首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The journal of pain》2008,9(4):350-359
Peripheral nerve injury has been associated with changes in the modulatory action of noradrenergic pathways on nociceptive traffic through the spinal cord. Thus, the purpose of this study was to assess whether endogenous noradrenergic descending inhibition, acting via spinal α2-receptors, is altered after peripheral nerve damage. We investigated the effects of spinal administration of a selective α2-adrenoceptor antagonist, atipamezole, on the evoked activity of deep dorsal horn neurons in animals with selective spinal nerve ligation (SNL) compared with a sham-operated group. Intrathecal administration of atipamezole (1, 10, and 100 μg) did not produce any significant effects on the electrically evoked neuronal responses in either animal group, with the exception of a small but significant enhancement of the postdischarge in the sham control group only. Similarly, no significant effects were observed with the heat-evoked neuronal responses in either group. Interestingly, atipamezole significantly increased the evoked responses of neurons to low-intensity mechanical stimuli in the sham control group but was without effect in the SNL group. Thus, our findings suggest that peripheral nerve injury can result in the suppression of noradrenergic spinal α2-adrenoceptor–mediated inhibition of spinal dorsal horn neuronal activity evoked by low-intensity mechanical stimuli.PerspectiveThese results suggest that a tonically active noradrenergic inhibition of mechanically evoked spinal dorsal horn neuronal responses is lost after nerve injury. This shift in the balance of noradrenergic controls may be one of the many underlying mechanisms by which behavioral symptoms of hypersensitivity develop after nerve damage.  相似文献   

2.
Kontinen VK  Dickenson AH 《Pain》2000,85(3):425-431
Potential changes in the spinal GABAergic activity after nerve injury were studied by comparing the effects of systemic administration of the benzodiazepine midazolam on the noxious evoked responses of dorsal horn in rats with spinal nerve ligation of neuropathy and control animals. The tight ligation of the L(5) and L6 spinal nerves was performed in adult male Sprague-Dawley rats and resulting mechanical and cold allodynia were assessed with von Frey hairs and the acetone drop test. Single unit extracellular recordings of dorsal horn neurones were performed 15-18 days after the surgery under halothane anaesthesia using transcutaneous electrical stimulation of the receptive field at three times the C-fibre threshold. The rats in the spinal nerve ligation group, but not in the sham-operated control group developed mechanical and cold allodynia. Subcutaneous administration of midazolam 0.1-3.0 mg/kg reduced the Adelta-fibre evoked activity in a dose-related manner in all study groups, but the C-fibre evoked activity was significantly reduced only in the spinal nerve ligation group. The inhibitory effects of s.c. midazolam were significantly reversed by i.t. administration of flumazenil, suggesting a spinal site of action. Midazolam reduced C-fibre evoked firing significantly more in the spinal nerve ligation model than in the non-operated or sham controls. These results indicate changes in the spinal GABAergic system in the neuropathic animals and could be of importance in the development of new treatments for neuropathic pain.  相似文献   

3.
Bee LA  Bannister K  Rahman W  Dickenson AH 《Pain》2011,152(1):131-139
Multiple pathological mechanisms at multiple sensory sites may underlie the pain that follows nerve injury. This provides a basis for recommending more than one agent, either sequentially or in combination, for its treatment. According to this premise, new drugs that combine different mechanisms of analgesic action in a single molecule are gaining momentum, such as tapentadol which stimulates mu-opioid receptors (MOR) and acts as a noradrenaline reuptake inhibitor (NRI) in the CNS. Tapentadol is currently indicated for treating moderate to severe acute and severe chronic pain, and here we demonstrate its efficacy in an animal model of ongoing neuropathic pain. In particular, we performed a series of in vivo electrophysiological tests in spinal nerve ligated and sham-operated rats to show that systemic tapentadol (1 and 5 mg/kg) dose-dependently reduced evoked responses of spinal dorsal horn neurones to a range of peripheral stimuli, including brush, punctate mechanical and thermal stimuli. Furthermore, we showed that spinal application of the selective α2-adrenoceptor antagonist atipamezole, or alternatively the mu-opioid receptor antagonist naloxone, produced near complete reversal of tapentadol’s inhibitory effects, which suggests not only that the spinal cord is the key site of tapentadol’s actions, but also that no pharmacology other than MOR-NRI is involved in its analgesia. Moreover, according to the extent that the antagonists reversed tapentadol’s inhibitions in sham and SNL rats, we suggest that there may be a shift from predominant opioid inhibitory mechanisms in control animals, to predominant noradrenergic inhibition in neuropathic animals.  相似文献   

