首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: It has been generally considered that supraspinal morphine activates the serotonergic descending inhibitory system and releases serotonin (5-hydroxytryptamine [5-HT]) in the spinal cord, producing antinociception through activation of 5-HT receptors. The involvement of a spinal gamma-aminobutyric acid-mediated (GABAergic) system is also suggested in supraspinal morphine antinociception. It has been reported that spinal GABAergic system contributes to 5-HT3 receptor-mediated antinociception. In this study, the authors investigated the contribution of spinal 5-HT3 receptor and the GABAergic system in the intracerebroventricular morphine-induced antinociception. METHODS: Male Sprague-Dawley rats were used. Using the spinal microdialysis method, concentrations of 5-HT and GABA were measured after intracerebroventricular morphine administration. The effect of intracerebroventricular naloxone or spinal perfusion of a selective 5-HT3 receptor antagonist 3-tropanyl-indole-3-carboxylate methiodide on the spinal release of GABA after intracerebroventricular morphine administration was also examined. In the behavioral study, involvement of 5-HT3 receptors or GABAA receptors in the intracerebroventricular morphine-induced antinociceptive effect was investigated using the tail-flick test. RESULTS: Intracerebroventricular morphine (40 nmol) significantly increased spinal GABA and 5-HT release. Evoked spinal GABA release was reversed by intracerebroventricular naloxone (40 nmol) or spinal perfusion of 3-tropanyl-indole-3-carboxylate methiodide (1 mm). In the behavioral study, intracerebroventricular morphine produced significant antinociception. Intrathecal administration of either GABAA receptor antagonist bicuculine or 3-tropanyl-indole-3-carboxylate methiodide but not vehicle reversed the morphine-induced antinociceptive effect. CONCLUSION: Intracerebroventricular morphine evokes spinal GABA release via the activation of 5-HT3 receptors in the spinal cord, resulting in antinociceptive effect.  相似文献   

2.
The antinociceptive effects of an intrathecally administered benzodiazepine agonist midazolam, alone and in combination with morphine, were examined in the rat by using the tail-flick test. The duration of antinociceptive effect produced by midazolam was significantly less (P less than 0.05) than that produced by morphine. Low doses of midazolam (10 micrograms) and morphine (10 micrograms) produced a synergistic effect in prolonging antinociceptive effect. However, at higher doses (20 or 30 micrograms), these drugs reduced the extent of antinociception produced by each other. Naloxone administration prevented antinociception produced by these drugs, indicating interactions between midazolam and opioid receptors. Midazolam had dual effects on the binding of opioid ligands to the spinal opioid receptors. At low dose, it potentiated the displacement of [3H]naloxone by morphine. At higher doses, midazolam inhibited the binding of opioid ligands to their spinal receptors in the following order: kappa greater than delta greater than mu. These results indicate that differential antinociceptive effects of midazolam on morphine-induced antinociception involve interaction of this benzodiazepine with spinal opioid receptors.  相似文献   

3.
BACKGROUND: The study hypothesizes that nitrous oxide (N(2)O) releases opioid peptide in the brain stem, which results in inhibition of gamma-aminobutyric acid-mediated (GABAergic) neurons that tonically inhibit the descending noradrenergic inhibitory neurons (DNIN), resulting in activation of DNIN. In the spinal cord, activation of DNIN leads to the release of norepinephrine, which inhibits nociceptive processing through direct activation of alpha2 adrenoceptor and indirect activation of GABAergic neurons through alpha1 adrenoceptor. Arising from this hypothesis, it follows that GABAergic neurons will modulate the antinociceptive effect of N(2)O in diametrically opposite directions at supraspinal and spinal levels. The authors have tested this tenet and further examined the effect of midazolam, a GABA-mimetic agent, on N(2)O-induced antinociceptive effect. METHODS: Adult male Fischer rats were administered muscimol (GABA(A) receptor agonist) intracerebroventricularly (icv), gabazine (GABA(A) receptor antagonist) intrathecally (intrathecal), or midazolam intraperitoneally (intraperitoneal). Fifteen minutes later, they were exposed to air or 75% N(2)O and were subjected to the plantar test after 30 min of gas exposure. In some animals administered with midazolam, gas exposure was continued for 90 min, and the brain and spinal cord were examined immunohistochemically. RESULTS: The N(2)O-induced antinociceptive effect, which was attenuated by icv muscimol, intrathecal gabazine, and intraperitoneal midazolam. Midazolam inhibited N(2)O-induced c-Fos expression (a marker of neuronal activation) in the pontine A7 and spinal cord. CONCLUSIONS: The GABAergic neurons modulate the antinociceptive effect of N(2)O in opposite directions at supraspinal and spinal levels. The pronociceptive effects of enhancement at the supraspinal GABAergic site predominate in response to systemically administered midazolam.  相似文献   

