首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in the mismatch repair genes (hMLH1 and hMSH2) play an important role in the development of microsatellite instability in sporadic endometrial cancer. Tissue microarray technology allows molecular profiling of tumor samples at the DNA, RNA, and protein levels. We analyzed hMLH1 and hMSH2 expression by immunohistochemistry in a group of atypical endometrial hyperplasias (n = 10), endometrioid endometrial carcinomas (n = 58), and nonendometrioid endometrial carcinomas (n = 27) on tissue microarray. The results were correlated with microsatellite instability status as evaluated by BAT-25 and BAT-26. Overall, 29.4% of lesions showed microsatellite instability. Loss of nuclear hMLH1 and hMSH2 protein expression was seen in 22.3% and 6.5% of cases, respectively. Immunohistochemistry for hMLH1 and hMSH2 showed lack of protein expression in 64% and 16.6% of microsatellite instability-positive endometrial lesions, respectively. Taken together, hMLH1 or hMSH2 protein expression was absent in 18 of 24 microsatellite instability-positive cases (75% sensitivity). A high level of concordance was found between immunohistochemistry for hMLH1 and hMSH2 and microsatellite instability status evaluated by BAT-25 and BAT-26 (kappa value of 0.7). Of the 57 cases found to be microsatellite instability negative, 53 showed normal expression of both proteins (93% specificity). The observed predictive value of absence of expression of hMLH1 for predicting microsatellite instability-positive status was 82%. The predictive value of normal expression of both proteins for predicting microsatellite instability-negative status was 90%. These results are consistent with those previously reported in whole tissue sections. Therefore, immunohistochemical analysis of hMLH1 and hMSH2 expression on tissue microarray provides an accurate technique for screening for tumors with microsatellite instability. Tissue microarrays represent an ideal approach for comparing different diagnostic or predictive markers with one another in consecutive tissue microarray sections.  相似文献   

2.
Sporadic gastric carcinomas (SGC) with microsatellite instability (MSI) exhibit mutations in target genes and display a particular clinicopathological profile. In SGC the MSI phenotype has been associated with hMLH1 promoter hypermethylation. Fifty-seven SGC, classified as high-frequency MSI (MSI-H), low-frequency MSI (MSI-L), and microsatellite stable (MSS), were analyzed for hMLH1 promoter methylation status and clinicopathological features. hMLH1 mutations and hMLH1 expression, as well as target gene mutations, were also evaluated. Our aims were to characterize the molecular and clinicopathological features of SGC, with and without hMLH1 promoter hypermethylation, and to compare the molecular and clinicopathological features of MSI-L, MSI-H, and MSS tumors in an attempt to clarify the place of MSI-L tumors in the mismatch repair (MMR) pathway. Hypermethylation of hMLH1 promoter occurred in 27 of 57 SGC (47.3%) and was significantly associated with MSI status, target gene mutations, and expansive pattern of growth of the tumors. Seventy-five percent of the MSI-H and 50% of MSI-L carcinomas showed hypermethylation (Met+) of hMLH1 in contrast to 0% in MSS carcinomas. No hMLH1 expression was observed in MSI-L/Met+ and MSI-H/Met+ cases. MSS and MSI-L tumors share the same clinicopathological profile regardless of the methylation status of the latter and are distinct from MSI-H tumors. We conclude that mutations in target genes, more than hypermethylation or absence of expression of hMLH1, are the link between MSI status and most of the clinicopathological features of SGC.  相似文献   