4.
Flatters SJ  Fox AJ  Dickenson AH 《Pain》2002,98(3):249-258
Galanin is a 29-amino-acid neuropeptide that has been implicated in the processes of nociception. This study examines the effect of exogenous galanin on dorsal horn neurone activity in vivo in the spinal nerve ligation (SNL) model of neuropathic pain. SNL rats but not naive or sham-operated rats exhibited behaviour indicative of allodynia. In anaesthetized rats, extracellular recordings were made from individual convergent dorsal horn neurones following stimulation of peripheral receptive fields electrically or with natural (innocuous mechanical, noxious mechanical and noxious thermal) stimuli. Spinal administration of galanin (0.5-50 microg) caused a slight facilitation of the neuronal responses to natural and electrical stimuli in naive rats and up to a 65% inhibition of neuronal responses in sham-operated rats following 50 microg galanin. In contrast, there was a marked inhibition of up to 80% of responses to both natural and electrical stimuli in SNL rats following spinal galanin administration. These results suggest that following peripheral nerve injury, there is plasticity in the levels of galanin and/or its receptors at spinal cord level so that the effect of exogenous galanin favours inhibitory function.  相似文献   

5.
alpha (2)-Adrenoceptor (AR) agonists are active in behavioral models of persistent pain involving tissue and nerve damage. We evaluated the spinal effect of a novel, potent, and selective alpha (2)-AR agonist, [7,8](2-chlorobenzo)-2-amino-1-aza-3-oxa[4,5]spirodeca-1,7-diene (S18616), on the responses of dorsal horn neurons in halothane-anesthetized rats. Intrathecal administration of S18616 (0.1 to 3.0 microg) dose-dependently suppressed C- and A delta-fiber evoked responses but not the A beta-fiber evoked response. Drug effects were reversed by the alpha (2)-AR antagonists, atipamezole and idazoxan (100 microg). In rats with unilateral spinal nerve (L5-L6) ligation performed 2 weeks before study, S18616 (0.1 to 3.0 microg) dose-dependently suppressed the C- and A delta-fiber evoked responses and blocked "wind-up" in these neurons. The potency was comparable between nerve-injured and sham-operated rats, and S18616 was equally effective against responses to thermal and high-intensity mechanical stimuli. Interestingly, the effectiveness of S18616 on the low-intensity mechanical evoked response was significantly enhanced after nerve injury. Finally, S18616 (0.3 and 3.0 microg) reduced the neuronal responses produced by intraplantar injection of formalin. In conclusion, S18616 dose-dependently and potently inhibits the responses of dorsal horn neurons to peripheral stimulation in normal, inflamed, and neuropathic rats. These data support the use of spinal S18616 and other alpha (2)-AR agonists in the management of clinical pain.  相似文献   

6.
Rahman W  Suzuki R  Webber M  Hunt SP  Dickenson AH 《Pain》2006,123(3):264-274
There is compelling evidence for a strong facilitatory drive modulating spinal nociceptive transmission. This is in part via serotonergic pathways and originates from the rostroventral medulla. We previously demonstrated that neuropathic pain is associated with an enhanced descending facilitatory drive onto the mechanical evoked responses of dorsal horn neurones, mediated by 5-HT acting at spinal 5-HT3 receptors. Furthermore, depletion of spinal 5-HT has been shown to reduce the at-level mechanical allodynia that follows spinal cord injury. To further clarify the role and direction of effect of endogenous 5-HT, we investigated the effects of depleting spinal 5-HT, via intrathecal injection of 5,7di-hydroxytryptamine (5,7DHT), on pain behaviours after spinal nerve ligation (SNL). Depletion of spinal 5-HT in normal animals leads to reductions in mechanical and thermal evoked responses of deep dorsal horn neurones implying that spinal 5-HT has a predominant facilitatory function. After nerve injury, the frequency of paw withdrawals to low intensity mechanical and cooling stimulation of the ipsilateral hindpaw in the SNL-5,7DHT group was significantly attenuated when compared with the SNL-saline group from day seven post-nerve injury. Sham-5,7DHT and sham-saline animals showed very little response sensitivity on either hindpaw. This 5-HT-mediated difference in behaviour was independent of both the up-regulation of the NK1 receptor and spinal microglial activation produced by nerve injury. These data suggest that supraspinal serotonergic influences under these conditions are facilitatory and are implicated in the maintenance of spinal cord neuronal events leading to the behavioural hypersensitivity manifested after peripheral nerve damage.  相似文献   

