首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotine activates serotonin [5-hydroxytryptamine (5-HT)] neurons innervating the forebrain, and this is thought to reduce anxiety. Nicotine withdrawal has also been associated with an activation of 5-HT neurotransmission, although withdrawal increases anxiety. In each case, 5-HT1A receptors have been implicated in the response. To determine whether there are different subgroups of 5-HT cells activated during nicotine administration and withdrawal, we mapped the appearance of Fos, a marker of neuronal activation, in 5-HT cells of the dorsal raphe nucleus (DR) and median raphe nucleus (MR). To understand the role of 5-HT1A receptor feedback inhibitory pathways in 5-HT cell activity during these conditions, we administered a selective 5-HT1A receptor antagonist and measured novel disinhibited Fos expression within 5-HT cells. Using these approaches, we found evidence that acute nicotine exposure activates 5-HT neurons rostrally and in the lateral wings of the DR, whereas there is 5-HT1A receptor-dependent inhibition of cells located ventrally at both the rostral level and mid-level. Previous chronic nicotine exposure did not modify the pattern of activation produced by acute nicotine exposure, but increased 5-HT1A receptor-dependent inhibition of 5-HT cells in the caudal DR. This pattern was nearly reversed during nicotine withdrawal, when there was evidence for caudal activation and mid-level and rostral 5-HT1A receptor-dependent inhibition. These results suggest that the distinct behavioral states produced by nicotine exposure and withdrawal correlate with reciprocal rostral-caudal patterns of activation and 5-HT1A receptor-mediated inhibition of DR 5-HT neurons. The complementary patterns of activation and inhibition suggest that 5-HT1A receptors may help to shape distinct topographic patterns of activation within the DR.  相似文献   

2.
Positron emission tomography (PET) studies with the selective 5-HT(1A) receptor ligand, [(11)C]WAY-100635, have indicated that the binding potential (BP) of brain 5-HT(1A) receptors is lowered in unmedicated subjects with acute major depression. However, it is unclear if these changes persist after recovery from depression. To resolve this issue, we used [(11)C]WAY-100635 in conjunction with PET imaging to compare 5-HT(1A) BP in 18 healthy controls and 14 male subjects with recurrent major depression who were clinically recovered and free of antidepressant medication. BP values, derived from a reference tissue model, were analysed by region of interest and statistical parametric mapping. Both analyses showed a widespread and substantial (17%) decrease in 5-HT(1A) receptor BP in cortical areas in the recovered depressed subjects. In contrast, 5-HT(1A) BP in the raphe nuclei did not distinguish depressed subjects from controls. Our results suggest a persistent dysfunction in cortical 5-HT(1A) BP as measured by [(11)C]WAY-100635 in recovered depressed men. Lowered 5-HT(1A) receptor binding availability could represent a trait abnormality that confers vulnerability to recurrent major depression.  相似文献   

3.
[Carbonyl-(11)C]WAY-100635 has been reported to be a useful ligand for the investigation of 5-HT(1A) receptor imaging in vivo. However, the cellular distribution and the influence of endogenous serotonin (5-HT) on in vivo binding have not been fully examined. In this study, we investigated the effect of 5,7-dihydroxytryptamine-produced destruction of 5-HT neurons, reserpine-induced 5-HT depletion, and fenfluramine-induced 5-HT increase on [carbonyl-(11)C]WAY-100635 binding in vivo. There was no significant change in the uptake of [carbonyl-(11)C]WAY-100635 in the slice of 5-HT denervated rat brain except in the raphe nucleus, where 5-HT cell bodies exist. There was no obvious effect of enhanced 5-HT release by fenfluramine or decreased release by reserpine on [carbonyl-(11)C]WAY-100635 binding in the dissected brain region. No significant effect was observed in the time course of [carbonyl-(11)C]WAY-100635 in the hippocampus and frontal cortex measured by PET. These results indicated that the in vivo binding of [carbonyl-(11)C]WAY-100635 in the hippocampus and cerebral cortex mainly reflects postsynaptic 5-HT(1A) receptor binding, and that this binding is not sensitive to endogenous 5-HT.  相似文献   

