首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The goal of the present report was to determine if lentiviral vectors could mediate gene transfer into murine terminally differentiated macrophages and mature B lymphocytes as a new strategy of gene delivery into professional antigen-presenting cells (APC). We demonstrated that nondividing tissue resident macrophages were efficiently transduced in vitro by lentiviral vectors. Gene transfer efficiencies of up to 90% were demonstrated using a green fluorescent protein (GFP) reporter gene-containing vector and expression was stable for the length of cell culture. Transduced macrophages were functionally competent, preserving their phagocytic activity, accessory cell function, interleukin (IL)-12 secretion, and nitric oxide (NO) production similar to control untransduced macrophages. Lentiviral vector mediated transduction of CD19(+) B cell blasts was demonstrated to be in the range of 60%-70% GFP-positive cells. These transduced cells retain the ability to upregulate CD80 and CD86 similar to control B cell cultures. In addition, we show that the human immunodeficiency virus type 1 (HIV-1) accessory proteins Nef, Vpr, Vif, and Vpu are not required for the transduction of both resident macrophages and activated B lymphoblasts. We conclude that HIV-1-based lentiviral vectors can mediate efficient gene transfer into primary murine macrophages and mature B lymphocytes.  相似文献   

2.
Dendritic cells (DCs) are potent antigen-presenting cells and are capable of activating naive T cells. Gene transfer of tumor antigen and cytokine genes into DCs could be an important strategy for immunotherapeutic applications. Dendritic cells derived from peripheral blood monocytes do not divide and are therefore poor candidates for gene transfer by Moloney murine leukemia virus (Mo-MuLV)-based retroviral vectors. Lentiviral vectors are emerging as a powerful tool for gene delivery into dividing and nondividing cells. A three-plasmid expression system pseudotyped with the envelope from vesicular stomatitis virus (VSV-G) was used to generate lentiviral vector particles expressing enhanced green fluorescent protein (EGFP). Peripheral blood monocyte-derived DCs were cultured in the presence of GM-CSF and IL-4 and transduced with lentiviral or Mo-MuLV-based vectors expressing EGFP. FACS analysis of lentiviral vector-transduced DCs derived either from normal healthy volunteers or from melanoma patients demonstrated transduction efficiency ranging from 70 to 90% compared with 2-8% using Mo-MuLV-based vectors pseudotyped with VSV-G. Comparison of lentiviral vectors expressing EGFP driven by CMV or human PGK promoters showed similar levels of transgene expression. Lentiviral vector preparations produced in the absence of HIV accessory proteins transduced DCs at efficiencies equal to vectors produced with accessory proteins. Alu-HIV-1 LTR PCR demonstrated the genomic integration of the lentiviral vector in the transduced DCs. Transduced cells showed characteristic dendritic cell phenotype and strong allostimulatory capacity and maintained the ability to respond to activation signals such as CD40 ligand and lipopolysaccharide. These results provide evidence that lentiviral vectors are efficient tools for gene transfer and expression in monocyte-derived DCs that could be useful for immunotherapeutic applications.  相似文献   

3.
Transplantation of ex vivo gene-corrected autologous cells represents an attractive therapeutic approach for brain diseases. Among the cells of the central nervous system, brain macrophages are promising candidates due to their role in tissue homeostasis and their implication in several neurological diseases. Up to now, gene transfer into macrophages has proven difficult by most currently available gene delivery methods. We describe herein, an efficient transduction of rat bone marrow-derived and brain macrophages with an HIV-1-derived vector containing a central DNA flap and encoding the GFP reporter gene (TRIP-DeltaU3-GFP). In primary cultures of macrophages our results show that more than 90% of the cells were transduced by the TRIP vector and that GFP expression remained stable for 1 month without cytopathic effect. In vivo, transplants of transduced macrophages into the striatum of adult rats exhibited long-term expression of GFP up to 3 months. Transduced macrophages were observed around the brain injection site and exhibited the brain macrophage/microglia phenotype. There was no significant sign of astrogliosis around the graft. These results confirm the potential of lentiviral vectors for efficient and stable ex vivo transduction of macrophages. Moreover, transduced autologous macrophages appear as a valuable vehicle for long-term and localized gene expression into the brain.  相似文献   

