. Proposed method is new, rapid, simple, accurate, and reproducible. Statistical data proved the accuracy, reproducibility and the precision of proposed method.  相似文献   

2.
The effect of some electrolytes, nonelectrolytes, surfactants, and hydrotropic salts on the solubility of water in 1-butanol and 1-hexanol was investigated. While sodium chloride and sodium acetate decrease the solubility of water in 1-butanol, urea has no significant effect. The ionic surfactants, sodium lauryl sulfate and cetrimide, cause an initial decrease in the solubility of water in 1-butanol followed by an increase at high surfactant concentrations. The nonionic surfactant, polysorbate 20, does not show the initial decrease in water solubility. On the other hand, the hydrotropic salts, sodium benzoate, sodium salicylate, and sodium gentisate, are shown to be the best water solubilizers in 1-butanol. Sodium salicylate showed the maximum solubilizing power. The effect of sodium benzoate, sodium salicylate, and sodium lauryl sulfate on the solubility of water in 1-hexanol was also investigated. Similar results were obtained.  相似文献   

3.
Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that exhibits analgesic, antipyretic and anti-inflammatory activities. It is practically insoluble in water. The effect of various hydrotropes such as urea, nicotinamide, resorcinol, sodium benzoate and sodium p-hydroxy benzoate on the solubility of indomethacin was investigated. The solubility enhancement of indomethacin by the hydrotropes was observed in decreasing order as sodium p-hydroxy benzoate>sodium benzoate>nicotinamide>resorcinol>urea. In order to elucidate the probable mechanism of solubilization, various solution properties of hydrotropes such as viscosity, specific gravity, surface tension, refractive index and specific conductance of hydrotropic solutions were studied at 25+/-2 degrees C. Each solubilized product was characterized by ultraviolet, infrared, powder X-ray diffraction and differential scanning calorimetry techniques. The hydrotropic solubilization of indomethacin at lower hydrotrope concentration may be attributed to weak ionic interactions while that at higher hydrotrope concentration may be due to molecular aggregation. Aqueous injectable formulations using sodium p-hydroxy benzoate, sodium benzoate and nicotinamide as hydrotropes were developed and studied for physical and chemical stability.  相似文献   

4.
The objective of this study was to elucidate the feasibility to improve the solubility and bioavailability of poorly water-soluble itraconazole via solid dispersions by using supercritical fluid (SCF). Solid dispersions of itraconazole with hydrophilic polymer, HPMC 2910, were prepared by the aerosol solvent extraction system (ASES) under different process conditions of temperature/pressure. The particle size of solid dispersions ranged from 100 to 500 nm. The equilibrium solubility increased with decrease (15 to 10 MPa) in pressure and increase (40 to 60 degrees C) in temperature. The solid dispersions prepared at 45 degrees C/15 MPa showed a slight increase in equilibrium solubility (approximately 27-fold increase) when compared to pure itraconazole, while those prepared at 60 degrees C/10 MPa showed approximately 610-fold increase and no endothermic peaks corresponding to pure itraconazole were observed, indicating that itraconazole might be molecularly dispersed in HPMC 2910 in the amorphous form. The amorphous state of itraconazole was confirmed by DSC/XRD data. The pharmacokinetic parameters of the ASES-processed solid dispersions, such as Tmax, Cmax, and AUC(o-24 h) were almost similar to Sporanox capsule which shows high bioavailability. Hence, it was concluded that the ASES process could be a promising technique to reduce particle size and/or prepare amorphous solid dispersion of drugs in order to improve the solubility and bioavailability of poorly water-soluble drugs.  相似文献   