4.
The present study demonstrates the involvement of serotonin (5-HT) receptors of the 5-HT 1A type in immunoinhibitory effect of 5-HTergic system of the brain. A selective agonist of 5-HT 1A receptors 8-OH-DPAT (1 mg/kg) induces the immunosuppression, whereas 5-HT 1A blockade with WAY-100635 (1 mg/kg) resulted in immunostimulation. It is also shown that immunomodulating effects of the drugs were dependent on psychoemotional status of animals acquired aggressive or submissive behavior under social conflict conditions. Activation of 5-HT 1A receptors produced a decrease of the immunity in aggressive mice, whereas 5-HT 1A receptor blockade caused immunostimulation in submissive animals.  相似文献   

5.
Age-related changes in the serotonin 5-HT(1A) receptors in the living brains of conscious young (5.9 +/- 1.8 years old) and aged (19.0 +/- 3.3 years old) monkeys (Macaca mulatta) were evaluated by [carbonyl-(11)C]WAY-100635 and high-resolution positron emission tomography (PET). The regional distribution pattern of [carbonyl-(11)C]WAY-100635 at 60-91 min postinjection was the highest in the cingulate gyrus and hippocampus, high in the frontal and temporal cortices, lower in the occipital cortex, striatum, thalamus, and raphe nuclei, and lowest in the cerebellum in both young and aged monkeys. Graphical Logan plot analysis with metabolite-corrected plasma radioactivity as an input function into the brain was applied to evaluate 5-HT(1A) receptor binding in vivo. Significant age-related decreases in 5-HT(1A) receptor binding were observed only in the frontal and temporal cortices. In the hippocampus, although 5-HT(1A) receptor binding indicated no significant age-related changes, it showed an inverse correlation with individual cortisol levels in plasma. When the 5-HT(1A) receptor agonist 8-OH-DPAT was administered intravenously at a dose of 0.1, 0.3, or 1 mg/kg 30 min after tracer injection, binding of [carbonyl-(11)C]WAY-100635 was displaced in both age groups in a dose-dependent manner. However, the degree of displacement was more marked in young than in aged monkeys. These observations demonstrated the usefulness of [carbonyl-(11)C]WAY-100635 as an indicator of the age-related changes in cortical 5-HT(1A) receptors measured noninvasively by PET. In addition, these observations suggested that the age-related impairment of 5-HT(1A) receptor responses to 8-OH-DPAT might be related to the reduced efficacy of antidepressant therapy in elderly patients with depression.  相似文献   

6.
Studies in several laboratories have confirmed the anxiolytic potential of a wide range of 5-HT(1A) receptor antagonists in rats and mice, with recent evidence pointing to a postsynaptic site of action in the ventral hippocampus. It would, therefore, be predicted that blockade of 5-HT(1A) somatodendritic autoreceptors in the midbrain raphe nuclei should produce anxiogenic-like effects. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 1.0 or 3.0 microg in 0.1 microl) into the dorsal (DRN) or median (MRN) raphe nuclei on behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As this test is sensitive to prior experience, the effects of intra-raphe infusions were examined both in maze-naive and maze-experienced subjects. Sessions were videotaped and subsequently scored for conventional indices of anxiety (open arm avoidance) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-MRN (but not intra-DRN) infusions of WAY-100635 (3.0 microg) increased open arm exploration and reduced risk assessment. Importantly, these effects could not be attributed to a general reduction in locomotor activity. A similar, though somewhat weaker, pattern of behavioural change was observed in maze-experienced animals. This unexpected anxiolytic effect of 5-HT(1A) autoreceptor blockade in the MRN cannot be accounted for by a disinhibition of 5-HT release in forebrain targets (e.g. hippocampus and amygdala), where stimulation of postsynaptic 5-HT(1A) receptors enhances anxiety-like responses. However, as the MRN also projects to the periaqueductal gray matter (PAG), an area known to be sensitive to the anti-aversive effects of 5-HT, it is argued that present results may reflect increased 5-HT release at this crucial midbrain locus within the neural circuitry of defense.  相似文献   

