首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pharmacological studies suggest that A(2B) adenosine receptors mediate proinflammatory effects of adenosine. This concept was recently challenged by the finding that A(2B) adenosine receptor knockout (A(2B)KO) mice had moderate inflammation due to elevated basal plasma tumor necrosis factor (TNF)-alpha and an exaggerated response to lipopolysaccharide (LPS) challenge. However, it is unclear whether this phenomenon actually reflects the loss of putative taming of proinflammatory cytokine production via activation of A(2B) receptors by endogenous adenosine. In this report, we examined adenosine receptor-dependent regulation of interleukin (IL)-6 and TNF-alpha blood plasma levels in A(2B)KO and wild-type mice in vivo and their release from peritoneal macrophages ex vivo. Stimulation of adenosine receptors with 5'-N-ethylcarboxamidoadenosine (NECA) up-regulated IL-6 and suppressed LPS-induced TNF-alpha in wild-type mice. The selective A(2B) antagonists 3-isobutyl-8-pyrrolidinoxanthine and 8-[4-[((4-cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine (MRS 1754) inhibited NECA-induced IL-6 release but not the suppression of LPS-induced TNF-alpha secretion from macrophages. Genetic ablation of A(2B) receptors abrogated NECA-induced increases in IL-6 release from mouse peritoneal macrophages and dramatically reduced the ability of NECA to raise IL-6 plasma levels in vivo. In contrast, the absence of A(2B) adenosine receptors did not affect NECA-induced suppression of LPS-activated TNF-alpha release in macrophages, nor did it reduce the ability of NECA to suppress LPS-induced increase in TNF-alpha plasma levels in vivo. Thus, our results indicate that stimulation of A(2B) receptors up-regulates the proinflammatory cytokine IL-6 and argue against the recently suggested anti-inflammatory role of A(2B) receptors in suppression of LPS-stimulated TNF-alpha production by adenosine.  相似文献   

2.
Bacterial lipopolysaccharide (LPS) activates the immune system and promotes inflammation via Toll-like receptor (TLR) 4, which regulates the synthesis and release of tumor necrosis factor (TNF)-alpha and other inflammatory cytokines. Previous studies have shown that the nucleoside adenosine suppresses LPS-stimulated TNF-alpha release in human UB939 macrophages by activating an adenosine A(3) receptor (A(3)AR) subtype on these cells. In this study, we examined the mechanism(s) underlying A(3)AR-dependent inhibition of TNF-alpha release in a mouse (RAW 264.7) cell line. Treatment of RAW 264.7 cells with LPS (3 mug/ml) increased TNF-alpha release, which was reduced in a dose-dependent manner by adenosine analogs N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and R-phenylisopropyladenosine and reversed by selective A(3)AR blockade. The increase in TNF-alpha release was preceded by an increase in intracellular Ca(2+) levels. Inhibition of intracellular Ca(2+) release by IB-MECA, a selective agonist of the A(3)AR, or with BAPTA-AM, an intracellular Ca(2+) chelator, reduced LPS-stimulated TNF-alpha release. Activation of the A(3)AR or inhibition of intracellular Ca(2+) release also reduced LPS-stimulated nuclear factor-kappaB (NF-kappaB) activation and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Similar inhibition by A(3)AR was observed for LPS-stimulated inducible nitric-oxide synthase. These data support the contention that inhibition of LPS-stimulated release of inflammatory molecules, such as TNF-alpha and NO via the A(3)AR, involves suppression of intracellular Ca(2+)signaling, leading to suppression of NF-kappaB and ERK1/2 pathways.  相似文献   