7.
Suzuki R  Matthews EA  Dickenson AH 《Pain》2001,91(1-2):101-109
Selective ligation of the L5/L6 spinal nerves produces a partial denervation of the hindpaw and has proved to be a useful model for studying the mechanisms underlying neuropathic pain. Two weeks after surgery, in vivo electrophysiological studies were performed in sham operated and nerve injured rats and the responses of spinal dorsal horn neurones to controlled electrical and natural (mechanical and heat) stimuli were recorded. The systemic effects of three N-methyl-D-aspartate receptor (NMDA) antagonists, ketamine (1-10 mg/kg), memantine (1-20 mg/kg) and MK-801 (0.1-5 mg/kg) were compared. Ketamine a clinically available NMDA receptor antagonist, produced greater reductions of the postdischarge, thermal (10 mg/kg, P=0.02), and mechanical evoked responses in spinal nerve ligated (SNL) rats (von Frey 9 g, 1 mg/kg, P=0.04; 5 mg/kg, P=0.01; 10 mg/kg, P=0.05; von Frey 50 g, 5 mg/kg, P=0.02; 10 mg/kg, P=0.003). The inhibition of wind-up was comparable in both animal groups. Memantine produced powerful inhibitions of wind-up after nerve injury with little effect in sham controls (5 mg/kg, P=0.02). The postdischarge, mechanical and thermal evoked responses were reduced to similar extents by memantine in both experimental groups. The effects of MK-801 were comparable between SNL and sham operated rats for all neuronal measures (wind-up, postdischarge, thermal and noxious mechanical evoked responses). The differential blocking abilities of these antagonists on the various neuronal responses may relate to the characteristics of their voltage-dependent blockage of the channel associated with the receptor. The favourable side effect profile of memantine supports its potential use for the treatment of neuropathic pain.  相似文献   

8.
Catheline G  Le Guen S  Honoré P  Besson JM 《Pain》1999,80(1-2):347-357
The long-term changes in Fos like-immunoreactivity (Fos-LI) in the dorsal horn of the spinal cord following various peripheral nerve lesions remain controversial. This study considers such an approach with chronic constriction injury rats (CCI: loose ligations of the sciatic nerve), at 2 weeks after the surgery, when changes in spontaneous and evoked behaviour were clearly described. All rats used for Fos studies displayed allodynia to mechanical stimulation (decrease of 32% of the vocalization threshold to paw pressure). In CCI rats, which displayed 'spontaneous pain-related behaviour', the number of Fos-LI neurones, in the absence of any intentional stimulation, was very low and comparable with that observed in normal and sham-operated rats (<10 neurones/40 microm section). Thus, in this model, the expression of Fos protein is not a reliable index of spontaneous pain. Surprisingly, despite the fact that in this model numerous anatomical studies described a dramatic loss of large and unmyelinated primary afferent fibers, we were unable to detect changes in the number and distribution of Fos-LI evoked by various modalities of peripheral noxious stimulation (noxious thermal stimuli, noxious mechanical stimuli and carrageenin induced inflammation). For example, the stimulus-response curves for the number of Fos-LI neurones evoked by a series of heat stimuli (40, 45, 48, 52, 55 degrees C) were almost superimposable for CCI, sham-operated and normal rats. In contrast, stroking of the nerve-injured paw induced a significant expression of Fos-LI in the superficial laminae (I-II) of the dorsal horn of CCI rats (19.5 +/- 3/sections, P = 0.027) which was greater than that observed in sham-operated (6.5 +/- 3/sections) or in normal rats (3.5 +/- 2/section). These modifications may reflect mechanical allodynia observed in behavioural studies and could be related to A beta fibers, which are known to be severely affected after the constriction of the nerve. These results suggest that this approach could be useful to study, at the cellular level, in freely moving rats, some pharmacological aspects of neuropathic pain.  相似文献   