4.
The development of vectors and techniques able to transfer potentially therapeutic genetic information to corneal tissues efficiently may have broad clinical applications. Although a variety of vectors have been tested for their ability to transduce corneal tissue, these systems have been ineffective at transducing all cell types or have been associated with a relatively short duration of transgene expression. Towards the implementation of efficient, long-term transgene expression in all corneal cell types, we have studied the ability of a recombinant lentiviral vector, containing the enhanced green fluorescent protein (eGFP), to mediate gene transfer into human corneal tissue in vitro and in situ. Human primary keratocytes, cultured in vitro, were efficiently transduced by a lentiviral vector as determined by fluorescent-activated cell sorting (FACS) and by fluorescent microscopy. Transduction efficiency was found to be dependent upon multiplicity of infection (MOI); 92% of keratocytes were transduced at an MOI of 1000. The proportion of eGFP-positive cells remained unchanged throughout continuous culture for 60 days, indicating stable expression and a lack of selective pressure for or against transduced cells. Human corneal tissue, obtained at the time of penetrating keratoplasty, demonstrated efficient in situ transduction with this vector. Endothelial cells, epithelial cells and stromal keratocytes at the exposed cut edge of the corneal tissue in situ demonstrated eGFP expression. Underlying stromal cells not in direct contact with vector-containing media, were not transduced, implying that virus-cell contact is required for transduction. Transduced corneal tissues expressed eGFP in situ for the life of the corneal button in extended organ culture (60 days). These results imply that lentiviral vectors may prove to be useful tools, able to transduce corneal tissue efficiently, and that transgene expression is temporally stable. Gene Therapy (2000) 7, 196-200.  相似文献   

5.
Lentiviral vector (LV)-mediated gene therapy bears an intrinsic risk of insertional mutagenesis following integration into the host genome. Nonintegrative LVs may offer an alternative avenue at least in nondividing cells where episomal viral DNA persists stably. Owing to their central role in immune system functions, differentiated dendritic cells (DCs) offer an interesting cell target for these vectors. We have previously described that the transduction of DCs with wild-type HIV-1-derived vectors can be considerably improved by providing DCs with noninfectious virion-like particles (VLPs) carrying Vpx (Vpx-VLPs), a nonstructural protein coded by members of the SIV(SM)/HIV-2 lineage that removes a specific restriction to lentiviral infection in these cells. Here, we describe that the transduction efficiency of DCs with nonintegrative HIV-1 vectors can also be improved via Vpx-VLPs that promote the accumulation of complete and episomal viral DNA. In this setting, Vpx increases both the number of transduced cells and the levels of transgene expression. Thus, these results describe a simple procedure by which transduction of differentiated DCs can be achieved at low viral inputs with safer LVs to improve both the number of transduced cells and the levels of transgene expression.  相似文献   

6.
Bai Y  Soda Y  Izawa K  Tanabe T  Kang X  Tojo A  Hoshino H  Miyoshi H  Asano S  Tani K 《Gene therapy》2003,10(17):1446-1457
Difficulty in gene transduction of human blood cells, including hematopoietic stem cells, has hampered the development of gene therapy applications for hematological disorders, encouraging the development and use of new gene delivery systems. In this study, we used a third-generation self-inactivating (SIN) lentiviral vector system based on human immunodeficiency virus type 1 (HIV-1) to improve transduction efficiency and prevent vector-related toxicity. The transduction efficiency of the HIV-1-based vector was compared directly with the Moloney murine leukemia virus (MLV) SIN vector in human leukemia cell lines. Initial transduction efficiencies were almost 100% for the HIV and less than 50% for the MLV vectors. Similar results were observed in 11 types of primary cells obtained from leukemia or myeloma patients. Transgene expression persisted for 8 weeks in cells transduced with the HIV vector, but declined with the MLV vector. In addition, resting peripheral blood lymphocytes and CD34(+) hematopoietic cells were transduced successfully with the HIV vector, but not with the MLV vector. Finally, we confirmed vector gene integration in almost all colony-forming cells transduced with the HIV vector, but not with the MLV vector. In conclusion, this lentiviral vector is an excellent gene transduction system for human blood cells because of its high gene transduction and host chromosome integration efficiency.  相似文献   

