首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption behavior of model proteins onto anionic poly(lactide-co-glycolide) (PLG) microparticles was evaluated. PLG microparticles were prepared by a w/o/w solvent evaporation process in the presence of the anionic surfactant dioctyl sodium sulfosuccinate (DSS). The effect of surfactant concentration and adsorption conditions on the adsorption efficiency and release rates in vitro was also studied. Subsequently, the microparticle formulation was tested to evaluate the efficacy of anionic microparticles as delivery systems for recombinant antigens from Neisseria meningitides type B (Men B), with and without CpG adjuvant. Protein (antigen) binding to anionic PLG microparticles was influenced by both electrostatic interaction and by other mechanisms, including hydrophobic attraction. The Men B antigens adsorbed efficiently onto anionic PLG microparticles and, following immunization in mice, induced potent enzyme-linked immunosorbent assay (ELISA) and serum bactericidal activity in comparison to alum-adsorbed formulations. These Men B antigens represent an attractive approach for vaccine development.  相似文献   

2.
Oligonucleotides, with specific sequence surrounding CpG motifs, appear to be very effective for the induction of a potent Th1 responses. This molecule represents pathogen-associated molecular patterns (PAMPs) that allows the pathogen recognition receptors (PRRs) present on innate immune cells to recognize them and become activated. PAMPs and related compounds are often labelled as immunopotentiators, allowing a clear distinction between them and particulate delivery systems such as emulsions, liposomes, virus-like particles and microparticles.Microparticles prepared from biodegradable, biocompatible polyesters, and poly (lactide co-glycolide) (PLG). They have been proven to be a good particulate delivery system for the co-delivery of antigens and adjuvants. PLG has been used in humans for many years as a resorbable suture material and controlled-release drug delivery systems. It has been demonstrated that antigen presenting cells (APCs) efficiently uptake the PLG microparticles (∼ 1 μm) both in vivo and in vitro. After uptake, the PLG subsequently induces an antigen specific CTL response in rodents.Several groups, including our group, have evaluated CpG as an immunopotentiator in various formulations and delivery systems (i.e. emulsions and particulate systems). This review will discuss in detail the work conducted so far with CpG using PLG microparticles as a delivery system. We will also discuss the advantages and enhancement of immune properties of formulating CpG (soluble, adsorbed, and encapsulated forms) with PLG microparticles along with future directions for these microparticles with CpG.  相似文献   

3.
The objective of this work was to conduct an in vivo comparison of nanoparticles and microparticles as vaccine delivery systems. Poly (lactide-co-glycolide) (PLG) polymers were used to create nanoparticles size 110 nm and microparticles of size 800-900 nm. Protein antigens were then adsorbed to these particles. The efficacy of these delivery systems was tested with two protein antigens. A recombinant antigen from Neisseria meningitides type B (MenB) was administered intramuscularly (i.m.) or intraperitonealy (i.p.). An antigen from HIV-1, env glycoprotein gp140 was administered intranasally (i.n.) followed by an i.m. boost. From three studies, there were no differences between the nanoparticles and micro-particles formulations. Both particles led to comparable immune responses in mice. The immune responses for MenB (serum bactericidal activity and antibody titers) were equivalent to the control of aluminum hydroxide. For the gp140, the LTK63 was necessary for high titers. Both nanoparticles and microparticles are promising delivery systems.  相似文献   