3.
Hypermethylation of the hMLH1 mismatch repair gene promoter has been revealed to lead to microsatellite instability (MSI). Previously, we demonstrated a high prevalence of MSI in differentiated-type gastric tumors showing distinct features of gastric foveolar epithelium (foveolar type). To clarify the significance of hMLH1 promoter hypermethylation in the development of this tumor type, we studied promoter methylation status and expression of hMLH1 in foveolar-type tumors and their surrounding non-neoplastic mucosae, as well as in tumors with other cellular phenotypes. The results were compared to MSI status. After phenotypical analyses using mucin histochemistry and immunohistochemistry, 41 differentiated-type tumors with distinct cellular phenotypes were classified into three categories: foveolar type, intestinal type (tumors with the distinct cellular phenotype of the intestine), and combined type (tumors with both foveolar and intestinal phenotypes). Methylation-specific polymerase chain reaction (MSP) was performed to determine the methylation status of hMLH1 promoter. hMLH1 protein expression was immunohistochemically examined. MSI was detected in 57% of the foveolar type, 8% of the intestinal type, and 67% of the combined-type tumors. Hypermethylation of hMLH1 promoter was found in 74% of the foveolar type, 33% of the intestinal type, and 83% of the combined-type tumors. Of 18 MSI-positive tumors, all but one were hypermethylated. Methylation status of hMLH1 promoter correlated well with protein expression in foveolar-type tumors. Moreover, hypermethylation was also detected frequently (71%) in the non-neoplastic surrounding mucosa of the hypermethylated tumors. Hypermethylation of hMLH1 promoter is an initial, vital event in the development of foveolar-type tumors of the stomach.  相似文献   

4.
We investigated the methylation status of mismatch repair gene hMLH1 in 80 primary human endometrial carcinomas (ECs) and in 30 metastatic lesions. It was correlated to the expression of hMLH1 protein, microsatellite instability (MSI) of ECs and to the well-known clinico-pathological variables of cancer. The hMLH1 promoter methylation was detected in 24 out of 64 (37.5?%) primary ECs but only in one out of 18 (5.6?%) metastatic lesions investigated. Promoter hMLH1 hypermethylation was found more often in early stage ECs and was associated with a decrease of hMLH1 protein expression immunohistochemically. An inverse relationship between hMLH1 expression and clinical stage of the disease was found (p?=?0.048). Interestingly, there was a significant correlation between MSI and hMLH1 protein expression level (p?=?0.042). MSI phenotype was found more often in EC metastases compared to the primary tumors (66.7?% vs 29.3?%; p?=?0.039). However, neither hMLH1 promoter hypermethylation nor MSI was independent predictive factors for patient??s outcome. Using an in vitro model we showed that hMLH1 methylation is reversible. These data showed that hMLH1 methylation with a consequent protein decrease occurred early during EC tumorigenesis and may cause a MSI phenotype, which occurs relatively late. MSI may be an important mechanism supporting further the tumor progression. These findings may have importance for the specific chemosensitization of the primary tumors/metastases and can improve our understanding of endometrial carcinogenesis in humans.  相似文献   

5.
Head and neck squamous cell carcinoma (HNSCC) is a multistage process during which adverse genetic alterations accumulate resulting in loss of cell cycle control, selective cell overgrowth, and ultimately formation of malignancy. Among various genetic alterations in HNSCC is increased microsatellite instability (MSI). hMLH1 is one of the major mismatch DNA repair genes, the inactivation of which caused increased MSI in a variety of human cancers including HNSCC. While somatic mutation is a major mechanism of the hMLH1 gene inactivation in hereditary form of human cancer, promoter hypermethylation appears to be primarily involved in the inactivation of the hMLH1 gene in sporadic form of human cancers. In the current study, we analyzed 78 cases of HNSCC for hMLH1 protein expression and promoter hypermethylation by IHC and methylation-specific PCR (MSP). Twenty-four of 78 cases (31%) of HNSCC contained markedly reduced levels of the hMLH1 protein. Based on the IHC results, 8 cases without and 8 with hMLH1 protein expression (total of 16) were further analyzed by MSP. Seven of 8 cases (88%) that were negative for the hMLH1 protein displayed promoter hypermethylation, whereas 7 of 7 cases (100%) strongly positive for the protein were free of promoter methylation. This study confirms our previous conclusion that promoter hypermethylation represents a major mechanism of the hMLH1 gene inactivation in HNSCC.  相似文献   