7.
Partial resistance of primary mouse hepatocytes to lentiviral (LV) vector transduction poses a challenge for ex vivo gene therapy protocols in models of monogenetic liver disease. We thus sought to optimize ex vivo LV gene transfer while preserving the hepatocyte integrity for subsequent transplantation into recipient animals. We found that culture media supplemented with epidermal growth factor (EGF) and, to a lesser extent, hepatocyte growth factor (HGF) markedly improved transduction efficacy at various multiplicities of infection. Up to 87% of primary hepatocytes were transduced in the presence of 10 ng EGF, compared with ~30% in standard culture medium (SCMs). The increased number of transgene-expressing cells correlated with increased nuclear import and more integrated pro-viral copies per cell. Higher LV transduction efficacy was not associated with proliferation, as transduction capacity of gammaretroviral vectors remained low (<1%). Finally, we developed an LV transduction protocol for short-term (maximum 24 h) adherent hepatocyte cultures. LV-transduced hepatocytes showed liver repopulation capacities similar to freshly isolated hepatocytes in alb-uPA mouse recipients. Our findings highlight the importance of EGF for efficient LV transduction of primary hepatocytes in culture and should facilitate studies of LV gene transfer in mouse models of monogenetic liver disease.  相似文献   

8.
Dendritic cells (DCs) are being evaluated in immunization protocols to enhance immunity against infectious diseases and cancer. Interaction of T-helper cells expressing CD40 ligand (CD40L) with its cognate CD40 receptor on DCs leads to a mature DC phenotype, characterized by increased capacity of antigen presentation to cytotoxic T cells. The authors examined the ability of third-generation self-inactivating lentiviral vectors expressing CD40L to induce autonomous maturation of ex vivo expanded human monocyte-derived dendritic cells. Transduction with lentiviral vectors achieved a highly efficient gene transfer of CD40L to DCs, which correlated with phenotypic maturation as shown by the expression of immunologic relevant markers (CD83, CD80, MHCI) and secretion of IL-12, whereas DC phenotype was not affected by a control vector expressing only the green fluorescent protein marker. Addition of recombinant IFN-gamma to DCs at the time of CD40L transduction further enhanced IL-12 production, and when co-cultured with allogeneic and autologous CD8+ and CD4+ T cells, a potent activation was observed. Autologous responses against an HLA-A2-restricted influenza peptide (Flu-M1) and a tumor-associated antigenic peptide (gp100 210M) were significantly enhanced when CD40L transduced DCs were used as antigen-presenting cells for in vitro stimulation of CD8+ cytotoxic T lymphocytes. These results demonstrate that endogenous expression of CD40L by lentivirally transduced DCs induced their autonomous maturation to a phenotype comparable to that induced by optimal concentrations of soluble CD40L, providing a novel tool for genetic manipulation of DCs.  相似文献   

9.
Modification of dendritic cells (DCs) is a promising avenue for gene therapy purposes, given the versatility and the multiplicity of functions of these cells. In this study, we show that preincubation of monocyte-derived DCs with low amounts of non-infectious virion-like particles derived from the simian immunodeficiency virus (SIV(MAC) VLPs) increases up to 10-fold the efficiency of transduction by HIV-1 lentiviral vectors at low multiplicity of infections yielding up to 90% of transduced cells, in the absence of alterations of DCs behavior. This effect is restricted to DCs and specified by the viral accessory protein Vpx. Thus, preincubation with empty VLPs of SIV(MAC) can be used in transduction protocols to increase the efficacy of HIV-1-mediated modification of DCs.  相似文献   