4.
BACKGROUND AND OBJECTIVE: The clinical practice of spinal morphine administration for pain relief is based on observations in animals that opioid receptors exist in the spinal cord and intrathecal injections of opioids in those species (mostly rats) lead to antinociceptive effects. Clinicians are well aware that administration of spinal opioids is associated with side-effects, such as nausea and respiratory depression, that indicate supraspinal spread of the drug administered. Those observations call into question how much of the observed pain relief is due to action of the drug in the brain. This study investigated the spinal cord actions of morphine given intrathecally to rats in a model that allows investigation of drug-receptor interaction at the spinal cord level. Experiments were performed on male Wistar rats with chronically implanted lumbar subarachnoid catheters. METHODS: Nociceptive thresholds were measured in rats given morphine intrathecally alone and in combination with intrathecal injections of selective opioid receptor antagonists: beta-funaltrexamine (mu), naltrindole (delta) and nor-binaltorphimine (kappa). RESULTS: Intrathecal morphine caused dose-related antinociceptive effects that were reversed totally by naloxone. Intrathecal beta-funaltrexamine and naltrindole did not reverse the effects of intrathecal morphine. However, intrathecal nor-binaltorphimine did reverse the electrical current threshold effects of morphine but not tail flick latency. CONCLUSIONS: Antinociception following intrathecal morphine involves spinal and supraspinal opioid receptors. The tail flick effect described in rat experiments involves actions at opioid receptors in the brain that override any action that may be caused by combination of morphine with mu-opioid receptors in the spinal cord.  相似文献   

5.
Background: The study hypothesizes that nitrous oxide (N2O) releases opioid peptide in the brain stem, which results in inhibition of [gamma]-aminobutyric acid-mediated (GABAergic) neurons that tonically inhibit the descending noradrenergic inhibitory neurons (DNIN), resulting in activation of DNIN. In the spinal cord, activation of DNIN leads to the release of norepinephrine, which inhibits nociceptive processing through direct activation of [alpha]2 adrenoceptor and indirect activation of GABAergic neurons through [alpha]1 adrenoceptor. Arising from this hypothesis, it follows that GABAergic neurons will modulate the antinociceptive effect of N2O in diametrically opposite directions at supraspinal and spinal levels. The authors have tested this tenet and further examined the effect of midazolam, a GABA-mimetic agent, on N2O-induced antinociceptive effect.

Methods: Adult male Fischer rats were administered muscimol (GABAA receptor agonist) intracerebroventricularly (icv), gabazine (GABAA receptor antagonist) intrathecally (intrathecal), or midazolam intraperitoneally (intraperitoneal). Fifteen minutes later, they were exposed to air or 75% N2O and were subjected to the plantar test after 30 min of gas exposure. In some animals administered with midazolam, gas exposure was continued for 90 min, and the brain and spinal cord were examined immunohistochemically.

Results: The N2O-induced antinociceptive effect, which was attenuated by icv muscimol, intrathecal gabazine, and intraperitoneal midazolam. Midazolam inhibited N2O-induced c-Fos expression (a marker of neuronal activation) in the pontine A7 and spinal cord.  相似文献   


6.
This study was undertaken to evaluate the antinociceptive interactions of alpha 2 adrenergic and opiate receptors at the spinal level. Morphine and clonidine were administered intrathecally (i.t.) by lumbar puncture to rats either alone or in the presence of either i.t. yohimbine, an alpha 2 antagonist, or systemic naloxone, an opioid antagonist. The effect of tolerance to systematically administered morphine on responses to i.t. morphine and clonidine was examined in mice. Antinociception was determined by observing the response to a clamp applied to the tail (Haffner test) in mice and by the tail-flick test in rats; log dose-response curves for antinociception were generated for morphine, clonidine, and each drug combination. Morphine and clonidine both produced dose-dependent antinociception when given i.t. in both species. The i.t. administration of yohimbine attenuated the antinociceptive effect of both clonidine and morphine, but naloxone attenuated only the response to morphine. Further, a sub-analgetic dose of i.t. clonidine potentiated the effect of i.t. morphine. In morphine-tolerant mice, i.t. morphine was not efficacious whereas clonidine retained full efficacy, although potency was slightly diminished. Thus, it appears that alpha 2 adrenoceptor-mediated antinociception is independent of opiate receptor mechanisms. Clinical use of intrathecal combinations of alpha 2 adrenergic and opiate receptor agonists to increase analgesia and use of intrathecal alpha 2 agonists for pain relief in patients tolerant to opiates might deserve evaluation.  相似文献   