6.
Origin of Microsatellite Instability in Gastric Cancer   总被引:17,自引:0,他引:17  
Microsatellite instability (MSI) is observed in 13-44% of gastric carcinoma. The etiology of MSI in gastric carcinoma has not been clearly defined. To assess the role of mismatch repair in the development of MSI in gastric cancer, expression of hMSH2 and hMLH1 was explored. We examined 117 gastric carcinomas for MSI and observed instability at one or more loci in 19 (16%) of these tumors. Of the 19 tumors with MSI, nine exhibited low-rate MSI (MSI-L) with instability at <17% of loci, whereas the remaining 10 exhibited high-rate MSI (MSI-H) with instability at >33% of loci examined. Immunohistochemical staining for hMLH1 and hMSH2 was performed on eight of the tumors with MSI-H, five with MSI-L, and 15 tumors without MSI. All eight tumors with MSI-H showed loss of staining for either hMLH1 (n = 5) or hMSH2 (n = 3). In contrast, tumors with MSI-L or without MSI all showed normal hMSH2 and hMLH1 protein expression patterns. Moreover, all eight of the tumors with MSI-H also showed instability at BAT-26, whereas none of the MSI-L tumors or tumors without instability showed instability at BAT-26. These findings suggest that the majority of high-level MSI in gastric cancer is associated with defects of the mismatch repair pathway. Although larger studies are needed, BAT-26 appears to be a sensitive and specific marker for the MSI-H phenotype in gastric carcinoma.  相似文献   

7.
It has recently been suggested that silencing of the hMLH1 gene by promoter hypermethylation is the mechanism underlying the presence of the microsatellite instability (MSI) phenotype in sporadic colon and endometrial carcinomas. To determine whether hMLH1 promoter hypermethylation is a relatively early event in endometrial tumorigenesis we evaluated endometrial hyperplasia (EH) characterized as simple, complex, and atypical (the direct precursor of endometrial carcinoma) for hMLH1 aberrant methylation. In addition, we studied the hMLH1, hMSH2, hMSH3, and hMSH6 promoter methylation and MSI status of those endometrial carcinomas with synchronous hyperplasias and those without them. We found that 11 of 12 (91%) cases of endometrial carcinoma (EC) displaying MSI had hMLH1 promoter hypermethylation, whereas aberrant methylation of any of the other mismatch repair genes was not observed. All 15 cases of EC without MSI were unmethylated at hMLH1. Abnormal methylation of hMLH1 was also present in 8 of 116 (7%) cases of EH and was restricted primarily to the atypical endometrial hyperplasia (AEH) type with coexisting endometrial carcinoma. In this set, half of EH methylated at hMLH1 displayed MSI, whereas none of the unmethylated EH had MSI. Our data suggest that hypermethylation of hMLH1 can be an early event in the pathogenesis of EC, preceding the development of an apparent MSI phenotype in a subset of cases.  相似文献   

8.
Hypermethylation of the hMLH1 promoter is observed in the majority of sporadic gastric carcinomas with high frequency microsatellite instability (MSI), and it contributes to the genesis of MSI-positive gastric carcinoma. Multiple gastric carcinoma is known to have a higher frequency of MSI positivity than single gastric carcinoma. However, the molecular basis of MSI in these tumors remains obscure. We investigated the role of hMLH1 promoter hypermethylation in the genesis of multiple gastric carcinoma with MSI. We analyzed 33 tumors from 15 patients with multiple gastric carcinoma (12 double tumors and three triple tumors) for MSI, expression of hMLH1 and hMSH2, and hypermethylation of hMLH1 and hMSH2 promoters. High frequency MSI was found in seven out of 33 tumors (21%) in five out of 15 patients (33%). All of the tumors with high frequency MSI had a lack of hMLH1 expression, with the presence of hMSH2 expression, while all the tumors with no MSI or low frequency MSI were positive for both hMLH1 and hMSH2. All of the tumors with no expression of hMLH1 had hMLH1 hypermethylation, whereas hMLH1 hypermethylation was observed in two out of 26 (8%) tumors with no or low frequency MSI. None of the tumors showed hMSH2 hypermethylation. These results suggest that epigenetic changes in the hMLH1 promoter account for the genesis of multiple gastric carcinoma with high frequency MSI.  相似文献   

9.
Microsatellite instability (MSI) defines a specific type of genetic instability. Although consensus diagnostic criteria for MSI definition in colorectal cancer have been established, their utility in other tumor types remain to be proven. Previously we developed a mathematical model for MSI definition in colorectal cancer. The aim of this study was to establish diagnostic criteria for MSI evaluation in human gastric cancer. We designed an algorithm for the efficient characterization of MSI and used it to analyze data on 7 microsatellite markers in 35 gastric carcinomas. Theoretical models considering 1, 2, or 3 populations were tested against the data collected. Also, hypermethylation of hMLH1 gene promoter and hMLH1 protein expression were studied. The observed frequencies of MSI in our series of samples best fit a 2-population model: stable and unstable, defined by instability in 2 or more of a minimum of 7 markers analyzed. MSI was observed in 29% of the tumors. Misclassification rate was <4% when any 7 loci were analyzed. MSI(+) tumors inversely associated with p53 protein overexpression. A good correlation between hMLH1 status (either protein or promoter hypermethylation) and MSI classification was observed. We have developed a simple, sensitive, and specific approach to assess the presence of MSI in gastric cancer that may have clinical applications.  相似文献   