3.
We used pharmacological agents and genetic methods to determine whether the potent A(3) adenosine receptor (AR) agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide (Cl-IB-MECA) protects against myocardial ischemia/reperfusion injury in mice via the A(3)AR or via interactions with other AR subtypes. Pretreating wild-type (WT) mice with Cl-IB-MECA reduced myocardial infarct size induced by 30 min of coronary occlusion and 24 h of reperfusion at doses (30 and 100 mug/kg) that concomitantly reduced blood pressure and stimulated systemic histamine release. The A(3)AR-selective antagonist MRS 1523 [3-propyl-6-ethyl-5[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine-carboxylate], but not the A(2A)AR antagonist ZM 241385 [4-{2-7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl}phenol], blocked the reduction in infarct size provided by Cl-IB-MECA, suggesting a mechanism involving the A(3)AR. To further examine the selectivity of Cl-IB-MECA, we assessed its cardioprotective effectiveness in A(3)AR gene "knock-out" (A(3)KO) mice. Cl-IB-MECA did not reduce myocardial infarct size in A(3)KO mice in vivo and did not protect isolated perfused hearts obtained from A(3)KO mice from injury induced by global ischemia and reperfusion. Additional studies using WT mice treated with compound 48/80 [condensation product of p-methoxyphenethyl methylamine with formaldehyde] to deplete mast cell contents excluded the possibility that Cl-IB-MECA was cardioprotective by releasing mediators from mast cells. These data demonstrate that Cl-IB-MECA protects against myocardial ischemia/reperfusion injury in mice principally by activating the A(3)AR.  相似文献   

4.
目的建立选择性外周血自细胞腺苷A2A受体基因缺失的小鼠模型。方法分别采用一次9.5GyX线照射和2次6.2GyX线间隔照射对小鼠进行清髓处理,将腺苷A2A受体基因敲除的小鼠骨髓细胞移植到清髓性处理的野生型小鼠体内,使其白细胞的腺苷A2A受体选择性缺失,并对移植效果进行鉴定。结果通过基因型鉴定发现骨髓移植6周后受体小鼠的白细胞性染色体基因PCR产物电泳条带为300和330bp;腺苷A2A受体阳性细胞率为10.21%,而野生型小鼠为96.72%;2次分割放疗结合大于6×10。个骨髓细胞的移植量可以得到满意的小鼠存活率(91%)。结论成功地建立了选择性缺失白细胞腺苷A2A受体基因的小鼠模型。  相似文献   

5.
The inactivation of synaptic serotonin (5-hydroxytryptamine, 5-HT) is largely established through the actions of the presynaptic, antidepressant-sensitive 5-HT transporter (SERT, SLC6A4). Recent studies have demonstrated post-translational regulation of SERT mediated by multiple Ser/Thr kinases, including protein kinases C and G (PKC and PKG) and p38 mitogen-activated protein kinase (MAPK), as well as the Ser/Thr phosphatase PP2A. Less well studied are specific surface receptors that target these signaling pathways to control SERT surface expression and/or catalytic rates. Using rat basophilic leukemia 2H3 cell line (RBL-2H3), we previously established that activation of A(3) adenosine receptors (A(3)AR) stimulates SERT activity via both PKG and p38 MAPK (Zhu et al., 2004a). Whether A(3)ARs regulate SERT in the central nervous system (CNS) is unknown. Here we report that the A(3)AR agonist N(6)-(3-iodobenzyl)-N-methyl-5'carbamoyladenosine (IB-MECA) rapidly (10 min) and selectively stimulates 5-HT transport in mouse midbrain, hippocampal, and cortical synaptosomes. IB-MECA-induced stimulation of 5-HT uptake is blocked by the selective A(3)AR antagonist 3-ethyl-5-benzyl-2-methyl-phenylethynyl-6-phenyl-1,4(+/-)dihydropyridine-3,5-dicarboxylate (MRS1191) and is absent from synaptosomes prepared from A(3)AR knockout mice. Kinetic analyses demonstrate that IB-MECA induces an increase of 5-HT transport V(max) with no significant change in K(m). As in RBL-2H3 cells, IB-MECA stimulation of synaptosomal 5-HT uptake can be blocked by preincubation with PKG antagonists N-[2-(methylamino)ethy]-5-isoquinoline-sulfonamide (H8) and DT-2 (YGRKKRRQRRRPPLRK(5)H), as well as by the p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole]. Chronoamperometry studies in the anesthetized rat hippocampus support a role for A(3)ARs in SERT regulation in vivo. Together, these results identify a novel, region-specific action of CNS A(3)ARs in the modulation of SERT-mediated 5-HT transport that may be relevant for the etiology and/or therapy of 5-HT-linked brain disorders.  相似文献   