7.
We have used intracellular recording techniques to examine the effects of 5-hydroxytryptamine (5-HT, serotonin) on 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Bath-applied 5-HT (30-300 microM) had two opposing effects on the membrane excitability of these cells, reflecting the activation of distinct 5-HT receptor subtypes. As demonstrated previously in the rat, 5-HT evoked a hyperpolarization and inhibition of 5-HT neurones, which appeared to involve the activation of an inwardly rectifying K(+) conductance. This hyperpolarizing response was blocked by the 5-HT(1A) receptor-selective antagonist WAY-100635 (30-100 nM). In the presence of WAY-100635, 5-HT induced a previously unreported depolarizing, excitatory response of these cells, which was often associated with an increase in the apparent input resistance of the neurone, likely due to the suppression of a K(+) conductance. Like the hyperpolarizing response to 5-HT, this depolarization could be recorded in the presence of the Na(+) channel blocker tetrodotoxin. In addition, the response was not significantly attenuated by the alpha(1)-adrenoceptor antagonist prazosin (500 nM), indicating that it is not due to the release of noradrenaline, or to the direct activation of alpha(1)-adrenoceptors by 5-HT. The 5-HT(3) receptor antagonist granisetron (1 microM) and the 5-HT(4) receptor antagonist SB 204070 (100 nM) failed to reduce the depolarizing response to 5-HT; however, ketanserin (100 nM), mesulergine (100 nM) and lysergic acid diethylamide (1 microM) significantly reduced or abolished the depolarization, indicating that this effect of 5-HT is mediated by 5-HT(2) receptors.  相似文献   

8.
1. The effects of acute administration of SCH 23390 (0.05 and 0.25 mg/kg s.c.), a dopamirie D-1 receptor antagonist having also a moderate serotonin-S2 (5-HT-2) receptor blocking activity, and ritanserin (0.5 mg/kg), a specific 5-HT-2 antagonist, on dopamine (DA) and serotonin (5-HT) turnover were investigated in dopaminergic (nucleus caudatus, nucleus accumbens, substantia nigra, A10 area) and serotonergic (nucleus raphe dorsalis and nucleus raphe medialis) rat brain nuclei.

2. Acute SCH 23390 (both doses) increased the metabolism of DA and tended to augment the rate of DA synthesis (accumulation of DOPA after inhibition of aromatic acid decarboxylase) in the nucleus accumbens, but not in the nucleus caudatus. In addition, SCH 23390 had a moderate effect on DA metabolism in substantia nigra. SCH 23390 did not alter the turnover of 5-HT in any of the nuclei studied.

3. Acute administration of ritanserin did not modify 5-HT or DA turnover in any of the nuclei studied.

4. In conclusion, these results suggest that acute SCH 23390 administration preferentially activates the mesolimbic DA system. The lack of effect of ritanserin on DA or 5-HT turnover in nigrostriatal and mesolimbic DAergic areas suggests that under basal conditions the blockade of 5-HT2 receptors do not change monoamine metabolism in these areas. The role of 5-HT-2 blockade in the actions of SCH 23390 on DA turnover appears thus to be of a minor importance.  相似文献   


9.
The purpose of this study was to identify mechanisms that mediate the impairment of spatial memory induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A/5-HT7 receptor agonist, in the eight-arm radial maze in rats. WAY-100635 and NAN-190, 5-HT1A receptor antagonists, reversed the impairment of spatial memory induced by systemic injection of 8-OH-DPAT (1 mg/kg, i.p.). On the other hand, the alpha1-adrenoceptor antagonist prazosin and a selective 5-HT7 receptor antagonist SB269970 had no effect on 8-OH-DPAT-induced impairment of spatial memory. Bilateral microinjection of 8-OH-DPAT (4 microg/side) impaired spatial memory when injected into the dorsal hippocampus (DH). Contrastingly, spatial memory was unaffected by microinjections of 8-OH-DPAT into the other six areas examined: ventral hippocampus (VH), central amygdaloid nucleus (ACE), lateral hypothalamus (LH), nucleus accumbens (NAc), and dorsal (DR) and median (MR) raphe nucleus. Furthermore, NAN-190 significantly reversed the impairment of spatial memory induced by intra-DH injection of 8-OH-DPAT. These findings suggest that 5-HT1A receptors in the DH play an important role in the mechanisms underlying the 8-OH-DPAT-induced impairment of spatial memory in rats.  相似文献   