10.
Alterations of DNA mismatch repair (MMR) genes are involved in carcinogenesis of sporadic and inherited human cancers characterised by instability of DNA microsatellite sequences (MSI). MSI tumours are usually identified using molecular analysis. In the present investigation, hMLH1 and hMSH2 immunohistochemistry was tested in order to evaluate the utility of this method in predicting MMR deficiency. Colorectal (72), gastric (68), endometrial (44) and ovarian (17) carcinomas were independently evaluated for familial history, histological type of tumour, MSI status and immunohistochemical results. Loss of expression of either hMLH1 or hMSH2 was observed in 51 of 55 (92.8%) MSI tumours, while 145 of 146 microsatellite stable (MSS) tumours expressed both the hMLH1 and hMSH2 gene products. Independently of tumour site, an overall agreement between immunohistochemical and molecular results was observed in 15 hereditary non-polyposis colorectal cancer-related tumours. Among sporadic tumours, only 2 of 60 colorectal and 2 of 66 gastric carcinomas, displaying MSI, expressed both hMLH1 and hMSH2 gene products. All 39 endometrial and 16 ovarian tumours presented a concordant molecular and immunohistochemical profile. These data show that immunohistochemistry is an accurate and rapid method to predict the presence of defective DNA MMR genes and to identify both sporadic and familial MSI tumours.  相似文献   

11.
Gastric cancer has striking heterogeneity in histological pattern, cellular phenotype, genotype, biomarkers, and biological behavior. We focused on the specific morphological papillary phenotype of gastric adenocarcinoma and attempted to identify its distinct molecular characteristics. In our comparative study, early stage papillary (papillary-dominant) gastric cancer showed a significantly higher and more widespread high-frequency microsatellite instability (MSI-H) than other morphological types. Analysis of mutations in a panel of five putative microsatellite instability (MSI)-associated genes in the MSI-H cases revealed that papillary or papillary-dominant cancer displays a unique profile of mutations compared to profiles previously reported in gastric cancer. Immunohistochemical staining and methylation analysis revealed that silencing of hMLH1 by methylation in its promoter region was responsible for the failure of mismatch repair in papillary-type gastric cancer, whereas aberrant promoter methylation of hMLH1 was not found in any cases without the unique mutator phenotype. Promoter hypermethylation of the hMLH1 genes was found to a lesser degree in the adjacent non-tumor mucosa in four of the 10 cases with tumor having the mutator phenotype. Microsatellite instability itself could not be detected in the adjacent non-tumor mucosa. Inactivation of hMLH1 expression by promoter hypermethylation may be an early event in carcinogenesis of this type of gastric cancer, preceding the development of the clear MSI phenotype of papillary carcinoma.  相似文献   

12.
Recent studies have demonstrated that the majority of sporadic colorectal carcinomas with replication error (RER) do not harbor mutations of the hMLH1 and hMSH2 genes that account for about 70% of hereditary nonpolyposis colon cancer. Despite the absence of mutations of the hMLH1 gene, the majority of RER-positive sporadic colorectal carcinomas lack hMLH1 protein expression, which have been reported to be related to hypermethylation of the promoter region of hMLH1 gene. High frequency of microsatellite instability (MSI) has been observed in about 15% of sporadic gastric carcinomas. The relationship of tumor MSI, methylation of promoter regions of hMLH1 or hMSH2, and expression of corresponding gene products has not been studied in gastric carcinomas as thoroughly as in colorectal carcinomas. We explored the relationship between methylation of hMLH1 or hMSH2 promoter regions and its protein expression in both RER-positive and RER-negative gastric carcinomas. Of 93 cases, 20 cases comprised the RER+ group (MSI-H tumors) and the remainder comprised the RER- group (7 cases, MSI-L; 66 cases, MSS). By immunohistochemistry absence of hMLH1 protein expression was limited entirely to the RER+ group (20 of 20, 100%). All 93 cases showed hMSH2 protein expression. Nineteen (95%) of 20 RER+ tumors harbored hypermethylation of the hMLH1 promoter region whereas only four cases (5.5%) of the 73 RER- tumors did. Hypermethylation of the hMSH2 promoter region was not observed in either the RER+ group or the RER- group. These results suggest that hypermethylation of the hMLH1 promoter region may be the principal mechanism of gene inactivation in sporadic gastric carcinomas with a high frequency of MSI.  相似文献   