9.
Dai Y  Iwata K  Kondo E  Morimoto T  Noguchi K 《Pain》2001,90(3):287-296
In order to clarify the central mechanisms of thermal hyperalgesia produced by peripheral nerve injury, Fos protein-like immunoreactive (Fos-LI) cells in spinal dorsal horn neurons were studied in rats with chronic constriction nerve injury (CCI) following graded thermal stimulation of the hind paw. The graded thermal stimuli (cold: 5, 10 and 15°C, heat: 42, 46 and 54°C) were applied to the planter surface of the operated hind paw 14 days after CCI or sham operation, and the number of Fos-LI cells in the spinal dorsal horn was quantified. Many Fos-LI cells were expressed in the superficial laminae of the spinal dorsal horn both in sham-operated and CCI rats following thermal stimulation. Fos-LI cells were mainly restricted to the medial half of the superficial laminae of the spinal dorsal horn, and were sparsely distributed in the deeper laminae. The number of Fos-LI cells in the superficial laminae (laminae I–II) of the dorsal horn was significantly higher in CCI rats after stimulation at 10 and 46°C, but not at the other stimulating temperatures (5, 15, 42, and 54°C) as compared to that in sham-operated rats. In laminae III–IV, the number of Fos-LI cells was significantly higher at all stimulus temperatures in CCI rats when compared to the sham-operated rats. No distribution difference of Fos-LI cells was observed between CCI and sham-operated rats in laminae V–VI. Thus, in the spinal dorsal horn of the CCI rats, there was a selective increase in thermal stimulus-induced Fos-LI cells in the superficial dorsal horn after stimulating at near noxious threshold intensities and a non-selective increase in Fos-LI cells in laminae III-IV after both noxious and innocuous thermal stimuli. The increase of Fos-LI cells in the superficial laminae may be related to hypersensitivity to noxious stimuli while the increase of Fos-LI cells in laminae III–IV may be related to an increased sensitivity to both noxious and innocuous stimuli that leads to increased reflex activity following nerve injury.  相似文献   

10.
《Pain》2014,155(12):2526-2533
A sound strategy for improving the clinical efficacy of opioids involves exploiting positive interactions with drugs directed at other targets in pain pathways. The current study investigated the role of dopamine receptor D2 (D2R) in modulation of spinal dorsal horn excitability to noxious input, and interactions therein with μ-opioid receptor (MOR) in an animal model of neuropathic pain induced by spinal nerve ligation (SNL). C-fiber–evoked field potentials in the spinal dorsal horn were depressed concentration dependently by spinal superfusion with the D2R agonist quinpirole both in nerve-injured and sham-operated (control) rats. However, quinpirole-induced depression was significant at 10 μmol/L after SNL but only at 100 μmol/L in control rats. This quinpirole effect was completely abolished by MOR antagonist CTOP at subclinical concentration (1 μmol/L) in nerve-injured rats, but was unaltered in sham-operated rats. Nine days after SNL, D2R was upregulated to both presynaptic and postsynaptic locations in dorsal horn neurons, as revealed by double confocal immunofluorescence stainings for synaptophysin and PSD-95. In addition, D2R/MOR co-localization was increased after SNL. Co-administration of 1 μmol/L quinpirole, insufficient per se to alter evoked potentials, dramatically enhanced inhibition of evoked potentials by MOR agonist DAMGO, reducing the IC50 value of DAMGO by 2 orders of magnitude. The present data provide evidence of profound functional and subcellular changes in D2R-mediated modulation of noxious input after nerve injury, including positive interactions with spinal MOR. These results suggest D2R co-stimulation as a potential avenue to improve MOR analgesia in sustained pain states involving peripheral nerve injury.  相似文献   