10.
Several lines of evidence support the involvement of serotonergic (5-HT) neurons of the median raphe nucleus (MRN) in anxiety-like behaviour. In this context, it is known that blockade of 5-HT1A somatodendritic autoreceptors in the midbrain raphe nuclei increases the firing rate of these neurons, disinhibiting 5-HT release in postsynaptic target areas such as amygdala, hippocampus and periaqueductal grey matter (PAG). However, while activation of 5-HT1A or 5-HT2 receptors in forebrain targets such as the amygdala or hippocampus enhances anxiety-like behaviours in rodents, stimulation of both receptor subtypes in the midbrain PAG markedly reduces anxiety-like behaviour. In view of these findings, the present study investigated whether the anti-anxiety effects induced by pharmacological disinhibition of 5-HT neurons in the MRN are attenuated by the blockade of 5-HT2 receptors within the PAG. Mice received combined intra-PAG injection with ketanserin (10 nmol/0.1 μl), a 5-HT2 receptor antagonist, followed by intra-MRN injection of WAY-100635 (5.6 nmol/0.1 μl), a highly selective 5-HT1A receptor antagonist. They were then individually exposed to the elevated plus-maze (EPM), with the videotaped behavioural sessions subsequently scored for both conventional and ethological measures. The results confirmed that intra-MRN infusion of WAY100635 reduces behavioural indices of anxiety without significantly altering general activity measures, and further showed that this effect was completely blocked by intra-PAG pretreatment with an intrinsically-inactive dose of ketanserin. Together, these results suggest that 5HT2 receptor populations located within the midbrain PAG play a significant role in the reduction of anxiety observed following disinhibition of 5-HT neurons in the MRN.  相似文献   

11.
1. 5-HT3, 5-HT2C, and 5-HT1A receptor ligands were assessed in rats trained to discriminate ibogaine from water. 2. Significant ibogaine-appropriate responding was observed following treatment with the 5-HT2C agonists MK-212 (79.6%) and mCPP (76.4%). This substitution was completely antagonized by metergoline, an agent with 5-HT2C antagonist properties. However, metergoline was ineffective against ibogaine itself. This suggests that although ibogaine may act as an agonist at 5-HT2C receptors, this interaction is not essential to its discriminative cue. 3. Neither the 5-HT3 agonist, mCPBG (44.3%), nor the 5-HT3 antagonist, ondansetron (48.9%) substituted for ibogaine. Likewise, the 5-HT1A agonist 8-OH-DPAT (34.7%) and the 5-HT1A antagonist WAY-100635 (30.1%) failed to substitute. Furthermore, WAY-100635 failed to antagonize the ibogaine cue. 4. Unlike 5-HT2C receptors, 5-HT1A and 5-HT3 receptors do not appear to be involved in the ibogaine stimulus.  相似文献   

12.
Previous studies have shown that serotonin plays an inhibitory role in escape behavior induced by the aversive stimulation of the dorsal periaqueductal gray matter (DPAG). This defensive behavior has been related to panic disorder. Serotonin injected into the DPAG also inhibits escape behavior generated by the elevated T-maze. Besides escape, this test also measures inhibitory avoidance, a behavior associated with generalized anxiety disorder. We presently evaluate the role of the 5-HT1A, 5-HT2A and 5-HT2C receptors of the DPAG in the modulation of inhibitory avoidance and escape responses of rats submitted to the elevated T-maze. The results showed that intra-DPAG administration of the 5-HT1A receptor antagonist WAY-100635 and of the preferential antagonists of 5-HT2A and 5-HT2C receptors, ketanserin and SDZ SER 082, respectively, did not change rat behavior in the elevated T-maze. Intra-DPAG injection of serotonin inhibited escape, an effect blocked by local injection of these three antagonists. Ketanserin and SDZ SER 082, but not WAY-100635 antagonized the effect of serotonin in facilitating inhibitory avoidance. Intra-DPAG injection of the 5-HT1A agonist 8-OH-DPAT and of DOI, a preferential 5-HT2A agonist, also inhibited escape, an effect antagonized by WAY-100635 and ketanserin, respectively. The results indicate that serotonin in the DPAG exerts a phasic regulatory control on inhibitory avoidance and escape behaviors in the elevated T-maze. 5-HT1A and 5-HT2C receptors in the DPAG play an opposite role in inhibitory avoidance: whereas activation of the former receptors inhibits the acquisition of this response, activation of the latter facilitates it. Both 5-HT1A, 5-HT2A and 5-HT2C receptors seem to mediate the inhibitory action of serotonin on escape.  相似文献   