5.
Quantitative spectrophotometric analysis of poorly water-soluble drugs involves use of various organic solvents. Major drawbacks of organic solvents include high cost, volatility and toxicity. Safety of analyzer is affected by toxicity of the solvent used. In the present investigation the use of organic solvent has been avoided, making the method environmentally friendly. Urea has demonstrated enhancement in aqueous solubilities of a large number of poorly water-soluble drugs, thereby widely used as a hydrotropic agent. There was more than 10-fold enhancement in the solubility of ornidazole in 10 M urea solution as compared to its solubility in distilled water. In the present investigation, hydrotropic solution of urea (10 M) was employed as solubilizing agent to solubilize the poorly water-soluble drug, ornidazole, from fine powder of its tablet dosage form for spectrophotometric determination in ultraviolet region at 319 nm. Beer''s law was obeyed in the concentration range of 5-25 μg/ml in presence of urea. Presence of urea did not interfere in the analysis. Proposed method is new, rapid, simple, accurate, and reproducible. Statistical data proved the accuracy, reproducibility and the precision of the proposed method.  相似文献   

6.
Improvement of water solubility, dissolution rate, oral bioavailability, and reduction of first pass metabolism of OL (OL), were the aims of this research. Co-amorphization of OL carboxylic acid dispersions at various molar ratios was carried out using rapid solvent evaporation. Characterization of the dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectrometry (FTIR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). Dispersions with highest equilibrium solubility were formulated as fast dissolving oral films. Modeling and optimization of film formation were undertaken using artificial neural networks (ANNs). The results indicated co-amorphization of OL-ascorbic acid through H-bonding. The co-amorphous dispersions at 1:2 molar ratio showed more than 600-fold increase in solubility of OL. The model optimized fast dissolving film prepared from the dispersion was physically and chemically stable, demonstrated short disintegration time (8.5?s), fast dissolution (97% in 10?min) and optimum tensile strength (4.9 N/cm2). The results of in vivo data indicated high bioavailability (144?ng h/mL) and maximum plasma concentration (14.2?ng/mL) compared with the marketed references. Therefore, the optimized co-amorphous OL-ascorbic acid fast dissolving film could be a valuable solution for enhancing the physicochemical and pharmacokinetic properties of OL.  相似文献   

7.
The influence of hydrotropic compounds on complex formation by 2-hydroxypropyl-beta-cyclodextrin (2-HP-beta-CD) was investigated with methyltestosterone (MeT). Various representatives of the lyotropic series were used for this purpose. Additive hydrotropic effects were observed for nicotinamide and urea, which disrupt the water structure, while structure formers such as sorbitol exerted negative effects. The effects of hydrotropic substances on the phase solubility relationship of MeT showed that inclusion complex formation with 2-HP-beta-CD depends on the degree of ordering of the solvent and is apparently subject to entropy effects. Combined systems comprising 2-HP-beta-CD and auxiliary substances with various underlying solubilizing principles were also investigated. Combination of 2-HP-beta-CD with conventional solubilizers, such as 1,2-propylene glycol or sodium deoxycholate, reduced the solubilization capacity of 2-HP-beta-CD. Competitive displacement of the inclusion molecule from its 2-HP-beta-CD complex by sodium deoxycholate suggested that cholesterol participates in the release mechanism of the inclusion molecule under in vivo conditions. The spontaneous release of complexed drug molecules could indirectly be shown on the basis of the spontaneous action of a complexed dihydropyridine derivative after iv administration in rats. The bioavailability of an investigational drug in cynomolgus monkeys could be enhanced sevenfold by inclusion complexation with 2-HP-beta-CD.  相似文献   

8.
Nimesulide is a non-steroidal anti-inflammatory drug (NSAID) that exhibits analgesic, antipyretic and anti-inflammatory activities. It is practically insoluble in water. The effect of various hydrotropes such as nicotinamide, sodium ascorbate, sodium benzoate, sodium salicylate and piperazine on the solubility of nimesulide was investigated. The solubility enhancement of nimesulide by the hydrotropes was observed in decreasing order as piperazine > sodium ascorbate > sodium salicylate > sodium benzoate > nicotinamide. In order to elucidate the probable mechanism of solubilization, various solution properties of hydrotropes such as viscosity, specific gravity, surface tension, refractive index, specific conductance of hydrotropic solutions were studied at 25 +/- 2 degrees C on the basis of earlier studies. The hydrotropic solubilization of nimesulide at lower hydrotrope concentration may be attributed to weak ionic interactions while that at higher hydrotrope concentration may be due to molecular aggregation. Parenteral formulations using piperazine as a hydrotrope were developed and studied for physical and chemical stability.  相似文献   