13.
Alterations in DNA mismatch repair (MMR) proteins result in microsatellite instability (MSI), increased mutation accumulation at target genes and cancer development. About one-third of gastric cancers display high-level microsatellite instability (MSI-High) and low-level microsatellite instability (MSI-Low) is frequently detected. To determine whether variations in the levels of MMR proteins or mutations in the main DNA MMR genes are associated with MSI-Low and MSI-High in gastric cancer cell lines, the MSI status (MSI-High, MSI-Low or MS-Stable (MSS)) of 14 gastric cancer lines was determined using multiple clone analysis with a panel of five microsatellite markers. Protein levels of hMLH1, hMSH2, hMSH6, hPMS2 and hPMS1 were determined by Western blot. Sequence analysis of hMLH1 and hMSH2 was performed and the methylation status of the hMLH1 promoter was examined. The cell lines SNU1 and SNU638 showed MSI-High, decreased to essentially absent hMLH1 and hPMS2 and reduced hPMS1 and hMSH6 protein levels. The hMLH1 promoter region was hypermethylated in SNU638 cells. The MKN28, MKN87, KATOIII and SNU601 cell lines showed MSI-Low. The MMR protein levels of cells with MSI-Low status was similar to the levels detected in MSS cells. A marked decrease in the expression levels of MutL MMR proteins (hMLH1, hPMS2 and hPMS1) is associated with high levels of MSI mutations in gastric cancer cells. Gastric cancer cell lines with MSI-Low status do not show significant changes in the levels of the main DNA MMR proteins or mutations in the DNA mismatch repair genes hMSH2 and hMLH1. These well-characterized gastric cancer cell lines are a valuable resource to further our understanding of DNA MMR deficiency in cancer development, progression and prognosis.  相似文献   

14.
The high-frequency microsatellite instability (MSI-H) phenotype, frequently identified in hereditary nonpolyposis colorectal cancer (HNPCC), also accounts for approximately 15% of sporadic colorectal cancers. Microsatellite instability (MSI) occurs from the mutational inactivation of the DNA mismatch repair genes, i.e. hMSH2 and hMLH1 in HNPCC, as well as from epigenetic inactivation of hMLH1 in sporadic colorectal tumors. The mutator pathway including microsatellite instability, hMLH1 promoter methylation, and hMSH2 and hMLH1 mutation patterns were identified in 21 sporadic colorectal adenocarcinoma patients younger than 30 yr excluding HNPCC. More than half of tumors showed MSI, with five MSI-H and six MSI-L (low-frequency microsatellite instability). Three of six MSI-H tumors showed the hMLH1 promoter methylation and did not express the hMLH1 protein. On the other hand, all MSI-L and all MSS (microsatellite stable) tumors expressed both hMSH2 and hMLH1 proteins. Two novel mutations, i.e. a missense mutation in hMLH1 and a splice-site alteration in hMSH2, were identified in two patients respectively. Although mutator pathway was implicated in younger-age-onset colorectal carcinogenesis, many tumors appeared to evolve from different genetic events other than hMSH2 and hMLH1 mutations frequently identified in HNPCC.  相似文献   