7.
BACKGROUND: The pharmacology of oxycodone is poorly understood despite its growing clinical use. The discrepancy between its good clinical effectiveness after systemic administration and the loss of potency after spinal administration led the authors to study the pharmacodynamic effects of oxycodone and its metabolites using in vivo and in vitro models in rats. METHODS: Male Sprague-Dawley rats were used in hot-plate, tail-flick, and paw-pressure tests to study the antinociceptive properties of morphine, oxycodone, and its metabolites oxymorphone and noroxycodone. Mu-opioid receptor agonist-stimulated GTPgamma[S] autoradiography was used to study G-protein activation induced by morphine, oxycodone, and oxymorphone in the rat brain and spinal cord. Spontaneous locomotor activity was measured to assess possible sedation or motor dysfunction. Naloxone and the selective kappa-opioid receptor antagonist nor-binaltorphimine were used to study the opioid receptor selectivity of the drugs. RESULTS: Oxycodone showed lower efficacy and potency to stimulate GTPgamma[S] binding in the spinal cord and periaqueductal gray compared with morphine and oxymorphone. This could relate to the fact that oxycodone produced only weak naloxone-reversible antinociception after intrathecal administration. It also suggests that the metabolites may have a role in oxycodone-induced analgesia in rats. Intrathecal oxymorphone produced strong long-lasting antinociception, whereas noroxycodone produced antinociception with very high doses only. Subcutaneous administration of oxycodone and oxymorphone produced thermal and mechanical antinociception that was reversed by naloxone but not by nor-binaltorphimine. Oxymorphone was more potent than oxycodone, particularly in the hot-plate and paw-pressure tests. CONCLUSIONS: The low intrathecal potency of oxycodone in rats seems be related to its low efficacy and potency to stimulate mu-opioid receptor activation in the spinal cord.  相似文献   

8.
In studies on the clinical management of pain, a combination of morphine and bupivacaine is more effective than either of them alone in producing analgesia. The present study was designed to examine the effect of bupivacaine on morphine-induced antinociception as measured by the tail-flick test in the rat. To understand the basis of this interaction, the effect of bupivacaine on the binding of opioid ligands to their spinal opioid receptors in the rat also was investigated. Intrathecal administration of 5, 20, or 50 micrograms bupivacaine significantly potentiated the antinociception produced by intrathecal administration of 10 micrograms morphine. There was more than a 10-fold increase in the area under the curve (AUC0-60 min) for morphine-induced antinociception in the presence of bupivacaine. At higher doses of morphine (20 micrograms), bupivacaine was not very effective, increased AUC0-60 min for antinociception by only about 25%, and in fact significantly decreased the total duration of morphine-induced antinociception. Radioreceptor assays done with rat spinal cord membrane preparations revealed that bupivacaine (0.1-10 nM) inhibited the binding of specific ligands to mu-receptors but increased the binding to delta- and kappa-receptors. The authors conclude that the facilitation of morphine-induced antinociception by bupivacaine may be associated with a conformational change in the spinal opioid receptors induced by bupivacaine. Although increasing the binding of morphine to kappa-opioid receptors is the most prominent effect, the binding of opioid ligands to all spinal receptors is inhibited at high doses of bupivacaine.  相似文献   

9.
Background: The pharmacology of oxycodone is poorly understood despite its growing clinical use. The discrepancy between its good clinical effectiveness after systemic administration and the loss of potency after spinal administration led the authors to study the pharmacodynamic effects of oxycodone and its metabolites using in vivo and in vitro models in rats.

Methods: Male Sprague-Dawley rats were used in hot-plate, tail-flick, and paw-pressure tests to study the antinociceptive properties of morphine, oxycodone, and its metabolites oxymorphone and noroxycodone. [mu]-Opioid receptor agonist-stimulated GTP[gamma][35S] autoradiography was used to study G-protein activation induced by morphine, oxycodone, and oxymorphone in the rat brain and spinal cord. Spontaneous locomotor activity was measured to assess possible sedation or motor dysfunction. Naloxone and the selective [kappa]-opioid receptor antagonist nor-binaltorphimine were used to study the opioid receptor selectivity of the drugs.