11.
Chronic-constriction injury (CCI) of the sciatic nerve causes mechanical and heat hyperalgesia and mechanical allodynia in the plantar surface of the hindpaw. The underlying mechanism thought to account for these phenomena include central sensitization induced by peripheral nerve injury, ie, the increase in neuronal activity of spinal dorsal horn neurons. As a marker of neuronal activation of the central nervous system, Fos expression has been used widely to monitor the change in neuronal activity evoked by peripheral input. In this study, we examined the antinociceptive effect of electroacupuncture (EA) on pain behavior and noxious stimulus-evoked Fos expression in dorsal horn neurons of the spinal cord in CCI rats 14 days after injury. Male Sprague-Dawley rats (180 to 200 g) received loose ligation of the left sciatic nerve. Heat and mechanical hyperalgesia and mechanical allodynia were examined by the plantar foot test, the pin-prick test, and the von Frey test before and after the EA treatment (100 Hz, 0.3 millisecond, 3 or 1 mA, 20 minutes) into the Zusanli point (S36). When EA stimulation to the Zusanli point was applied, the mechanical and heat hyperalgesia were significantly suppressed; however, mechanical allodynia was not affected. The EA stimulation to nonacupuncture point did not show any significant effect. Next, pinch stimulation was applied to the plantar surface of the operated hindpaw of the CCI rats for 10 minutes, and the stimulus-evoked Fos expression in dorsal horn neurons in L4-L6 spinal cord levels was then examined by using immunohistochemistry. The number of noxious stimulus-evoked Fos-labeled neurons in both the superficial and deep laminae of the dorsal horn in the CCI rats was increased significantly compared with those in sham-operated rats, suggesting an increased excitability of dorsal horn neurons to noxious stimuli. Concurrent EA treatment to the Zusanli point with the pinch stimulus suppressed the increase in the number of Fos-labeled cells in the spinal dorsal horn in the CCI rats. The present results show that EA treatment has antinociceptive effects on both pain behavior and neuronal activation of the spinal dorsal horn neurons in CCI rats.  相似文献   

12.
Drew GM  Siddall PJ  Duggan AW 《Pain》2004,109(3):379-388
The present study investigated whether mechanical allodynia following contusive spinal cord injury (SCI) of the thoracic segments 12 and 13 of the rat was associated with a reduction in gamma-aminobutyric acid (GABA)ergic inhibition adjacent to the site of injury. Five to 7 days following SCI, extracellular recordings were obtained from dorsal horn neurones located 1-2 segments caudal to the injury, in non-allodynic and allodynic halothane anaesthetised rats and from comparable neurones in normal rats. To assess spinal GABAergic inhibition in the three groups of animals, spontaneous and evoked cell firing rates were recorded before, during and after microiontophoretic application of the GABA(A) receptor antagonist bicuculline. Administration of bicuculline to normal animals resulted in significant and reversible increases in the receptive field size, spontaneous firing rate, response to brushing and pinching the skin and afterdischarge activity of dorsal horn neurones, as well as decreasing paired-pulse depression of responses evoked by transcutaneous electrical stimulation. In non-allodynic SCI animals, bicuculline ejection led to significant changes in receptive field size, paired-pulse depression and responses to brush and pinch stimulation that were comparable to those observed in normal animals. By contrast, in allodynic SCI animals, bicuculline ejection had little or no effect on dorsal horn neurone responses to mechanical skin stimuli and paired-pulse depression despite reliably blocking the inhibition of cell firing produced by similarly applied GABA. The demonstration of reduced GABAergic inhibition predominantly in the allodynic SCI rats suggests that such a deficiency contributed to this pain-related behaviour acutely following SCI.  相似文献   