15.
There are two well-defined pathways for colorectal carcinogenesis, the suppressor and the mutator pathways. The latter is characteristic of hereditary non-polyposis colorectal cancer (HNPCC), but can also be found in a subset of sporadic colorectal cancer (SCC) possessing distinctive clinical and pathological features, namely early age of onset, location in the right colon, poor differentiation, and a predominant mucinous component. This mutator pathway results from inactivation of mismatch repair (MMR) genes, namely MSH2 and MLH1. The aim of this study was to ascertain if abnormal MMR protein gene expression is a good indicator for identifying tumours from the mutator pathway. Seventy-six cases of SCC were studied by immunohistochemistry using two monoclonal mouse antibodies that react against MSH2 and MLH1 protein gene products. Immunoexpression was assessed both in tumour and in non-neoplastic, adjacent and distant mucosa. Microsatellite instability (MSI) was detected by evaluating the length of poly(CA) repeated sequences at seven loci, or by the detection of small unstable alleles in a poly(A) repeat - BAT-26. Except for BAT-26, in which only tumour DNA was used, MSI analysis was performed in both tumour and normal mucosal DNA. MSI was classified as high (MSI-H), low (MSI-L) or stable (MSS). Abnormal protein expression was found in 9/76 (12%) tumours. Immunohistochemistry for hmlh1 and hmsh2 detected 75% of MSI-H. There was also a highly significant correlation between the observed immunoexpression and several clinical and pathological characteristics described as the phenotypic profile of the mutator pathway, such as right-sided location (p=0.003), mucin production (p=0.008), and a peritumoural lymphoid infiltrate (p=0.009). Non-neoplastic adjacent mucosa showed normal hMSH2 expression in all cases, but in ten cases there was no hMLH1 expression in this transitional mucosa, which is known to display an alterated mucin pattern and a high proliferative rate. These results demonstrated a good correlation between hMLH1 and hMSH2 gene immunoexpression and the clinico-pathological features characteristic of the mutator phenotype and support the use of this method as a rapid and efficient way to detect tumours arising from this pathway.  相似文献   

16.
17.
Immunohistochemical expression analysis of mismatch repair gene products has been suggested for the prediction of hereditary nonpolyposis colorectal cancer (HNPCC) carrier status in cancer families and the selection of microsatellite instability (MSI)-positive tumors in sporadic colorectal cancer. In this study, we aimed to evaluate hMSH2 and hMLH1 immunohistochemistry in familial and sporadic colorectal cancer. We found that immunohistochemistry allowed us to identify patients with germline mutations in hMSH2 and many cases with germline mutations in hMLH1. However, some missense and truncating mutations may be missed. In addition, hMLH1 promoter methylation, commonly occurring in familial and sporadic MSI-positive colorectal cancer, can complicate the interpretation of immunohistochemical expression analyses. Our results suggest that immunohistochemistry cannot replace testing for MSI to predict HNPCC carrier status or identify MSI-positive sporadic colorectal cancer.  相似文献   

18.
Molecular analysis of hereditary nonpolyposis colorectal carcinomas (HNPCC) has identified DNA mismatch repair deficiencies with resulting microsatellite instability (MSI) as a pathway of carcinogenesis that appears to be relevant for prognosis, treatment, and possibly prevention. In this study, expression of cell cycle proteins and other known prognostic markers is correlated with the microsatellite status of colorectal cancers (CRC). One hundred consecutive cases from the CRC Registry at Thomas Jefferson University were analyzed for MSI. Immunohistochemistry was performed for the mismatch repair proteins hMLH1 and hMSH2, tumor suppressor p53, apoptosis inhibitor bcl-2, cell cycle proteins p21(WAF1/CIP1), and p27 and the proliferation markers Ki-67 and topoisomerase II. High MSI (MSI-H) is significantly correlated with loss of either hMLH1 or hMSH2, presence of bcl-2, and absence of p53. p21(WAF1/CIP1) is positive in all tumors with MSI-H. Previous findings of a lower proliferation rate were confirmed with a topoisomerase II stain. Microsatellite stable (MSS) tumors generally express both MSH2 and MLH1. Other highly significant differences are positive p53 in 56% of MSS cases and negative bcl-2 in 98% of MSS cases. p27 expression is found in approximately 50% of all CRCs irrespective of the microsatellite status. MSI-H tumors follow the mutator pathway, with loss of expression of one mismatch repair protein, wild-type p53, lower proliferation, and positivity for p21(WAF1/CIP1). MSS tumors follow the suppressor pathway, characterized by p53 overexpression, higher proliferation, and absence of bcl-2 expression; p21(WAF1/CIP1) expression can be variable. These data provide a molecular basis for the clinical observation that patients with HNPCC appear to have a more favorable prognosis. HUM PATHOL 31:1506-1514.  相似文献   