Results: Oxycodone showed lower efficacy and potency to stimulate GTP[gamma][35S] binding in the spinal cord and periaqueductal gray compared with morphine and oxymorphone. This could relate to the fact that oxycodone produced only weak naloxone-reversible antinociception after intrathecal administration. It also suggests that the metabolites may have a role in oxycodone-induced analgesia in rats. Intrathecal oxymorphone produced strong long-lasting antinociception, whereas noroxycodone produced antinociception with very high doses only. Subcutaneous administration of oxycodone and oxymorphone produced thermal and mechanical antinociception that was reversed by naloxone but not by nor-binaltorphimine. Oxymorphone was more potent than oxycodone, particularly in the hot-plate and paw-pressure tests.  相似文献   


10.
The ventrolateral orbital cortex (VLO) is part of an endogenous analgesic system, consisting of the spinal cord-thalamic nucleus submedius-VLO periaqueductal gray (PAG)-spinal cord loop. The present study examined morphological connections of GABAergic (gamma-aminobutyric acidergic) neurons and serotonergic projection terminals from the dorsal raphe nucleus (DR), as well as the relationship between GABAergic terminals and VLO neurons projecting to the PAG, by using anterograde and retrograde tracing combined with immunofluorescence, immunohistochemistry, and electron microscopy methods. Results indicate that the majority (93%) of GABAergic neurons in the VLO also express the 5-HT(1A) (5-hydroxytryptamine 1A) receptor, and serotonergic terminals originating from the DR nucleus made symmetrical synapses with GABAergic neuronal cell bodies and dendrites within the VLO. GABAergic terminals also made symmetrical synapses with neurons expressing GABA(A) receptors and projecting to the PAG. These results suggest that a local neuronal circuit, consisting of 5-HTergic terminals, GABAergic interneurons, and projection neurons, exists in the VLO, and provides morphological evidence for the hypothesis that GABAergic modulation is involved in 5-HT(1A) receptor activation-evoked antinociception.  相似文献   

11.
The antinociceptive interaction on the tail flick (TF) and hot plate (HP) tests between opioid analgesics and medetomidine after intravenous (iv) or intrathecal administration were examined by isobolographic analysis. Male Sprague-Dawley rats received fixed ratios of medetomidine to morphine, fentanyl, and meperidine of 1:10 and 1:30, 10:1, and 1:3, respectively, by iv administration or 10:1, 3:1 and 10:1, and 1:3 by intrathecal administration, respectively. Data were expressed as the percentage maximal possible effect (%MPE). The A50 (dose producing 50% MPE) for each drug or drug combination was determined from the dose-response curve. Isobolographic analysis revealed that the effect of medetomidine combined with fentanyl, morphine, or meperidine was additive after iv administration. The intrathecal administration of combinations of medetomidine with the opioids produced a synergistic antinociceptive effect in the TF but not HP test. These data confirmed that the interaction between medetomidine and opioids in producing antinociception may be additive or synergistic, depending on the route of administration, drug ratio administered, and level of processing of the nociceptive input (i.e., spinal vs. supraspinal). Moreover, these results were consistent with a spinal role for alpha-2 adrenoceptors in mediating antinociception. The authors suggest that the interaction between the opioid and alpha-2 adrenergic receptors occurs within the spinal cord.  相似文献   

12.
We sought to analyze the mode of interaction of spinal morphine with systemic morphine or buprenorphine, administered in a wide range of antinociceptive doses. The study was performed on Sprague-Dawley rats by using a plantar stimulation test and isobolographic and fractional analyses of drug interaction. The isobolographic and fractional analyses demonstrated that intrathecal morphine interacted with subcutaneous morphine in a synergistic manner while producing a 50% or 75% antinociceptive effect. The sum of D(75) fractions was more than that for 50% antinociception, suggesting a less dramatic interaction. The combination with a maximal relative dose of systemic morphine (0.66:1) showed a maximal degree of supraadditivity. The interaction between spinal morphine and systemic buprenorphine was similar to that of morphine/morphine, although the supra-additivity was not as pronounced. For the doses that produced a 50% antinociceptive effect, a synergistic interaction was observed only for the combination with a morphine/buprenorphine ratio of 1.33:1. When the relative amount of intrathecal morphine was decreased or increased, the effect became additive. At the doses that produced 75% antinociception, both combinations of morphine and buprenorphine demonstrated supraadditive interaction. Implications: Spinal morphine interacts with systemic morphine or buprenorphine in asupraadditive manner. This mode of interaction most probably results from the simultaneous activation of spinal and supraspinal antinociceptive systems.Supraspinal structures played a more important role in the antinociceptive effect of experimental combinations than structures of the spinal cord.  相似文献   