4.
This work examines physico-chemical properties influencing protein adsorption to anionic PLG microparticles and demonstrates the ability to bind and release vaccine antigens over a range of loads, pH values, and ionic strengths. Poly(lactide-co-glycolide) microparticles were synthesized by a w/o/w emulsification method in the presence of the anionic surfactant DSS (dioctyl sodium sulfosuccinate). Ovalbumin (OVA), carbonic anhydrase (CAN), lysozyme (LYZ), lactic acid dehydrogenase, bovine serum albumin (BSA), an HIV envelope glyocoprotein, and a Neisseria meningitidis B protein were adsorbed to the PLG microparticles, with binding efficiency, initial release and zeta potentials measured. Protein (antigen) binding to PLG microparticles was influenced by both electrostatic interaction and other mechanisms such as van der Waals forces. The protein binding capacity was directly proportional to the available surface area and may have a practical upper limit imposed by the formation of a complete protein monolayer as suggested by AFM images. The protein affinity for the PLG surface depended strongly on the isoelectric point (pI) and electrostatic forces, but also showed contributions from nonCoulombic interactions. Protein antigens were adsorbed on anionic PLG microparticles with varying degrees of efficiency under different conditions such as pH and ionic strength. Observable changes in zeta potentials and morphology suggest the formation of a surface monolayer. Antigen binding and release occur through a combination of electrostatic and van der Waals interactions occurring at the polymer-solution interface.  相似文献   

5.
This study evaluated the feasibility of using γ-irradiation for preparing sterile poly(lactide-co-glycolide) (PLG) formulations for vaccines. PLG microparticles were prepared by water-in-oil-in-water double-emulsion technique and lyophilized. The vials were γ-irradiated for sterilization process. Antigens from Neisseria meningitidis were adsorbed onto the surface of the particles and were characterized for protein adsorption. Antigens adsorbed onto the surface of the irradiated particles within 30 min. Mice were immunized with these formulations, and vaccine potency was measured as serum bactericidal titers. The γ-irradiated PLG particles resulted in equivalent serum bactericidal titers against a panel of five N. meningitidis strains as the nonirradiated PLG particles. The use of PLG polymers with different molecular weights did not influence the vaccine potency. The PLG particles prepared by γ-irradiation of the lyophilized formulations replace the need for aseptic manufacturing of vaccine formulations. This approach may enable the use of PLG formulations with a variety of antigens and stockpiling for pandemics.  相似文献   

6.
The chemical composition of the surface of anionic PLG microparticles before and after adsorption of vaccine antigens was measured using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The interfacial distributions of components will reflect underlying interactions that govern properties such as adsorption, release, and stability of proteins in microparticle vaccine delivery systems. Poly(lactide-co-glycolide) microparticles were prepared by a w/o/w emulsification method in the presence of the anionic surfactant dioctyl sodium sulfosuccinate (DSS). Ovalbumin, lysozyme, a recombinant HIV envelope glyocoprotein and a Neisseria meningitidis B protein were adsorbed to the PLG microparticles, with XPS and time-of-flight secondary mass used to analyze elemental and molecular distributions of components of the surface of lyophilized products. Protein (antigen) binding to PLG microparticles was measured directly by distinct elemental and molecular spectroscopic signatures consistent with amino acids and excipient species. The surface sensitive composition of proteins also included counter ions that support the importance of electrostatic interactions being crucial in the mechanism of adsorptions. The protein binding capacity was consistent with the available surface area and the interpretation of previous electron and atomic force microscope images strengthened by the quantification possible by XPS and the qualitative identification possible with TOF-SIMS. Protein antigens were detected and quantified on the surface of anionic PLG microparticles with varying degrees of efficiency under different adsorption conditions such as surfactant level, pH, and ionic strength. Observable changes in elemental and molecular composition suggest an efficient electrostatic interaction creating a composite surface layer that mediates antigen binding and release.  相似文献   

7.
No HeadingPurpose. To evaluate the delivery of a novel HIV-1 antigen (gp120dV2 SF162) by surface adsorption or encapsulation within polylactide-co-glycolide microparticles and to compare both the formulations for their ability to preserve functional activity as measured by binding to soluble CD4.Methods. Poly(lactide-co-glycolide) microparticles were synthesized by a water-in-oil-in-water (w/o/w) emulsification method in the presence of the anionic surfactant dioctylsulfosuccinate (DSS) or polyvinyl alcohol. The HIV envelope glyocoprotein was adsorbed and encapsulated in the PLG particles. Binding efficiency and burst release measured to determine adsorption characteristics. The ability to bind CD4 was assayed to measure the functional integrity of gp120dV2 following different formulation processes.Results. Protein (antigen) binding to PLG microparticles was influenced by both electrostatic interaction and other mechanisms such as hydrophobic attraction and structural accommodation of the polymer and biomolecule. The functional activity as measured by the ability of gp120dV2 to bind CD4 was maintained by adsorption onto anionic microparticles but drastically reduced by encapsulation.Conclusions. The antigen on the adsorbed PLG formulation maintained its binding ability to soluble CD4 in comparison to encapsulation, demonstrating the feasibility of using these novel anionic microparticles as a potential vaccine delivery system.  相似文献   