13.
Increased glutamatergic input to spinal dorsal horn neurons constitutes an important mechanism for neuropathic pain. However, the role of group III metabotropic glutamate receptors (mGluRs) in regulation of nociception and dorsal horn neurons in normal and neuropathic pain conditions is not fully known. In this study, we determined the effect of the group III mGluR specific agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) on nociception and dorsal horn projection neurons in normal rats and a rat model of neuropathic pain. Tactile allodynia was induced by ligation of L5/L6 left spinal nerves in rats. Allodynia was determined by von Frey filaments in nerve-injured rats. The nociceptive threshold was tested using a radiant heat and a Randall-Selitto pressure device in normal rats. Single-unit activity of ascending dorsal horn neurons was recorded from the lumbar spinal cord in anesthetized rats. An intrathecal (5-30 microg) L-AP4 dose-dependently attenuated allodynia in nerve-injured rats but had no antinociceptive effect in normal rats. Topical spinal application of 5 to 50 microM L-AP4 also significantly inhibited the evoked responses of ascending dorsal horn neurons in nerve-ligated but not normal rats. Furthermore, blockade of spinal group III mGluRs significantly decreased the withdrawal threshold and increased the evoked responses of dorsal horn neurons in normal but not nerve-injured rats. These data suggest that group III mGluRs play distinct roles in regulation of nociception and dorsal horn neurons in normal and neuropathic pain states. Activation of spinal group III mGluRs suppresses allodynia and inhibits the hypersensitivity of dorsal horn projection neurons associated with neuropathic pain.  相似文献   

14.
Suzuki R  Chapman V  Dickenson AH 《Pain》1999,80(1-2):215-228
The treatment of pain arising from nerve injury can be difficult and the opioid sensitivity of neuropathic pain remains debatable. Clinical and animal studies report a wide range in the effectiveness of morphine, ranging from inadequate to potent analgesia. In this electrophysiological study we compare the effectiveness of spinal versus systemic administration of morphine on the natural and electrically evoked responses of spinal neurones of rats with a selective spinal nerve (L5/6) ligation. Recordings were made 1 week and/or 2 weeks after ligation. We have also compared the effects of morphine, by the two routes, on normal and sham operated animals. In spinal nerve ligated rats, morphine (0.1-5 microg) administered via the intrathecal route produced greater dose-dependent inhibitions of the neuronal responses compared with those produced by the systemic route (1-6 mg/kg). The dose response curves for intrathecal morphine on the C-fibre evoked and noxious natural stimuli evoked neuronal responses (mechanical and thermal) of spinal nerve ligated rats were to the left of those of sham operated and normal rats, suggesting an enhanced potency of intrathecal morphine after nerve injury. This was clearest for the lower doses of the opioid. The effects of spinal morphine on the responses to low intensity stimuli were similar in all groups of rats. In contrast to the spinal route, systemic morphine was less effective in inhibiting the evoked neuronal responses of spinal nerve ligated rats. This was especially clear for the C-fibre evoked and noxious natural stimuli evoked responses (mechanical and thermal) of spine nerve ligated rats. Our results suggest that the effectiveness of morphine may be partly related to the timing of the treatment relative to the duration of the neuropathy, the route of administration and also the neuropathic symptom. Spinal opioids may be a useful approach to pain control in neuropathic pain states where systemic routes produce inadequate analgesia.  相似文献   

15.
Lignocaine was tested either alone or in combination with a low dose of morphine by intrathecal administration on the C- and A-beta evoked responses of nociceptive neurones in the dorsal horn of the halothane-anaesthetized rat. In addition the effect of prilocaine was compared to lignocaine. The effects of lignocaine on wind-up, a frequency-dependent increase in the responses of the cells produced by repeated C-fibre stimulation was also tested. Lignocaine produced dose-dependent inhibitions of the C-, A-delta and A-beta evoked responses of the cells which became more selective for the noxious evoked responses as the dose increased. The effective doses corresponded well to those used clinically. Wind-up was also decreased by lignocaine. In combination with a low dose of morphine, threshold doses of lignocaine produced a highly marked potentiation of the inhibitions of the C-fibre evoked responses compared to either agent alone. No potentiation of the inhibitions of the A-beta responses was observed. The potentiated inhibitory effects on the C-fibre responses were rapidly reversed by intrathecal naloxone. The finding that spinal local anaesthetic and morphine potentiate markedly to reduce spinal nociception is discussed both in terms of mechanisms of action of the agents and their clinical application.  相似文献   