9.
Extended release mini matrix tablets for 8-Prenylnaringenin (8-PN), an extremely poorly soluble weakly acidic drug, were developed by using polyvinylacetate/polyvinylpyrrolidone as matrix former. Mini matrix tablets were manufactured by direct compression or wet granulation technique. With conventional modified release formulations, the drug demonstrated pH-dependent release due to pH-dependent solubility of the drug substance (i.e., increasing solubility at higher pH-values). In order to achieve pH-independent drug release two classes of pH-modifying agents (water-soluble vs. water-insoluble) were studied with respect to their effect on the dissolution of 8-PN. Addition of water-soluble salts of weak acids (sodium carbonate and sodium citrate) failed in order to achieve pH-independent 8-PN release. In contrast, addition of water insoluble salts of a strong base (magnesium hydroxide and magnesium oxide) was found to maintain high pH-values within the mini matrix tablets during release of 8-PN at pH 1 over a period of 10 h. The micro-environmental conditions for the dissolution of the weakly acidic drug were kept almost constant, thus resulting in pH-independent drug release. Compound release from mini matrix tablets prepared by wet granulation was faster compared to the drug release from tablets prepared by direct compression.  相似文献   

10.
Ezetimibe (EZE), a water insoluble drug, depicts variable bioavailability. The objective of the present investigation was to improve dissolution characteristics of EZE, which might offer improved bioavailability. The solid dispersions were prepared using poloxamer 407 (L 127) and polyvinyl pyrrolidone by melt and solvent method, respectively. Phase solubility studies indicated linear relationship between drug solubility and carrier concentration. In vitro release studies revealed improvement in the dissolution characteristics of EZE in solid dispersions. Solid dispersion with L 127 gave better rate and extent of dissolution. The best fit model indicating the probable mechanism of drug release from solid dispersions was found to be Korsemeyer–Peppas. The results of characterization of solid dispersions by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction revealed reduction in drug crystallinity which might be responsible for improved dissolution properties. The tablets of solid dispersion, containing L 127 prepared by direct compression, exhibited better drug release as compared to marketed formulation.  相似文献   

11.
Purpose. To identify hydrotropic agents that can increase aqueous paclitaxel (PTX) solubility and to study the chemical structures necessary for hydrotropic properties so that polymeric hydrotropic agents can be synthesized. Methods. More than 60 candidate hydrotropic agents (or hydro- tropes) were tested for their ability to increase the aqueous PTX solubility. A number of nicotinamide analogues were synthesized based on the observation that nicotinamide showed a favorable hydrotropic property. The identified hydrotropes for PTX were used to examine the structure-activity relationship.Results. N,N-Diethylnicotinamide (NNDENA) was found to be the most effective hydrotropic agent for PTX. The aqueous PTX solubility was 39 mg/ml and 512 mg/ml at NNDENA concentrations of 3.5 M and 5.95 M, respectively. These values are 5-6 orders of magnitude greater than the intrinsic solubility of 0.30 ± 0.02 g/ml. N-Picolylnicotinamide, N-allylnicotinamide, and sodium salicylate were also excellent hydrotropes for PTX. Solubility data showed that an effective hydrotropic agent should be highly water soluble while maintaining a hydrophobic segment. Conclusions. The present study identified several hydrotropic agents effective for increasing aqueous solubility of PTX and analyzed the structural requirements for this hydrotropic property. This information can be used to find other hydrotropic compounds and to synthesize polymeric hydrotropes that are effective for PTX and other poorly water-soluble drugs.  相似文献   