8.
Several groups have shown that vaccine antigens can be encapsulated within polymeric microparticles and can serve as potent antigen delivery systems. We have recently shown that an alternative approach involving charged polylactide co-glycolide (PLG) microparticles with surface adsorbed antigen(s) can also be used to deliver antigen into antigen presenting cell (APC). We have described the preparation of cationic and anionic PLG microparticles which have been used to adsorb a variety of agents, which include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides. These PLG microparticles were prepared using a w/o/w solvent evaporation process in the presence of the anionic surfactants, including DSS (dioctyl sodium sulfosuccinate) or cationic surfactants, including CTAB (hexadecyl trimethyl ammonium bromide). Antigen binding to the charged PLG microparticles was influenced by several factors including electrostatic and hydrophobic interactions. These microparticle based formulations resulted in the induction of significantly enhanced immune responses in comparison to alum. The surface adsorbed microparticle formulation offers an alternative and novel way of delivering antigens in a vaccine formulation.  相似文献   

9.
Purpose. The purpose of this study was to monitor the microenvironment of an encapsulated model protein during the release from biodegradable microparticles (MP) made from three different polymers, namely poly(lactide-co-glycolide) (PLG) and ABA-triblock polymers containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethyleneoxide) B blocks with an A:B ratio of 90:10 (ABA10) and 70:30 (ABA30). Methods. MP loaded with spin labeled albumin were prepared by a w/o/w technique. The particles were characterized by light scattering and electron microscopy. In vitro release of albumin was determined by size exclusion chromatography. Light microscopic experiments were conducted to visualize water penetration in the matrix. The protein microenvironment inside the degrading microparticles was characterized noninvasively by 2 GHz EPR spectroscopy. Results. Water penetrated rapidly into all MP in the range of few minutes. A burst release was observed for PLG. The release from ABA block-polymers continued for over 14 days despite the rapid solubilization of the protein inside the microparticles. The initial microviscosity of the protein environment inside the ABA particles after exposure to buffer was 2 mm2/s and increased with time. A gradual decrease of the pH to a value of 3.5 was observed within the MP. Conclusions. The data indicate that the microviscosity and microacidity inside protein loaded microparticles can be studied nondestructively by EPR spectroscopy. Our results clearly demonstrate that ABA-block polymers are superior to PLG allowing a controlled release of proteins from swollen microspheres.  相似文献   

10.
An approach is proposed using Vibrio cholerae (VC)-loaded microparticles as oral vaccine delivery systems for improved vaccine bioavailability and increased therapeutic efficacy. The VC-loaded microparticles were prepared with 50:50 poly(DL-lactide-co-glycolide) (PLG), 75:25 poly(DL-lactide-co-glycolide) and poly(lactide acid) (PLA)/PEG blend copolymers by the solvent evaporation method. VC was successfully entrapped in three types of microparticles with loading efficiencies and loading levels as follows: 50:50 PLG systems: 97.8% and 55.4 ± 6.9 µg/mg; 75:25 PLG systems: 89.2% and 46.5 ± 4.4?µg/mg; PLA/PEG-blended systems: 82.6% and 53.7 ± 5.8?µg/mg. The different distributions of VC in the core region and on the surface were as follows: 50:50 PLG systems 25.7 ± 1.9 and 6.2 ± 0.9?µg/mg; 75:25 PLG systems: 25.8 ± 2.2 and 3.6 ± 0.4?µg/mg; PLA/PEG-blended systems: 32.4 ± 2.1 and 5.2 ± 1.0?µg/mg, respectively. In vitro active release of VC was affected mainly by matrix type and VC-loaded location in microparticles. The therapeutic immunogenic potential of VC loaded with 50:50 PLG, 75:25 PLG and PLA/PEG-blended microparticles was evaluated in adult mice by oral immunization. Significantly higher antibody responses and serum immunoglobin Ig G, IgA and IgM responses were obtained when sera from both VC-loaded 75:25 PLG and PLA/PEG-blended microparticles immunized mice were titrated against VC. The most immunogenicity in evoking serum IgG, IgA and IgM responses was immunized by VC-loaded PLA/PEG-blended microparticles, and with VC challenge in mice, the survival rate (91.7%).  相似文献   