16.
Matthews EA  Dickenson AH 《Pain》2001,92(1-2):235-246
Neuropathic pain, due to peripheral nerve damage, can include allodynia (perception of innocuous stimuli as being painful), hyperalgesia (increased sensitivity to noxious stimuli) and spontaneous pain, often accompanied by sensory deficits. Plasticity in transmission and modulatory systems are implicated in the underlying mechanisms. The Kim and Chung rodent model of neuropathy (Kim and Chung, Pain 50 (1992) 355) employed here involves unilateral tight ligation of two (L5 and L6) of the three (L4, L5, and L6) spinal nerves of the sciatic nerve and reproducibly induced mechanical and cold allodynia in the ipsilateral hindpaw over the 14 day post-operative period. In vivo electrophysiological techniques have then been used to record the response of dorsal horn neurones to innocuous and noxious electrical and natural (mechanical and thermal) stimuli after spinal nerve ligation (SNL). Activation of voltage-dependent calcium channels (VDCCs) is critical for neurotransmitter release and neuronal excitability, and antagonists can be antinociceptive. Here, for the first time, the effect of N- and P-type VDCC antagonists (omega-conotoxin-GVIA and omega-agatoxin-IVA, respectively) on the evoked dorsal horn neuronal responses after neuropathy have been investigated. Spinal omega-conotoxin-GVIA (0.1-3.2 microg) produced prolonged inhibitions of both the electrically- and low- and high-intensity naturally-evoked neuronal responses in SNL and control rats. Spinal omega-agatoxin-IVA (0.1-3.2 microg) also had an inhibitory effect but to a lesser extent. After neuropathy the potency of omega-conotoxin-GVIA was increased at lower doses in comparison to control. This indicates an altered role for N-type but not P-type VDCCs in sensory transmission after neuropathy and selective plasticity in these channels after nerve injury. Both pre- and post-synaptic VDCCs appear to be important.  相似文献   

17.
Opioid analgesia is compromised by intracellular mediators such as protein kinase C (PKC). The phosphatidylinositol hydrolysis-coupled serotonin receptor 5-HT2 is ideally suited to promote PKC activation. We test the hypothesis that 5-HT2A and 5-HT2B receptors, which have been previously shown to become pro-excitatory after spinal nerve ligation (SNL), can negatively influence the ability of opioids to depress spinal excitation evoked by noxious input. Spinal superfusion with (100 nM) mu-opioid receptor (MOR)-agonist DAMGO significantly depressed C fiber-evoked spinal field potentials. Simultaneous administration of subclinical 5-HT2AR antagonist 4F 4PP (100 nM) or 5-HT2BR antagonist SB 204741 (100 nM) significantly reduced the IC50 value for DAMGO in nerve-ligated rats (97.56 nM ± 1.51 and 1.20 nM ± 1.28 respectively, relative to 104 nM ± 1.08 at the baseline condition), but not in sham-operated rats. Both antagonists failed to alter depression induced by delta-opioid receptor (DOR)-agonist D-ala2-deltorphin II after SNL as well as in the sham condition. Western blot analysis of dorsal horn homogenates revealed bilateral upregulation of 5-HT2AR and 5-HT2BR protein band densities after SNL. As assessed from double immunofluorescence labeling for confocal laser scanning microscopy, scarce dorsal horn cell processes showed co-localization color overlay for 5-HT2AR/MOR, 5-HT2BR/MOR, 5-HT2AR/DOR, or 5-HT2BR/DOR in sham-operated rats. Intensity correlation-based analyses showed significant increases in 5-HT2AR/MOR and 5-HT2BR/MOR co-localizations after SNL. These results indicate that plasticity of spinal serotonergic neurotransmission can selectively reduce spinal MOR mechanisms via 5-HT2A and 5-HT2B receptors, including upregulation of the latter and increased expression in dorsal horn neurons containing MOR.  相似文献   