12.
《Drug delivery》2013,20(1):46-53
To develop a novel flurbiprofen-loaded solid dispersion without crystalline change, various flurbiprofen-loaded solid dispersions were prepared with water, sodium carboxylmethyl cellulose (Na-CMC), and Tween 80. The effect of Na-CMC and Tween 80 on aqueous solubility of flurbiprofen was investigated. The physicochemical properties of solid dispersions were investigated using SEM, DSC, and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared to commercial product. Unlike conventional solid dispersion systems, the flurbiprofen-loaded solid dispersion gave a relatively rough surface and changed no crystalline form of drug. These solid dispersions were formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting in changing the hydrophobic drug to hydrophilic form. Furthermore, the flurbiprofen-loaded solid dispersion at the weight ratio of flurbiprofen/Na-CMC/Tween 80 of 6/2.5/0.5 improved ~ 60-fold drug solubility. It gave higher AUC, Tmax, and Cmax compared to commercial product. The solid dispersion improved almost 1.5-fold bioavailability of drug compared to commercial product in rats. Thus, the flurbiprofen-loaded solid dispersion would be useful to deliver poorly water-soluble flurbiprofen with enhanced bioavailability without crystalline change.  相似文献   

13.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to‐carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile of Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

14.
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug, Lovastatin, by a solid dispersion technique. Solid dispersions were prepared by using polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) in different drug-to-carrier ratios. Dispersions with PEG 4000 were prepared by fusion-cooling and solvent evaporation, whereas dispersions containing PVP K30 were prepared by solvent evaporation technique. These new formulations were characterized in the liquid state by phase solubility studies and in the solid state by differential scanning calorimetry, X-ray powder diffraction, and FT-IR spectroscopy. The aqueous solubility of Lovastatin was favored by the presence of both polymers. The negative values of the Gibbs free energy and enthalpy of transfer explained the spontaneous transfer from pure water to the aqueous polymer environment. Solid-state characterization indicated Lovastatin was present as amorphous material and entrapped in polymer matrix. In contrast to the very slow dissolution rate of pure Lovastatin, the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. Solid dispersion prepared with PVP showed the highest improvement in wettability and dissolution rate of Lovastatin. Even physical mixture of Lovastatin prepared with both polymers also showed better dissolution profile than that of pure Lovastatin. Tablets containing solid dispersion prepared with PEG and PVP showed significant improvement in the release profile Lovastatin compared with tablets containing Lovastatin without PEG or PVP.  相似文献   

15.
With the aim of developing a novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes, various valsartan-loaded solid dispersions were prepared with water, hydroxypropyl methylcellulose (HPMC) and sodium lauryl sulphate (SLS). Effects of the weight ratios of SLS/HPMC and carrier/drug on both the aqueous solubility of valsartan and the drug-release profiles of solid dispersions were investigated. The physicochemical properties of solid dispersions were characterized using scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The bioavailability of the solid dispersions in rats was evaluated compared to valsartan powder and a commercial product (Diovan). Unlike the conventional solid dispersion system, the valsartan-loaded solid dispersion had a relatively rough surface and did not change the crystalline form of the drug. It was suggested that the solid dispersions were formed by attaching hydrophilic carriers to the surface of the drug, thus changing from a hydrophobic to a hydrophilic form without changing the crystalline form. The drug-loaded solid dispersion composed of valsartan/HPMC/SLS at a weight ratio of 3/1.5/0.75 improved the drug solubility by about 43-fold. It gave a higher AUC, C(max) and shorter T(max) compared to valsartan powder and the commercial product. The solid dispersion improved the bioavailability of the drug in rats by about 2.2 and 1.7-fold in comparison with valsartan powder and the commercial product, respectively. Thus, the valsartan-loaded solid dispersion would be useful for delivering poorly water-soluble valsartan with enhanced bioavailability and no crystalline changes.  相似文献   