11.
The objective of this work was to obtain a nanoparticle formulation that could be sterile filtered, lyophilized, and resuspended to the initial size with excipients appropriate for use as a vaccine formulation. Poly(lactide-co-glycolide) (PLG) polymers were used to create nanoparticles ranging in size from 110 to 230 nm. Protein antigens were adsorbed to the particles; the protein-nanoparticles were then lyophilized with the excipients. Vaccine compatible excipient combinations of sugars alone, surfactants alone, and sugars and surfactants were tested to find conditions where initial particle size was recovered. Sterile filtration of smaller nanoparticles led to minimal PLG losses and allowed the particle preparation to be a nonaseptic process. We found that the smaller nanoparticles of size approximately 120 nm required higher surfactant concentration to resuspend postlyophilization than slightly larger ( approximately 220 nm) particles. To resuspend 120 nm nanoparticles formulations of poly(vinyl alcohol) (PVA) with sucrose/mannitol or dioctyl sodium sulfosuccinate (DSS) with trehalose/mannitol were sufficient. The protein-nanoparticles resuspension with the same excipients was dependent on the protein and protein loading level. The nanoparticle formulations in vivo were either similar or had enhanced immunogenicity compared to aluminum hydroxide formulations. A lyophilized nanoparticle formulation with adsorbed protein antigen and minimal excipients is an effective vaccine delivery system.  相似文献   

12.
Purpose. Cationic PLG microparticles with adsorbed DNA have previously been shown to efficiently target antigen presenting cells in vivo for generating higher immune responses in comparison to naked DNA. In this study we tried to establish the role of surfactant (CTAB) concentration on the physical behavior of these formulations. Methods. Cationic PLG microparticle formulations with adsorbed DNA were prepared using a solvent evaporation technique. Formulations with varying CTAB concentrations and a fixed DNA load were prepared. The loading efficiency and 24 h DNA release was evaluated for each formulation. Select formulations were tested in vivo. Results. Higher CTAB concentration correlated with higher DNA binding efficiency on the microparticles and lower in vitro release rates. Surprisingly though, the in vivo performance of formulations with varying CTAB concentration was comparable to one another. Conclusions. Cationic PLG microparticles with adsorbed DNA, as described here, offer a robust way of enhancing in vivo responses to plasmid DNA.  相似文献   

13.
Purpose. Microparticles containing ovalbumin as a model for protein drugs were formulated from blends of poly(DL lactide-co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers (Pluronic). The objectives were to achieve uniform release characteristics and improved protein delivery capacity. Methods. The water- in oil -in oil emulsion/solvent extraction technique was used for microparticle production. Results. A protein loading level of over 40% (w/w) was attained in microparticles having a mean diameter of approximately 5 µm. Linear protein release profiles over 25 days in vitro were exhibited by certain blend formulations incorporating hydrophilic Pluronic F127. The release profile tended to plateau after 10 days when the more hydrophobic Pluronic L121 copolymer was used to prepare microparticles. A delivery capacity of 3 µg OVA/mg particles/ day was achieved by formulation of microparticles using a 1:2 blend of PLG:Pluronic F127. Conclusions. The w/o/o formulation approach in combination with PLG:Pluronic blends shows potential for improving the delivery of therapeutic proteins and peptides from microparticulate systems. Novel vaccine formulations are also feasible by incorporation of Pluronic L121 in the microparticles as a co-adjuvant.  相似文献   