6.
Strategies are needed to reverse the immune cell hyporesponsiveness and prevent bacterial overgrowth associated with high mortality rates in septic patients. Adenosine signaling may be mediating immunosuppressive signals within the inflammatory microenvironment that are safeguarding bacteria by rendering immune cells hyporesponsive. We examined A2A adenosine receptor (A2AR)-mediated immune responses in a chronic model of cecal ligation and puncture (CLP)-induced sepsis using both wild-type (WT) and A2AR knockout (KO) mice. In this model, chronic bacterial peritonitis was established that results in the first death on day 4. A2A adenosine receptors promoted bacterial overgrowth that was associated with a high 28-day sepsis mortality (WT 87% vs. A2AR KO 13%; P < 0.0001). Chronic bacteremia persisted in both WT and A2AR KO mice over the 28-day study period. Bacteremia was significantly decreased in A2AR KO mice 2 days after antibiotic therapy cessation (day 6 after CLP; P < 0.005). Local and disseminated bacteria levels were compared at the end of the 28-day study period or from moribund mice. A2A adenosine receptor deficiency dramatically decreased peritoneal (P < 0.05), splenic (P < 0.05), and blood (P < 0.01) bacterial levels. A2A adenosine receptor deficiency caused an early reduction in inflammatory mediators IL-6, macrophage inflammatory protein 2, TNF-srI, and TNF-srII (P < 0.05), but not in TNF-α, IL-1β, IL-10, or monocyte chemotactic protein 1 within 24 h after CLP. In response to an intravenous lipopolysaccharide (day 5 after CLP) challenge, A2AR KO mice showed enhanced secretion of TNF-α (2 h), IFN-γ, IL-6, monocyte chemotactic protein 1, IL-10, and macrophage inflammatory protein 2 (9 h) (P < 0.05), suggesting that A2ARs attenuate inflammatory responses to repeat infectious insults. These data demonstrate that A2AR blockade may be an effective immunotherapy treatment to prevent bacterial overgrowth and reduce mortality secondary to immunosuppression in septic patients.  相似文献   

7.
The formation of adenosine dampens inflammation by inhibiting most cells of the immune system. Among its actions on neutrophils, adenosine suppresses superoxide generation and regulates chemotactic activity. To date, most evidence implicates the G(s) protein-coupled A(2A) adenosine receptor (AR) as the primary AR subtype responsible for mediating the actions of adenosine on neutrophils by stimulating cAMP production. Given that the A(2B)AR is now known to be expressed in neutrophils and that it is a G(s) protein-coupled receptor, we examined in this study whether it signals to suppress neutrophil activities by using 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY 60-6583), a new agonist for the human A(2B)AR that was confirmed in preliminary studies to be a potent and highly selective agonist for the murine A(2B)AR. We found that treating mouse neutrophils with low concentrations (10(-9) and 10(-8) M) of BAY 60-6583 inhibited formylated-methionine-leucine-phenylalanine (fMLP)-stimulated superoxide production by either naive neutrophils, tumor necrosis factor-α-primed neutrophils, or neutrophils isolated from mice treated systemically with lipopolysaccharide. This inhibitory action of BAY 60-6583 was confirmed to involve the A(2B)AR in experiments using neutrophils obtained from A(2B)AR gene knockout mice. It is noteworthy that BAY 60-6583 increased fMLP-stimulated superoxide production at higher concentrations (>1 μM), which was attributed to an AR-independent effect. In a standard Boyden chamber migration assay, BAY 60-6583 alone did not stimulate neutrophil chemotaxis or influence chemotaxis in response to fMLP. These results indicate that the A(2B)AR signals to suppress oxidase activity by murine neutrophils, supporting the idea that this low-affinity receptor for adenosine participates along with the A(2A)AR in regulating the proinflammatory actions of neutrophils.  相似文献   