16.
We developed solid dispersions, using the gas anti-solvent technique (GAS), to improve the oral bioavailability of the poorly water-soluble active component oridonin. The solubility of oridonin in supercritical carbon dioxide was measured under various pressures and temperatures. To prepare oridonin solid dispersions using the GAS technique, ethanol was used as the solvent, CO(2) was used as the anti-solvent and the hydrophilic polymer polyvinylpyrrolidone K17 (PVP K17) was used as the drug carrier matrix. Characterization of the obtained preparations was undertaken using scanning electron microscopy (SEM), X-ray diffraction (XRD) analyses and a drug release study. Oridonin solid dispersions were formed and oridonin was present in an amorphous form in these dispersions. Oridonin solid dispersions significantly increased the drug dissolution rate compared with that of oridonin powder, primarily through drug amorphization. Compared with the physical mixture of oridonin and PVP K17, oridonin solid dispersions gave higher values of AUC and C(max), and the absorption of oridonin from solid dispersions resulted in 26.4-fold improvement in bioavailability. The present study illustrated the feasibility of applying the GAS technique to prepare oridonin solid dispersions, and of using them for the delivery of oridonin via the oral route.  相似文献   

17.
To develop sildenafil lactate, a salt form of sildenafil with improved solubility and bioavailability of poorly water-soluble sildenafil base, this salt form was prepared using a spray dryer. Its solubility and pharmacokinetics in rabbits were evaluated compared with sildenafil base and sildenafil citrate. Sildenafil lactate improved the solubility of sildenafil in various solvents including distilled water compared with sildenafil citrate. It provided higher AUC and Cmax and, shorter t1/2 values than did the other materials, indicating that it improved the oral bioavailability of sildenafil in rabbits. Our results suggest that sildenafil lactate would be useful to deliver sildenafil in a pattern that allows fast absorption and late metabolism. Furthermore, the plasma concentration at 0.25 h in sildenafil lactate was similar to the Cmax value at Tmax (0.5 h) in sildenafil citrate. Thus, sildenafil lactate might provide a faster onset of action and immediate erection compared with sildenafil citrate, the conventional drug.  相似文献   

18.
To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.  相似文献   

19.
In the present investigation, hydrotropic solution of urea was employed as a solubilizing agent for spectrophotometric determination of poorly water-soluble drug rosiglitazone maleate. In solubility determination study, it was found that there was more than 14-folds enhancement in solubility of rosiglitazone maleate in a 6M solution of urea. Rosiglitazone maleate obeys Beer's law in concentration range of 5-300 μg/ml. Linearity of rosiglitazone maleate was found in the range of 80-120% of the label claim. The proposed method has been applied successfully to the analysis of the cited drug in pharmaceutical formulations with good accuracy and precision. The method herein described is new, simple, eco-friendly, economic, and accurate and can be utilized in routine analysis of rosiglitazone maleate in bulk drug and tablet dosage form.  相似文献   

20.
With recent progress in high throughput screening of potential therapeutic agents, the number of poorly water-soluble drug candidates has risen sharply and formulating for poorly water-soluble compounds for oral delivery now presents one of the most frequent and greatest challenges to scientists in the pharmaceutical industry. Many new drugs and potential therapeutic compounds under investigation possess high lipophilicity, poor water solubility, and low oral bioavailability. Furthermore, development of improved oral dosage forms for currently marketed drugs can also enhance their therapeutic value. Oral delivery systems designed for poorly water-soluble drugs include micelles with surfactants, microemulsions, self-emulsifying/microemulsifying drug delivery systems (SEDDS/SMEDDS), solid dispersions, microspheres and cyclodextrin inclusion complexes. These delivery systems have been shown to enhance oral bioavailability and therapeutic effects of poorly water-soluble drugs mainly by improving the poor solubility. As a consequence of extensive research, various oral delivery systems for poorly water-soluble agents are being developed in clinical phases worldwide. New formulation technologies and multidisciplinary expertise may lead to development of advanced and effective oral drug delivery systems applicable to a wide range of poorly water-soluble drugs in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号