14.
Bovine serum albumin (BSA) was encapsulated into poly(lactide-co-glycolide) (PLG) microspheres by a solid-in-oil-in-water (s/o/w) technique. We tested whether perturbations in BSA secondary structure could be minimized during encapsulation by using trehalose and how this would influence BSA aggregation and release. BSA secondary structure was monitored noninvasively by Fourier-transform infrared spectroscopy. When BSA was co-lyophilized with trehalose, lyophilization-induced structural perturbations were significantly reduced. The formulation obtained (BSA-Tre) was encapsulated into PLG microspheres and, by optimizing critical encapsulation parameters, a loading efficiency of 85% was achieved. However, due to the loss of the excipient in the o/w emulsion step, the structure of BSA-Tre was more perturbed than before encapsulation. Excipient-loss and encapsulation-induced structural perturbations could be prevented by saturating the aqueous phase in the o/w step with trehalose and by using the organic solvent chloroform. This in turn reduced the formation of soluble BSA aggregates. BSA was released from PLG microspheres using the improved formulations with an initial release in 24 h of not more than 22%, followed by a sustained release over at least 2 weeks. In summary, optimization of the encapsulation conditions in the s/o/w procedure resulted in the encapsulation of BSA without procedure-induced structural perturbations and minimized the release of aggregated protein. This demonstrates that the s/o/w technique is an excellent alternative to the most common encapsulation procedure, namely the water-in-oil-in-water technique.  相似文献   

15.
Poly(lactide-co-glycolide) (PLG) microparticles with entrapped antigens have recently been investigated as controlled-release vaccines. This paper describes the preparation of PLG microparticles with an entrapped model antigen, ovalbumin (OVA), using a (water-in-oil)-in-water emulsion solvent evaporation technique. In a series of experiments, the effects of process parameters on particle size and OVA entrapment were investigated. It was found that smooth, spherical microparticles 1–2 µm in diameter containing up to 10% (w/w) OVA could be produced using a small volume of external aqueous phase containing a high concentration of emulsion stabilizer and a 1:5 antigen:polymer ratio. PAGE analysis, isoelectric focusing, and Western blotting of OVA released from the microparticles in vitro confirmed that the molecular weight and antigenicity of the protein remained largely unaltered by the entrapment procedure.  相似文献   

16.
Technical aspects for preparing a new type of cationic stearylamine (SA)-containing microparticle as a potential drug delivery system for negatively charged therapeutics were investigated. Cationic biodegradable microparticles based on poly(lactide) and poly(lactide-co-glycolide) were prepared upon incorporation of SA either by solvent evaporation or by spray-drying. Water-insoluble SA offers the advantage over other water-soluble cationic compounds that it can be dissolved directly in the organic solution together with the polymers. This facilitated the subsequent preparation of the microparticle formulations. Particle size was controlled by the respective process parameters, resulting in either large polymer aggregates within the range 50-100 micro m or small spherical microparticles within the range 1-10 micro m. The incorporation of SA into the formulations also improved particle characteristics in terms of re-dispersibility, reduced sticking, and particle size uniformity. Both circular plasmid DNA (5 kbp) and linear salmon DNA (0.5 kbp) were efficiently adsorbed to the cationic SA microparticle surfaces. Preliminary tests on the release of DNA from spray-dried SA microparticles showed an immediate burst release, which was followed by a delayed second release phase for more than 4 weeks. The cationic SA microparticles might provide a potential drug-delivery system to improve the efficacy for protein and DNA-type therapeutics.  相似文献   