19.
In most sporadic gastric carcinomas, microsatellite instability (MSI) originates from inactivation of the hMLH1 gene by promoter hypermethylation. However, the methylation patterns of other genes and their consequences in high MSI (MSI-H) gastric carcinomas are not well characterized. To address the aberrant promoter methylation profiles of MSI-H gastric carcinomas, promoter methylation of six genes (hMLH1, p16(INK4A), E-cadherin, Rb, RASSF1A, and VHL) and CpG island methylator phenotype (CIMP) were explored in 36 MSI-H gastric carcinomas and the results were compared with those of 43 microsatellite-stable (MSS) gastric carcinomas. Frequent promoter hypermethylation was found in hMLH1, p16(INK4A), and E-cadherin and the frequency was significantly higher in MSI-H gastric carcinomas. Promoter hypermethylation of hMLH1, E-cadherin, and p16(INK4A) was found in 89%, 78%, and 33% of MSI-H gastric carcinomas and in 16%, 32%, and 11% of MSS carcinomas, respectively (p = 0.01). Selective absent or decreased expression of the gene product related to the hypermethylated promoter was found for hMLH1 and p16(INK4A) in MSI-H carcinoma, whereas the expression of E-cadherin was generally decreased both in the MSI-H and in the MSS carcinomas. MSI-H gastric carcinomas were also related to the high CIMP (CIMP-H, three or more of the five loci examined showing methylation). Twenty-two (61%) MSI-H gastric carcinomas were CIMP-H, compared with only seven (16%) MSS carcinomas (p = 0.001). These findings indicate that hMLH1 is one of the frequent methylation targets in CIMP-H gastric carcinomas and that inactivation of hMLH1 through promoter hypermethylation results in tumours following the MSI pathway.  相似文献   

20.
Alveolar soft part sarcoma (ASPS) is a rare soft tissue tumor of unknown origin and pathogenesis. We clinicopathologically analyzed 16 cases of ASPS and screened for the genetic alterations of various tumor-suppressor genes and oncogenes, including p53, adenomatous polyposis coli (APC), E-cadherin, and beta-catenin, in 11 cases of ASPS. We also examined the expression of hMSH2/hMLH1 of DNA mismatch repair genes by immunohistochemistry, and promoter hypermethylation of these DNA mismatch repair genes by methylation-specific polymerase chain reaction (MS-PCR) to elucidate any possible association between mutation status of these genes and inactivation of the hMSH2/hMLH1 genes. Furthermore, microsatellite instability (MSI) analysis and loss of heterozygosity (LOH) on chromosome 5q analysis were used for some cases of ASPS where DNA derived from normal tissue was available. The 5-year overall survival rate for all of the patients in this study was 68.6%. The 5-year overall survival rates for patients presenting with localized ASPS and for patients with distant metastases were 83.3% and 47.6%, respectively. The high nuclear grade of tumor cells was a significantly adverse prognostic factor (P = 0.0085). Single-strand conformation polymorphism analysis followed by DNA direct sequencing revealed 4 point mutations of the p53 gene in 3 of 11 cases (27.3%), composed of 3 missense mutations and 1 silent mutation. In addition, 1 case with the E-cadherin missense mutation and 1 case with the APC missense mutations were observed, respectively. None of the cases harbored mutation of exon 3 of the beta-catenin gene. Loss of expression of the hMSH2 and hMLH1 genes was observed in 2 (18.2%) and 3 (27.3%) of 11 cases, respectively. All 3 cases with loss of hMLH1 gene expression harbored mutations of the p53 gene. There was a statistically significant correlation between the genetic alteration positive in these tumor-suppressor genes and loss of hMLH1 gene expression (P = 0.024). Methylation-specific PCR did not reveal hypermethylation of the hMSH2/hMLH1 promoter region in any of the cases examined. Three of 8 (37.5%) ASPS cases showed low MSI, and 2 of these 3 cases showed immunohistochemical lack of expression for either hMSH2 or hMLH1. LOH on 5q was present in 2 of 6 (33.3%) informative cases, and both cases showed LOH on the D5S346 marker, a microsatellite marker near the APC locus. Thus, inactivation of hMSH2/hMLH1 of DNA mismatch repair genes seems to have an important role to play in the mutagenesis of the tumor-suppressor genes in ASPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号