8.
Recent evidence suggests that both adenosine receptor (AR) and K ATP channel activation exert antihypertrophic effects in cardiac myocytes. We studied the relative contributions of mitochondrial K ATP (mitoK ATP) and sarcolemmal K ATP (sarcK ATP) to the antihypertrophic effects of ARs in primary cultures of neonatal rat ventricular myocytes exposed for 24 h with the alpha1 adrenoceptor agonist phenylephrine (PE). The A1R agonist N6-cyclopentyladenosine (CPA), the A(2A)R agonist CGS21680 [2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine], and the A3R agonist N6-(3-iodobenzyl)adenosine-5'-methyluronamide (IB-MECA) all prevented PE-induced hypertrophy. Glibenclamide, a nonselective K(ATP) channel blocker reversed the antihypertrophic effect of all three AR agonists as determined by cell size and atrial natriuretic peptide expression and early c-fos up-regulation. In contrast, the mitoK(ATP) blocker 5-hydroxydecanoic acid selectively attenuated the effect of CGS21680 and IB-MECA, whereas HMR1098 [1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea, sodium salt], a specific blocker of sarcK(ATP), only abolished the antihypertrophic effect of CPA. Moreover, both CGS21680 and IB-MECA but not CPA decreased the mitochondrial membrane potential when PE was present, similarly to that seen with diazoxide, and both agents inhibited PE-stimulated elevation in mitochondrial Ca2+. All AR agonists diminished PE-induced phosphoserine/threonine kinase and protein kinase B up-regulation, which was unaffected by any K(ATP) blocker. Our data suggest that AR-mediated antihypertrophic effects are mediated by distinct K(ATP) channels, with sarcK(ATP) mediating the antihypertrophic effects of A1R activation, whereas mitoK(ATP) activation mediates the antihypertrophic effects of both A(2A)R and A3R agonists.  相似文献   

9.
The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.  相似文献   

10.
Ischemia reperfusion injury results from tissue damage during ischemia and ongoing inflammation and injury during reperfusion. Liver reperfusion injury is reduced by lymphocyte depletion or activation of adenosine A2A receptors (A2ARs) with the selective agonist 4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]- prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (ATL146e). We show that NKT cells are stimulated to produce interferon (IFN)-gamma by 2 h after the initiation of reperfusion, and the use of antibodies to deplete NK1.1-positive cells (NK and NKT) or to block CD1d-mediated glycolipid presentation to NKT cells replicates, but is not additive to, the protection afforded by ATL146e, as assessed by serum alanine aminotransferase elevation, histological necrosis, neutrophil accumulation, and serum IFN-gamma elevation. Reduced reperfusion injury observed in RAG-1 knockout (KO) mice is restored to the wild-type (WT) level by adoptive transfer of NKT cells purified from WT or A2AR KO mice but not IFN-gamma KO mice. Additionally, animals with transferred A2AR-/- NKT cells are not protected from hepatic reperfusion injury by ATL146e. In vitro, ATL146e potently inhibits both anti-CD3 and alpha-galactosylceramide-triggered production of IFN-gamma by NKT cells. These findings suggest that hepatic reperfusion injury is initiated by the CD1d-dependent activation of NKT cells, and the activation of these cells is inhibited by A2AR activation.  相似文献   