17.
Microparticles for intranasal immunization   总被引:15,自引:0,他引:15  
Of the several routes available for mucosal immunization, the nasal route is particularly attractive because of ease of administration and the induction of potent immune responses, particularly in the respiratory and genitourinary tracts. However, adjuvants and delivery systems are required to enhance immune responses following nasal immunization. This review focuses on the use of microparticles as adjuvants and delivery systems for protein and DNA vaccines for nasal immunization. In particular we discuss our own work on poly(lactide co-glycolide) (PLG) microparticles with entrapped protein or adsorbed DNA as a vaccine delivery system. The possible mechanisms involved in the enhancement of immune responses through the use of DNA adsorbed onto PLG microparticles are also discussed.  相似文献   

18.
Targeting of DC for DNA vaccination may be achieved by DNA-loaded poly(lactide-co-glycolide) (PLGA) biodegradable microparticles, since DC efficiently capture these microparticles in vitro and in vivo. DNA was encapsulated in PLGA microparticles by spray-drying. Various additives were tested and process parameters adjusted in order to prevent degradation of the DNA during encapsulation. The highest degree of supercoiled DNA was maintained by adding a strong buffering agent, such as PBS or NaHCO(3), whereas the cryoprotective lactose did not show a significant protective effect. DNA-containing PLGA microparticles were administered to a mouse DC line. Transfection efficacy was compared with commonly employed cationic transfectants and was visually assessed by green fluorescent protein expression. Transfection rate was very low in DC for all microparticle formulations and was comparable with commonly used cationic transfectants. It is concluded that the transfection of DC using PLGA microparticles is feasible, but efforts need to be undertaken to improve transfection efficiency in vitro, which may in addition lead to improved immune responses in vivo.  相似文献   

19.
An oral formulation based on poly (DL-lactide-co-glycolide) (PLG) microparticles was developed for delivery of antituberculous drugs. PLG entrapped antitubercular drugs when administered orally, were found to release the drugs in a sustained manner. This formulation was found to be stable in the acidic environment of gastric fluid whereas, in the intestinal fluid the drug release was obtained up to 20 days as indicated by in vitro studies. Pharmacokinetic analysis of the data revealed changes in C(max); AUC(o-alpha); t(1/2) (a) and t(1/2) (e) when drugs were given entrapped in PLG microparticles. Higher peak concentration, area under the concentration time curve and delayed elimination rate of entrapped drugs indicated the potential of PLG for effective treatment of tuberculosis. Further, work is being carried out to evaluate the chemotherapeutic efficacy of the antitubercular drugs encapsulated in PLG microspheres.  相似文献   

20.
PURPOSE: To investigate the use of poly (lactide-co-glycolide) (PLGA) microparticles in respirable sizes as carriers for Antigen 85B (Ag85B), a secreted protein of Mycobacterium tuberculosis, with the ultimate goal of employing them in pulmonary delivery of tuberculosis vaccine. MATERIALS AND METHODS: Recombinant Ag85B was expressed from two Escherichia coli strains and encapsulated by spray-drying in PLGA microspheres with/without adjuvants. These microspheres containing rAg85B were assessed for their ability to deliver antigen to macrophages for subsequent processing and presentation to the specific CD4 T-hybridoma cells DB-1. DB-1 cells recognize the Ag85B(97-112) epitope presented in the context of MHC class II and secrete IL-2 as the cytokine marker. RESULTS: Microspheres suitable for aerosol delivery to the lungs (3.4-4.3 microm median diameter) and targeting alveolar macrophages were manufactured. THP-1 macrophage-like cells exposed with PLGA-rAg85B microspheres induced the DB-1 cells to produce IL-2 at a level that was two orders of magnitude larger than the response elicited by soluble rAg85B. This formulation demonstrated extended epitope presentation. CONCLUSIONS: PLGA microspheres in respirable sizes were effective in delivering rAg85B in an immunologically relevant manner to macrophages. These results are a foundation for further investigation into the potential use of PLGA particles for delivery of vaccines to prevent M. tuberculosis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号