13.
Serotonin (5-HT) is an important factor controlling survival, differentiation, and plasticity of neurons in serotonergic target regions of the brain and has been implicated in major psychiatric and autonomic disorders. Relatively little is known, however, of factors controlling differentiation and plasticity of developing and adult 5-HT neurons. We show now that 5-HT, the 5-HT1(A) receptor, brain-derived neurotrophic factor (BDNF), and its receptor, trkB, form an auto/paracrine loop for the regulation of the serotonergic phenotype. Serotonin applied to cultures from E14 rat raphe increased numbers of neurons expressing serotonergic markers in a dose-dependent manner. Agonists of the 5-HT1(A) receptor, BP-554 and 8-OH-DPAT, but not agonists of the 5-HT1(B) and 5-HT1(D) receptors, mimicked this effect, while the specific 5-HT1(A) antagonist, WAY-100635, inhibited it. Serotonin also increased BDNF mRNA and protein in embryonic raphe cultures. Induction of serotonergic markers by serotonin was suppressed by a trkB-IgG fusion protein but not by trkC-IgG. Taken together, our data indicate that serotonin acts on 5-HT1(A) autoreceptors, causing up-regulation of BDNF, which activates trkB to promote serotonergic phenotype-specific markers.  相似文献   

14.
BACKGROUND AND PURPOSE: Rat major cerebral arteries seem to receive serotonergic fibers originating from the dorsal raphe nucleus (DRN), but little is known about their function. The aim of our present work was to establish a functional relationship between this brain stem nucleus and the cerebral blood vessels by studying the effects of several treatments in the DRN on cerebrovascular serotonergic activity. METHODS: Serotonin, clomipramine, 8-OH-DPAT, and WAY-100635 were administered in DRN. A stereotaxically localized electrode allowed the electrical stimulation of this brain stem nucleus. Serotonergic activity was appraised in major cerebral arteries, striatum, and hippocampus from 5-hydroxytryptophan accumulation after aromatic L-amino acid decarboxylase inhibition with NSD-1015. RESULTS: Serotonin significantly decreased serotonergic activity in major cerebral arteries and striatum without affecting it in hippocampus. This reduction was blocked by previous injection of WAY-100635 in DRN. Local administration of 8-OH-DPAT or clomipramine elicited an effect similar to that of serotonin, whereas that of WAY-100635 did not modify serotonergic activity in either of the tissues. Electrical stimulation of DRN significantly increased serotonergic activity in major cerebral arteries and striatum but not in hippocampus. CONCLUSIONS: These results confirm the presence of a serotonergic innervation in rat major cerebral arteries functionally related to DRN. 5-HT(1A) receptor activation partly mediates the action of serotonin in DRN. A serotonergic tone acting on these somatodendritic receptors was not clearly found.  相似文献   

15.
Serotonin 5-HT(1A) receptor antagonists potentiate the effects of serotonin reuptake inhibitors on extracellular serotonin levels in a variety of brain regions. These effects are quite variable, however, with reports indicating potentiations of anywhere from 100-1900%. One factor that might impact the magnitude of such potentiations is the timing of administration of the two agents; reports in which the reuptake inhibitor is given prior to the serotonin receptor antagonist consistently report larger potentiations than reports in which the antagonist is given first. To test this relationship directly, microdialysis and electrophysiology studies were performed to assess the magnitude of increase in extracellular serotonin and changes in cellular activity produced by the serotonin reuptake inhibitor fluoxetine and the 5-HT(1A) receptor antagonist WAY-100635 under various dosing regimens. In microdialysis studies, when WAY-100635 (0.5 mg/kg s.c.) was administered 80 min after fluoxetine (10 mg/kg i.p.) the increase in serotonin was more than twice that observed when the compounds were coadministered. In electrophysiology studies in vivo, WAY-100635 reversed the depression of cell firing produced by fluoxetine when administered 30 min after fluoxetine, but when the two compounds were coadministered, a depression in firing rate was observed comparable to that produced by fluoxetine alone. In contrast, slice recording studies showed that WAY-100635 blocked the effects of fluoxetine regardless of the order of administration. These results indicate that fluoxetine and WAY-100635 can interact in a fashion not predicted by the currently accepted model. It is likely that neuronal circuitry outside of the raphe nuclei underlies this relationship.  相似文献   