10.
In this report, we evaluated the efficiency of stable gene transfer into established CD8(+) human tumor antigen-specific cytotoxic T cell (CTL) lines and peripheral blood lymphocytes (PBL) by oncoretroviral and lentiviral vectors. In the oncoretroviral vector, the green fluorescent protein (GFP) reporter gene was regulated by the murine stem cell virus (MSCV) promoter. In three human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors, the GFP transgene was regulated by either a chimeric MSCV/HIV-1 promoter, or cellular promoters from human housekeeping genes PGK and EF1 alpha. We found that several lines of proliferating tumor-specific CTL were poorly (=2%) transduced by the oncoretroviral vector that transduced Jurkat T cell line efficiently (=80%). In contrast, three lentiviral vectors transduced 38-63% of these proliferating CTL. More interestingly, all lentiviral vectors packaged without the HIV-1 accessory proteins transduced human bulk PBL and purified CD4(+) and CD8(+) lymphocyte subsets without prior stimulation. Detailed analysis indicated that the lentiviral vectors containing the EF1 alpha or PGK ubiquitous promoter can transduce unstimulated PBL and achieve low-level transgene expression in the absence of any T-cell activation. However, T-cell activation subsequent to the transduction of unstimulated PBL is required for high-level transgene expression. Transduced PBL expressing transgene delivered by the lentiviral vectors still preserved resting and na?ve cell phenotypes. Taken together, prior T cell stimulation and HIV-1 accessory proteins are dispensable for lentivirus-mediated gene transfer into resting na?ve and memory T lymphocytes. These results will have significant implications for the study of T-cell biology and for the improvement of clinical gene therapies of acquired immune deficiency syndrome (AIDS) and cancer.  相似文献   

11.
Human immunodeficiency virus (HIV) gene therapy offers a promising alternative approach to current antiretroviral treatments to inhibit HIV-1 infection. Various stages of the HIV life cycle including pre-entry, preintegration, and postintegration can be targeted by gene therapy to block viral infection and replication. By combining multiple highly potent anti-HIV transgenes in a single gene therapy vector, HIV-1 resistance can be achieved in transduced cells while prohibiting the generation of escape mutants. Here, we describe a combination lentiviral vector that encodes three highly effective anti-HIV genes functioning at separate stages of the viral life cycle including a CCR5 short hairpin RNA (shRNA) (pre-entry), a human/rhesus macaque chimeric TRIM5α (postentry/preintegration), and a transactivation response element (TAR) decoy (postintegration). The major focus on designing this anti-HIV vector was to block productive infection of HIV-1 and to inhibit any formation of provirus that would maintain the viral reservoir. Upon viral challenge, potent preintegration inhibition of HIV-1 infection was achieved in combination vector–transduced cells in both cultured and primary CD34+ hematopoietic progenitor cell (HPC)–derived macrophages. The generation of escape mutants was also blocked as evaluated by long-term culture of challenged cells. The ability of this combination anti-HIV lentiviral vector to prevent HIV-1 infection, in vitro, warrants further evaluation of its in vivo efficacy.  相似文献   

12.
《Molecular therapy》2002,5(3):283-290
As major antigen-presenting cells and effectors in the maintenance of tolerance, dendritic cells (DCs) are key cells of the immune system and can thus be envisioned to have roles in immunotherapy strategies. We, and others, previously showed that simian immunodeficiency virus (SIV)-derived lentiviral vectors were able to deliver a gene into human differentiated DCs. We describe here the upgrading of the SIV vector system and the improvements of the transduction protocol, which allowed us to transduce more than 90% of human monocyte-derived DCs. We developed new SIV lentiviral vectors carrying SIV splice regulatory elements and either the woodchuck hepatitis virus regulatory element (WPRE) or the murine phosphoglycerate-kinase 1 (PGK) promoter. We show that insertion of the WPRE in the SIV vector is detrimental to gene transfer in DCs, while this sequence increases transgene expression in 293T cells. Using an optimized SIV vector, high levels of transgene expression were obtained in more than 30% of human DCs at a multiplicity of infection (MOI) of 1, and close to 100% using a MOI of 20. VSV-G pseudotyped vectors generated with only gag, pol, tat, and rev helper functions failed to transduce DCs. This defect was completely rescued when the SIV accessory gene vpx was provided in trans in vector-producing cells. Genetically modified DCs were shown to behave as bona fide DCs in both allogenic and autologous mixed leukocyte reactions. These findings allow us to propose an optimal system for efficient and safe DC transduction with improved SIV vectors.  相似文献   