11.
Activation of A2A adenosine receptors (A2ARs) protects kidneys from ischemia-reperfusion injury (IRI). A2ARs are expressed on bone marrow-derived (BM-derived) cells and renal smooth muscle, epithelial, and endothelial cells. To measure the contribution of A2ARs on BM-derived cells in suppressing renal IRI, we examined the effects of a selective agonist of A2ARs, ATL146e, in chimeric mice in which BM was ablated by lethal radiation and reconstituted with donor BM cells derived from GFP, A2AR-KO, or WT mice to produce GFP-->WT, A2A-KO-->WT, or WT-->WT mouse chimera. We found little or no repopulation of renal vascular endothelial cells by donor BM with or without renal IRI. ATL146e had no effect on IRI in A2A-KO mice or A2A-KO-->WT chimera, but reduced the rise in plasma creatinine from IRI by 75% in WT mice and by 60% in WT-->WT chimera. ATL146e reduced the induction of IL-6, IL-1beta, IL-1ra, and TGF-alpha mRNA in WT-->WT mice but not in A2A-KO-->WT mice. Plasma creatinine was significantly greater in A2A-KO than in WT mice after IRI, suggesting some renal protection by endogenous adenosine. We conclude that protection from renal IRI by A2AR agonists or endogenous adenosine requires activation of receptors expressed on BM-derived cells.  相似文献   

12.
We examined the cardioprotective profile of the new A(3) adenosine receptor (AR) agonist CP-532,903 [N(6)-(2,5-dichlorobenzyl)-3'-aminoadenosine-5'-N-methylcarboxamide] in an in vivo mouse model of infarction and an isolated heart model of global ischemia/reperfusion injury. In radioligand binding and cAMP accumulation assays using human embryonic kidney 293 cells expressing recombinant mouse ARs, CP-532,903 was found to bind with high affinity to mouse A(3)ARs (K(i) = 9.0 +/- 2.5 nM) and with high selectivity versus mouse A(1)AR (100-fold) and A(2A)ARs (1000-fold). In in vivo ischemia/reperfusion experiments, pretreating mice with 30 or 100 microg/kg CP-532,903 reduced infarct size from 59.2 +/- 2.1% of the risk region in vehicle-treated mice to 42.5 +/- 2.3 and 39.0 +/- 2.9%, respectively. Likewise, treating isolated mouse hearts with CP-532,903 (10, 30, or 100 nM) concentration dependently improved recovery of contractile function after 20 min of global ischemia and 45 min of reperfusion, including developed pressure and maximal rate of contraction/relaxation. In both models of ischemia/reperfusion injury, CP-532,903 provided no benefit in studies using mice with genetic disruption of the A(3)AR gene, A(3) knockout (KO) mice. In isolated heart studies, protection provided by CP-532,903 and ischemic preconditioning induced by three brief ischemia/reperfusion cycles were lost in Kir6.2 KO mice lacking expression of the pore-forming subunit of the sarcolemmal ATP-sensitive potassium (K(ATP)) channel. Whole-cell patch-clamp recordings provided evidence that the A(3)AR is functionally coupled to the sarcolemmal K(ATP) channel in murine cardiomyocytes. We conclude that CP-532,903 is a highly selective agonist of the mouse A(3)AR that protects against ischemia/reperfusion injury by activating sarcolemmal K(ATP) channels.  相似文献   