18.
Catheline G  Le Guen S  Besson JM 《Pain》2001,92(3):389-398
In a model of mononeuropathic pain (chronic constriction injury of the sciatic nerve, CCI), we have demonstrated that light touch stimuli (stroking) to the paw induced Fos-like immunoreactivity (Fos-LI) in the superficial and deep dorsal horn of the rat spinal cord (Catheline et al., Pain 80 (1999a) 347). The efficacy of opioids in neuropathic pain being controversial, we have tested the effects of morphine (0.3, 1 and 3 mg/kg intravenous, i.v.) on this spinal Fos-LI evoked by light tactile stimuli, which could be related to mechanical allodynia. Morphine did not change the level of spinal Fos-LI observed following light touch stimuli in the CCI rats (43 +/- 3, 38 +/- 7, and 37 +/- 4 Fos-LI neurones/40 microm L4-L5 section, respectively, for the three doses versus 32 +/- 4 in the control group). In contrast, the administration of 3 mg/kg of i.v. morphine reduced by 30% the number of Fos-LI neurones induced by heat stimulation (52 degrees C, 15 s duration) in CCI rats (P < 0.05) as in sham-operated rats. These effects were reversed by the systemic administration of naloxone. The lack of effect of morphine on touch-evoked Fos-LI in the superficial dorsal horn reinforces the assertion that dynamic mechanical allodynia is related to information transmitted by A-beta fibres, since opioid receptors are mainly located on thin primary afferent fibres. Our results provide a basis for a certain form of allodynia that is insensitive to morphine.  相似文献   

19.
L J Rygh  F Svendsen  K Hole  A Tj?lsen 《Pain》1999,82(3):305-310
It is conceivable that plasticity in pain control systems and chronic pain may be due to mechanisms similar to learning. Long-term potentiation (LTP) in the hippocampus is often studied as a model of learning and memory. It has recently been shown that long-term excitation may be induced in single wide dynamic range (WDR) neurones in the spinal dorsal horn of rats after tetanic stimulation to the sciatic nerve. The present study shows that similar long-term changes can also be induced by a severe natural stimulus. Single unit extracellular recordings were made in urethane anaesthetized rats and the firing responses of WDR neurones evoked by a single electrical stimulus to the peripheral nerve were recorded every 4 min. After repeated crushing of tissue (including bone) corresponding to the receptive field of the WDR neurones (the conditioning stimulus) followed by a proximal total peripheral nerve block, the C-fibre evoked responses were increased (P < 0.001) for a 3 h observation period compared with baseline responses and control animals. In control animals the nerve block was applied before the conditioning stimulus. We suggest that a long-term increase of the excitability of WDR neurones may be important for the development of long lasting and chronic pain disorders after an acute but severe noxious stimulus.  相似文献   

20.
A Dickenson  C Hughes  A Rueff  A Dray 《Pain》1990,43(3):353-362
We have studied the effect of NE 19550 (olvanil, N-(4-hydroxy-3-methoxyphenyl) methyl-9Z-octadecenamide), a capsaicin analogue with approximately equipotent antinociceptive activity in vivo compared with capsaicin, on nociceptive responses recorded from spinal dorsal horn neurones in vivo and from a spinal ventral root in vitro. In adult rats anaesthetized with halothane, antinociceptive doses of olvanil (20-40 mumol/kg, s.c.) reduced C-fibre responses evoked in wide dynamic range, lumbar dorsal horn neurones, by peripheral transcutaneous electrical stimulation. Intradermal injection of olvanil, localized to a discrete region of the peripheral receptive field, did not activate C-fibres nor change C-fibre evoked activation of dorsal horn neurones. Spinal intrathecal administration of olvanil attenuated C-fibre evoked responses and, at the highest concentration, significantly reduced A beta-fibre evoked activity. In the neonatal rat spinal cord/tail preparation maintained in vitro, superfusion of the cord with olvanil (500 nM-5 microM) did not evoke a depolarization but responses to peripheral noxious stimulation were attenuated. In a similar in vitro preparation of the neonatal rat spinal cord, the release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) was measured in spinal cord superfusates. Capsaicin (2-10 microM) evoked a large release of CGRP-LI but olvanil (2-10 microM) produced only a small or undetectable release. Following the administration of each substance, however, the release of CGRP-LI evoked by a depolarizing potassium stimulus was significantly attenuated. These data indicate that C-fibre input to the dorsal horn was attenuated by acute systemic doses of olvanil that were antinociceptive in behavioural tests. This effect was unlikely to be due to impairment of C-fibre function by a peripheral locus of action but was more consistent with an action in the spinal cord in which the reduced release of a neurotransmitter substance from afferent nerve terminals may play a prominent role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号