16.
The distribution of 5-HT1A receptors was examined in the post-mortem human brain using whole hemisphere autoradiography and the selective 5-HT1A receptor antagonist [3H]WAY-100635 ([O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride). The autoradiograms showed very dense binding to hippocampus, raphe nuclei and neocortex. The labeling in neocortex was slightly lower than in the hippocampus and was mainly at superficial layers, although a faintly labeled band could be seen in deeper neocortical layers. Other regions, such as the amygdala, septum and claustrum, showed low densities of [3H]WAY-100635 binding, reflecting low densities of 5-HT1A receptors. The labeling was very low in basal ganglia, such as nucleus caudatus and putamen, in cerebellum or in structures of the brain stem except in the raphe nuclei. The labeling of human 5-HT1A receptors with [3H]WAY-100635 was antagonized by the addition of the 5-HT1A receptor ligands, 5-HT, buspirone, pindolol or 8-OH-DPAT (10 μM), leaving a very low background of non-specific binding. Saturation analysis of semiquantitative data from several human regions indicated that [3H]WAY-100635 has a Kd of approximately 2.5 nM. The selective labeling of 5-HT1A receptors with [3H]WAY-100635 clearly show that this compound is useful for further studies of the human 5-HT1A receptor subtype in vitro. [11C]WAY-100635 is used for the characterization of 5-HT1A receptors with positron emission tomography (PET). WAY-100635 was also radiolabeled with the short-lived positron-emitting radionuclide carbon-11 (t1/2=20 min) and used for in vitro autoradiography on human whole hemisphere cryosections. [11C]WAY-100635 gave images qualitatively similar to those of [3H]WAY-100635, although with a lower resolution. Thus, the hippocampal formation was densely labeled, with lower density in the neocortex. Buspirone, pindolol or 8-OH-DPAT (10 μM), blocked all binding of [11C]WAY-100635. The in vitro autoradiography of the distribution of 5-HT1A receptors obtained with radiolabeled WAY-100635 provide detailed qualitative and quantitative information on the distribution of 5-HT1A-receptors in the human brain. Moreover, the studies give reference information for the interpretation of previous initial results at much lower resolution in humans with PET and [11C]WAY-100635. These data provide a strong basis for expecting [11C]WAY-100635 to behave as a highly selective radioligand in vivo.  相似文献   

17.
BACKGROUND: The ability of pindolol to block 5-HT(1A) autoreceptors on serotonin-containing neurons in the raphe nuclei is thought to underlie the clinical reports of enhanced efficacy and rate of improvement in depressed patients treated with pindolol/selective serotonin reuptake inhibitor (SSRI) combinations. Selectivity for somatodendritic 5-HT(1A) autoreceptors is a crucial requirement, as blockade of postsynaptic 5-HT(1A) sites may jeopardize the therapeutic response. Previous investigators have probed the effects of pindolol on serotonergic dorsal raphe cell firing in animal species; here we confirm their findings and extend them to include observations on postsynaptic 5-HT(1A) receptors in the hippocampus. METHODS: Extracellular single-unit recordings were made in rats using standard electrophysiologic techniques. Firing rates of serotonin-containing neurons in the dorsal raphe nucleus and CA3 hippocampal pyramidal neurons were monitored and the effects of pindolol given alone or in combination with an SSRI (fluoxetine) or a 5-HT(1A) antagonist (WAY-100,635) were determined. RESULTS: Pindolol inhibited the firing rates of serotonergic dorsal raphe neurons in a dose-dependent manner. Recovery to baseline firing rates was gradual, but this inhibition could be acutely reversed by WAY-100,635. A range of pindolol doses failed to block the inhibitory effects of fluoxetine on dorsal raphe cell firing. In the hippocampus, pindolol also inhibited cell firing as a function of dose, although these effects were insensitive to WAY-100,635 treatment. CONCLUSIONS: The ability of pindolol to inhibit serotonergic dorsal raphe cell firing is indicative of its agonist potential and is consistent with previous studies. The lack of observable antagonism of the SSRI-induced slowing of raphe unit activity casts doubt on the suitability of this mechanism of action to account for the positive findings in clinical studies utilizing pindolol/SSRI combinations. The 5-HT(1A)-independent inhibition of hippocampal CA3 cell firing by pindolol suggests that this compound invokes multiple pharmacologic actions, all of which need to be assimilated into any proposed mechanism of action.  相似文献   