13.
14.
目的通过脂质体介导乙肝病毒核心抗原(HBcAg)基因转染人体内专职抗原提呈的树突状细胞(DC)的方法,使HBcAg基因在树突状细胞中表达,构建树突状细胞疫苗。方法分离健康人外周血单个核细胞,在粒-巨噬细胞集落刺激因子(GM-CSF)和白细胞介素-4(IL-4)的诱导下培养DC。在培养的第5天,应用脂质体PEI介导将含有编码HBcAg 基因的质粒(pJW4303/HBc)转染入DC,再以免疫印迹技术(Western-Blotting)验证其表达产物。结果经以质粒pJW4303 为真核表达载体的HBcAg目的基因转染后的树突状细胞有效表达了HBcAg抗原。结论经该方法转染后的DC目的基因可有效表达HBcAg,为以DC为基础的免疫治疗奠定了新的基础。  相似文献   

15.
We have evaluated a one-hit lentiviral transduction approach to genetically modifying monocytes in order to promote autocrine and paracrine production of factors required for their differentiation into immature dendritic cells (DCs). High-titer third-generation self-inactivating lentiviral vectors expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4) efficiently achieved simultaneous and persistent codelivery of the transgenes into purified human CD14+ monocytes. Coexpression of GM-CSF and IL-4 in CD14+ cells was sufficient to induce their differentiation into a DC-like phenotype, as evidenced by their morphology, immature immunophenotypic profile (CD14-, CD1a+, CD80+, CD86+, MHC-I+, MHC-II+), and their ability to further develop into a mature phenotype (CD83+) on further treatment with soluble CD40 ligand. Mixed lymphocyte reactions showed that the T cell-stimulating activity of lentivirus-modified DCs was superior to that of DCs grown by conventional methods. Lentivirus-modified DCs displayed efficient antigen-specific, MHC class I-restricted stimulation of autologous CD8+ T cells, as shown by IFN-gamma production and CTL assays. DCs coexpressing GM-CSF and IL-4 could be kept metabolically active and viable in culture for 14 days in the absence of exogenously added growth factors, unlike conventionally produced DCs. Coexpression of FLT3 ligand did not improve the viability, expansion, or immunologic performance of lentivirus-modified DCs. This article demonstrates the proof-of-concept to genetically convert monocytes to DC-type antigen-presenting cells with lentiviral vectors.  相似文献   

16.
Dendritic cells (DCs) are effective in stimulating and controlling the outcome of T cell responses. Human immunodeficiency virus type 1-based lentiviral vectors can achieve sustained transduction of genes/antigens in dividing and nondividing cells, thus representing a candidate vector for stable expression of antigens in DCs. We previously established conditions for transduction of purified cytokine mobilized rhesus CD34(+) cells in vitro, and transplantation of the autologous transduced cells in a nonhuman primate model in vivo. In the present study, we transplanted DCs derived from EGFP-transduced CD34(+) cells into nonmyeloablated rhesus macaques. Transplantation of DCs stably expressing EGFP into autologous animals induces persistent, long-lived (up to 100 weeks) EGFP-specific T cell responses. Of note, no humoral responses against EGFP are detected in the transplanted animals. These studies provide, to our knowledge, the first demonstration that lentiviral transduction of CD34(+) progenitor cells subsequently differentiated to DCs is capable of priming a specific T cell response in a nonhuman primate in vivo. Taken together, our data provide formal in vivo evidence that lentivirus-transduced dendritic cells represent a potential approach in eliciting cellular immune responses in primates.  相似文献   

17.
Lentiviral vectors have turned out to be an efficient method for stable gene transfer in vitro and in vivo. Not only do fields of application include cell marking and tracing following transplantation in vivo, but also the stable delivery of biological active proteins for gene therapy. A variety of cells, however, need immediate transplantation after preparation, for example, to prevent cell death, differentiation or de-differentiation. Although these cells are usually washed several times following lentiviral transduction, there may be the risk of viral vector shuttle via transplanted cells resulting in undesired in vivo transduction of recipient cells. We investigated whether infectious lentiviral particles are transmitted via ex vivo lentivirally transduced cells. To this end, we explored potential viral shuttle via ex vivo lentivirally transduced cardiomyocytes in vitro and following transplantation into the brain and peripheral muscle. We demonstrate that, even after extensive washing, infectious viral vector particles can be detected in cell suspensions. Those lentiviral vector particles were able to transduce target cells in transwell experiments. Moreover, transmitted vector particles stably transduced resident cells of the recipient central nervous system and muscle in vivo. Our results of lentiviral vector shuttle via transduced cardiomyocytes are significant for both ex vivo gene therapy and for lentiviral cell tracing, in particular for investigation of stem cell differentiation in transplantation models and co-cultivation systems.  相似文献   