13.
The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions.  相似文献   

14.
It has been previously proposed that adenosine plays an important role in the pathogenesis of asthma. The proposed mechanism of action for nucleoside adenosine is to activate A(2B) adenosine receptors (AR) and to indirectly modulate levels of mediators in the lung. In vivo data supporting the role of A(2B) AR in airway reactivity and inflammation in allergic animal models are lacking. The present study describes the effects of a selective A(2B) AR antagonist, CVT-6883 [3-ethyl-1-propyl-8-[1-(3-trifluoromethylbenzyl)-1H-pyrazol-4-yl]-3,7-dihydropurine-2,6-dione], on airway reactivity and inflammation in an allergic mouse model of asthma. Mice were sensitized with ragweed (i.p.) on days 1 and 6 and challenged with 0.5% ragweed on days 11, 12, and 13. On day 14, airway reactivity to 5'-N-ethylcarboxamidoadenosine (NECA), AMP, or allergen challenge was measured in terms of enhanced pause (Penh). Aerosolized NECA elicited concentration-dependent increases in Penh, which were significantly attenuated by CVT-6883 (0.4, 1.0, or 2.5 mg/kg i.p.). Aerosolized AMP elicited significant increases in Penh in sensitized mice, and the effect was significantly attenuated by either CVT-6883 (1 mg/kg i.p.) or montelukast (1 mg/kg i.p.). Allergen challenge induced late allergic response in sensitized mice, which was inhibited by CVT-6883 (1 mg/kg i.p.). Allergen challenge also increased the number of cells in bronchoalveolar lavage fluid obtained from sensitized mice, and that was reduced by either CVT-6883 (6 mg/ml aerosolization for 5 min) or theophylline (36 mg/ml aerosolization for 5 min). These results suggest that A(2B)AR antagonism plays an important role in inhibition of airway reactivity and inflammation in this model of allergic asthma.  相似文献   

15.
Although adenosine has been implicated in penile erection in human males, the receptor subtype responsible for adenosine regulation of human corpus cavernosum (HCC) smooth muscle tone is still a matter of debate. Using selective adenosine agonists and antagonists, we aimed at characterizing the adenosine receptors mediating relaxation of precontracted (with 1 microM phenylephrine) HCC strips. HCC specimens were collected from control subjects (organ donors) and from patients with severe vasculogenic erectile dysfunction (ED). In control subjects, adenosine and 5'-N-ethyl-carboxamide adenosine (NECA) fully relaxed HCC. The selective A(2A) receptor agonist 2-[4-(2-p-carboxy ethyl)phenylamino]-5'-N-ethylcarboxamido adenosine (CGS21680C) produced only a partial relaxation (30-50%) of HCC, which could be further enhanced by simultaneous application of 100 microM NECA. The selective A(2B) receptor antagonist N-(4-acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-il)phenoxy] acetamida (MRS1706) (10 nM) attenuated NECA-induced relaxation without affecting CGS21680C action. The A(2A) receptor antagonist 4-{2-[7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl}phenol (ZM241385) (50 nM) consistently reduced the actions of both agonists. In contrast to CGS21680C, NECA-induced relaxation was attenuated when endothelial production of NO and prostanoids was reduced by 100 microM N(G)-nitro-l-arginine and 10 microM indomethacin, respectively. HCC strips from patients with vasculogenic ED were partially resistant to NECA but kept relaxation to CGS21680C; the remaining effect was sensitive to blockade of A(2A) receptors with 50 nM ZM241385. Data suggest that adenosine regulates HCC smooth muscle tone through the activation of two receptor populations, CGS21680C-sensitive (A(2A)) and -insensitive (A(2B)) receptors, located on smooth muscle fibers and on endothelial cells, respectively. Endothelial dysfunction may be correlated with a loss of adenosine A(2B) receptor activity in penile vessels from men with vasculogenic ED.  相似文献   