18.
The present study demonstrates the involvement of serotonin (5-HT) receptors of the 5-HT1A type in immunoinhibitory effect of 5-HTergic system of the brain. A selective agonist of 5-HT1A receptors 8-OH-DPAT (1 mg/kg) induces the immunosuppression, whereas 5-HT1A blockade with WAY-100635 (1 mg/kg) resulted in immunostimulation. It is also shown that immunomodulating effects of the drugs were dependent on psychoemotional status of animals acquired aggressive or submissive behavior under social conflict conditions. Activation of 5-HT1A receptors produced a decrease of the immunity in aggressive mice, whereas 5-HT1A receptor blockade caused immunostimulation in submissive animals.  相似文献   

19.
The effects of infusing N-methyl-

-aspartate (NMDA) into the raphe nuclei on release of 5-HT in this brain region and also the frontal cortex of the same animal were studied using in vivo microdialysis in freely moving rats. Infusion of 25 μM NMDA into the raphe led to a substantial decrease in dialysate 5-HT in this region and a prolonged increase in terminal 5-HT release in the frontal cortex. These effects were blocked by the specific NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (D-AP5; 100 μM). When 25 μM NMDA was co-infused into the raphe with the selective 5-HT1A receptor antagonist (N-{2-{4-(2-methoxyphenyl)-1-piperazinyl}ethyl-N-(2-pyridinyl)cyclohexanecarboxamide) (WAY-100635; 1.0 μM) the effect of NMDA infusion was unaltered. WAY-100635 infused alone into the raphe did not alter local 5-HT or extracellular 5-HT in the cortex. Infusion of 100 μM NMDA into the raphe was followed by an increase in local dialysate 5-HT and a decrease in 5-HT release in the cortex. These changes were reversed by D-AP5. Following infusion of 100 μM NMDA with 1.0 μM WAY-100635 into the raphe local 5-HT release was still increased, however, the decrease in 5-HT observed in the frontal cortex was abolished. These data suggest that the degree of NMDA receptor activation leads to dramatically different outcomes with regard to serotonergic transmission to the frontal cortex. Furthermore, there appears to be a differential role of the 5-HT1A autoreceptor in regulating these effects. These data are discussed in relation to other studies on the regulation of serotonergic transmission in ascending pathways.  相似文献   

20.
BACKGROUND: The importance of the neurotransmitter serotonin (5-HT) in the pathophysiology of anxiety is well known. A key role for postsynaptic 5-HT(1A) receptors has recently been suggested in studies of genetic knockout mice. AIMS: To measure 5-HT(1A) receptor binding in patients with panic disorder in the untreated state and after recovery on treatment with selective serotonin reuptake inhibitors (SSRIs). METHOD: Nine symptomatic untreated patients with panic disorder, seven patients recovered on SSRI medication and nineteen healthy volunteers underwent a single positron emission tomography (PET) scan using the 5-HT(1A) tracer [(11)C]WAY-100635. RESULTS: In comparison with controls, both presynaptic and postsynaptic 5-HT(1A) receptor binding was reduced in untreated patients, with the most significant reductions being in the raphe, orbitofrontal cortex, temporal cortex and amygdala. In recovered patients presynaptic binding was reduced, but there was no significant reduction in postsynaptic binding. CONCLUSIONS: Panic disorder is associated with reduced 5-HT(1A) receptor availability, which is also known to have a key role in depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号