18.
Intrakines, modified intracellular chemokines, offer a novel strategy to prevent cellular entry of HIV-1 by blocking the surface expression of HIV-1 co-receptors. To investigate potential clinical applications of the RANTES-intrakine, we explored the use of HIV-1-based lentiviral vectors for therapeutic gene transfer into T-lymphocytes. RANTES-intrakine genes can be efficiently transduced into primary human T-lymphocytes by lentiviral vectors, especially when human T-lymphocytes were stimulated with CD3 and CD28 antibodies. The transduced T cells showed decreased surface expression of the chemokine receptor CCR-5, as well as CCR-1 and CCR-3. This lentivirus-mediated approach to intrakine gene transfer protected human T-lymphocytes from infection by a variety of R5-tropic HIV-1 strains. A quantitative real-time PCR assay, developed to monitor cells for HIV entry and persistence, revealed persistent low copy numbers of proviral HIV DNA in RANTES intrakine-transduced T-lymphocytes during 3-week culture, suggesting that viruses produced from infected untransduced cell populations were unable to infect the surrounding transduced T-lymphocytes. We conclude that targeting HIV-1 co-receptors to block virus entry with lentiviral vectors is an attractive approach to the control of HIV-1 infection.  相似文献   

19.
We describe an HIV-based lentiviral vector that expresses a 1-kb antisense mRNA directed against the HIV-1 mRNAs containing env sequences. The expression of antisense env mRNAs (envAS) does not inhibit the synthesis of p24 expressed from the HIV-1 helper plasmid used to package the vector, as this helper has a deletion in the env gene. This allows the production of high-titer VSV-G pseudotyped lentiviral particles. In challenge experiments using unselected populations of SupT1 cells transduced with this vector, a complete inhibition of HIV-1 replication was observed for long periods of in vitro culture, even at high HIV-1 infectious doses. The potent inhibition of HIV-1 replication by this vector correlated with a low occurrence of mobilization of the vector to previously untransduced cells. The infectivity of the wild-type HIV-1 that escapes inhibition was highly inhibited, suggesting that the vector is providing HIV-1 inhibition of replication not only due to its antisense effect but also by competing for encapsidation and mobilization to noninfected cells.  相似文献   

20.
MUC1 protein is widely expressed on various human cancer cells and has a specific highly glycosylated core structure with multiple tandem repeats, which may include an immunogenic peptide sequence. The potency of MUC1 protein to induce human histocompatibility leukocyte antigen-class I-restricted cytotoxic T-lymphocyte (CTL) induction remains to be fully clarified in human beings. In the current study, we made MUC1-expressing human dendritic cells (DCs) using recombinant adenovirus vector. Adenovirus vector plasmid containing human MUC1 cDNA, pAdHM4-MUC1 was constructed using in vitro ligation with a shuttle vector, pHMCMV5. Adenovirus vector expressing MUC1 was generated by the transfection of PacI-digested recombinant vector plasmid into 293 cells. Human blood DCs were obtained from 7-day culture of monocytes with recombinant human (rh) granulocyte-macrophage (GM) colony-stimulating factor (CSF) and (rh)interleukin (IL)-4. Then, 1 x 10(6) DCs were incubated with viral supernatant at a multiplicity of infection of 200 for 24 h in the presence of rhGM-CSF and rhIL-4. Flow cytometric analysis showed that 30% to 40% of the transduced DCs expressed MUC I protein; by contrast, nontransduced or transduced DCs with mock virus expressed only small amounts of MUC1 protein. Adenovirus-mediated MUC1 gene transduction into DCs had no significant effect on DC surface marker expressions or functions such as mixed leukocyte reaction. Furthermore, MUCI-specific CD8+ CTLs could be induced from healthy donor blood lymphocytes using MUC1-expressing DCs as stimulators. These results suggested that MUC1 gene-transduced DCs are a functional and potent tool for triggering a CTL response against MUC1 cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号