16.
The alpha(2A)-adrenergic receptor (AR) subtype mediates antinociception induced by the alpha(2)AR agonists clonidine, dexmedetomidine, norepinephrine, and 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14,304) as well as antinociceptive synergy of UK-14,304 with opioid agonists [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin and deltorphin II. Differential localization of alpha(2)-adrenergic (alpha(2A)-, alpha(2B)-(,) alpha(2C)-) and opioid (mu-, delta-, kappa-) subtypes suggests differential involvement of subtype pairs in opioid-adrenergic analgesic synergy. The present study applies a novel imidazoline(1)/alpha(2)-adrenergic receptor analgesic, moxonidine, to test for involvement of alpha(2B)- and alpha(2C)ARs in antinociception and antinociceptive synergy, because spinal antinociceptive activity of moxonidine shows minimal dependence on alpha(2A)AR. Intrathecal administration of moxonidine produced similar (2-3-fold) decreases in both mutant mice with a functional knockout of alpha(2A)AR (D79N-alpha(2A)AR) and alpha(2C)AR knockout (KO) mice. The potency of moxonidine was not altered in alpha(2B)KO mice, indicating that this subtype does not participate in moxonidine-induced spinal antinociception. Moxonidine-mediated antinociception was dose dependently inhibited by the selective alpha(2)-receptor antagonist SK&F 86466 in both D79N-alpha(2A) mice and alpha(2C)KO mice, indicating that alpha(2)AR activation is required in the absence of either alpha(2A)- or alpha(2C)AR. Spinal administration of antisense oligodeoxynucleotides directed against the alpha(2C)AR decreased both alpha(2C)AR immunoreactivity and the antinociceptive potency of moxonidine. Isobolographic analysis demonstrates that moxonidine-deltorphin antinociceptive synergy is present in the D79N-alpha(2A) mice but not in the alpha(2C)AR-KO mice. These results confirm that the alpha(2C)AR subtype contributes to spinal antinociception and synergy with opioids.  相似文献   

17.
The NADPH oxidase (Nox) subunits 1, 2 (gp91 phox), and 4 are the major sources for reactive oxygen species (ROS) in vascular tissues. In conditions such as ischemia-reperfusion and hypoxia, both ROS and adenosine are released, suggesting a possible interaction. Our aim in this study was to examine the A(3) adenosine receptor (A(3)AR)-induced vascular effects and its relation to ROS and Nox1, 2, and 4 using aortic tissues from wild-type (WT) and A(3)AR knockout (A(3)KO) mice. The selective A(3)AR agonist 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IBMECA) (10(-10)-10(-5) M) induced contraction of the aorta from WT but not from A(3)KO mice, and this contraction was inhibited by the Nox inhibitor apocynin (10(-5) M) and the ROS scavengers superoxide dismutase-polyethylene glycol and catalase-polyethylene glycol (100 U/ml each). Cl-IBMECA-induced contraction was not affected by the mast cell degranulator compound 48/80 (100 μg/ml) or the stabilizer cromolyn sodium (10(-4) M). In addition, Cl-IBMECA (10(-7) M) increased intracellular ROS generation by 35 ± 14% in WT but not in A(3)KO aorta, and this increase was inhibited by apocynin (10(-5) M), diphenyleneiodonium chloride (10(-5) M), and the A(3)AR antagonist 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate (MRS1523) (10(-5) M). Furthermore, Cl-IBMECA selectively increased the protein expression of the Nox2 subunit by 150 ± 15% in WT but not in A(3)KO mice without affecting either Nox1 or 4, and this increase was inhibited by apocynin. The mRNA of Nox2 was unchanged by Cl-IBMECA in either WT or A(3)KO aortas. In conclusion, A(3)AR enhances ROS generation, possibly through activation of Nox2, with subsequent contraction of the mouse aorta.  相似文献   

18.
The locomotor effects in mice of selective A1 and A2 adenosine agonists, antagonists and combinations of agonists were investigated using a computerized activity monitor. The A2-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino[-5'-N- ethylcarboxamidoadenosine (APEC), an amine derivative of 2-(carboxyethylphenylethylamino)adenosine-5'-carboxamide, was a more potent locomotor depressant than its amide conjugates. The rank order of potency after i.p. injection for adenosine agonists was 5'-N-ethylcarboxamidoadenosine (NECA) (ED50, 5.8 nmol/kg) greater than APEC (ED50, 25 nmol/kg) greater than N6-cyclohexyladenosine (CHA) (ED50, 270 nmol/kg). An A1-selective, centrally acting, adenosine antagonist, 8-cyclopentyltheophylline (10 mg/kg), completely reversed the locomotor depressant effects of CHA (A1-selective) and NECA (nonselective) at doses of agonists as high as twice the ED50, and shifted the dose-response curves to the right, suggesting a primary involvement of A1 receptors. 8-cyclopentyltheophylline did not affect the depressant effects of APEC at the ED50, consistent with the A2-selectivity of APEC. The locomotor effects of APEC and CHA were completely reversed by theophylline, but not by the peripherally active 8-p-sulfophenyltheophylline, indicating central action of the adenosine agonists. The depressant effects of APEC, but not of NECA or CHA, were reversed significantly by an A2-selective adenosine receptor antagonist, 4-amino-8-chloro-1-phenyl-[1,2,4]triazol[4,3-a]quinoxaline. Low or subthreshold doses of CHA potentiated the depressant effects of APEC. A subthreshold dose of CHA did not alter the depressant effect of NECA, whereas a subthreshold dose of APEC increased the depressant effects of low doses of NECA. Thus, it appears that A1- and A2-selective adenosine agonists have separate central depressant effects, which can be potentiative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Occupancy of specific receptors on neutrophils by adenosine or its analogues diminishes the stimulated release of toxic oxygen metabolites from neutrophils, while paradoxically promoting chemotaxis. We now report evidence that two distinct adenosine receptors are found on neutrophils (presumably the A1 and A2 receptors of other cell types). These adenosine receptors modulate chemotaxis and O2- generation, respectively. N6-Cyclopentyladenosine (CPA), a selective A1 agonist, promoted neutrophil chemotaxis to the chemoattractant FMLP as well as or better than 5'N-ethylcarboxamidoadenosine (NECA). In contrast, CPA did not inhibit O2- generation stimulated by FMLP. Pertussis toxin completely abolished promotion of chemotaxis by CPA but enhanced inhibition by NECA of O2- generation. Disruption of microtubules by colchicine or vinblastine also abrogated the enhancement by NECA of chemotaxis whereas these agents did not markedly interfere with inhibition by NECA of O2- generation. FMLP receptors, once they have bound ligand, shift to a high affinity state and become associated with the cytoskeleton. NECA significantly increased association of [3H]FMLP with cytoskeletal preparations as it inhibited O2-. Disruption of microtubules did not prevent NECA from increasing association of [3H]FMLP with cytoskeletal preparations. Additionally, CPA (A1 agonist) did not increase binding of [3H]FMLP to the cytoskeleton as well as NECA (A2 agonist). These studies indicate that occupancy of one class of adenosine receptors (A1) promotes chemotaxis by a mechanism requiring intact microtubules and G proteins whereas engagement of a second class of receptors (A2) inhibits O2- generation. Signalling via A2 receptors is independent of microtubules, insensitive to pertussis toxin and is associated with binding of [3H]FMLP to cytoskeletal preparations.  相似文献   

20.
We investigated the mechanism by which inosine, a metabolite of adenosine that accumulates to > 1 mM levels in ischemic tissues, triggers mast cell degranulation. Inosine was found to do the following: (a) compete for [125I]N6-aminobenzyladenosine binding to recombinant rat A3 adenosine receptors (A3AR) with an IC50 of 25+/-6 microM; (b) not bind to A1 or A2A ARs; (c) bind to newly identified A3ARs in guinea pig lung (IC50 = 15+/-4 microM); (d) lower cyclic AMP in HEK-293 cells expressing rat A3ARs (ED50 = 12+/-5 microM); (e) stimulate RBL-2H3 rat mast-like cell degranulation (ED50 = 2.3+/-0.9 microM); and (f) cause mast cell-dependent constriction of hamster cheek pouch arterioles that is attenuated by A3AR blockade. Inosine differs from adenosine in not activating A2AARs that dilate vascular smooth muscle and inhibit mast cell degranulation. The A3 selectivity of inosine may explain why it elicits a monophasic arteriolar constrictor response distinct from the multiphasic dilator/constrictor response to adenosine. Nucleoside accumulation and an increase in the ratio of inosine to adenosine may provide a physiologic stimulus for mast cell degranulation in ischemic or inflamed tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号