13.
Magnesium sulfate potentiates morphine antinociception at the spinal level   总被引:7,自引:0,他引:7  
Intrathecal magnesium sulfate coinfusion with morphine increases antinociception in normal rats; however, because magnesium also delays the onset of tolerance, it is not clear whether this additional antinociception is a result of potentiated analgesia or tolerance abatement. We examined the antinociceptive interaction of intrathecal (IT) bolus magnesium sulfate and morphine in morphine naive rats and those with mechanical allodynia after a surgical incision. After intrathecal catheter implantation, rats were given preinjections of magnesium or saline, followed by injections of morphine or saline. In morphine na?ve rats, IT bolus magnesium sulfate 281 and 375 microg followed by IT morphine 0.25 or 0.5 nmol enhanced peak antinociception and area under the response versus time curve two-to-three-fold in the tail-flick test as compared with morphine alone. Likewise, in rats with incisional pain, IT bolus magnesium sulfate 188 and 375 microg followed by morphine 0.5 nmol reduced mechanical allodynia, whereas morphine 0.5 nmol alone did not. This study suggests that IT magnesium sulfate potentiates morphine at a spinal site of action. Implications: Magnesium sulfate potentiates morphine analgesia when coadministered intrathecally in normal rats, and in an animal model of mechanical allodynia after a surgical incision. These results suggest that intrathecal administration of magnesium sulfate may be a useful adjunct to spinal morphine analgesia.  相似文献   

14.
Purpose  Intrathecal administration of serotonin (5-HT) is antinociceptive through the involvement of spinal cord γ-aminobutyric acid (GABA) receptors. Therefore, 5-HT would interact with the GABA agonist, midazolam, which is well known to exert spinally mediated antinociception in the spinal cord. The present study investigated the antinociceptive interaction between spinally administered 5-HT and midazolam, using two different rat nociceptive models. Methods  Sprague-Dawley rats with lumbar intrathecal catheters were tested for their thermal tail withdrawal response and paw flinches induced by formalin injection after the intrathecal administration of midazolam or 5-HT, or the midazolam/ HT combination. The effects of the combination were tested by isobolographic analysis, using the combination of each 1, 1/2, 1/4, 1/8, and 1/16 of the 50% effective dose (ED50). The total fractional dose was calculated. Behavioral side effects were also examined. Results  5-HT alone and midazolam alone both showed dose-dependent antinociception in both the tail flick test and the formalin test. The ED50 of the combination was not different from the calculated additive value either in the tail flick test or in phase 2 of the formalin test, but it was significantly smaller than the calculated additive value in phase 1 of the formalin test. The total fractional dose value was 0.90 in the tail flick test, 0.093 in phase 1 of the formalin test, and 1.38 in phase 2 of the formalin test. The agitation, allodynia, or motor disturbance observed with either agent alone was not seen with the combination treatment. Conclusion  The antinociceptive effects of intrathecal midazolam and 5-HT were additive on thermal acute and inflammatory facilitated stimuli, and synergistic on inflammatory acute stimulation.  相似文献   

15.
Background: The authors recently established that the analgesic actions of the inhalation anesthetic nitrous oxide were mediated by noradrenergic bulbospinal neurons and spinal [alpha]2B adrenoceptors. They now determined whether noradrenergic brainstem nuclei and descending spinal pathways are responsible for the antinociceptive actions of the inhalation anesthetic isoflurane, and which [alpha] adrenoceptors mediate this effect.

Methods: After selective lesioning of noradrenergic nuclei by intracerebroventricular application of the mitochondrial toxin saporin coupled to the antibody directed against dopamine [beta] hydroxylase (D[beta]H-saporin), the antinociceptive action of isoflurane was determined. Antagonists for the [alpha]1 and [alpha]2 adrenoceptors were injected at spinal and supraspinal sites in intact and spinally transected rats to identify the noradrenergic pathways mediating isoflurane antinociception. Null mice for each of the three [alpha]2-adrenoceptor subtypes ([alpha]2A, [alpha]2B, and [alpha]2C) and their wild-type cohorts were tested for their antinociceptive response to isoflurane.

Results: Both D[beta]H-saporin treatment and chronic spinal transection enhanced the antinociceptive effects of isoflurane. The [alpha]1-adrenoceptor antagonist prazosin also enhanced isoflurane antinociception at a supraspinal site of action. The [alpha]2-adrenoceptor antagonist yohimbine inhibited isoflurane antinociception, and this effect was mediated by spinal [alpha]2 adrenoceptors. Null mice for the [alpha]2A-adrenoceptor subtype showed a reduced antinociceptive response to isoflurane.  相似文献   


16.
Sasaki M  Obata H  Saito S  Goto F 《Anesthesia and analgesia》2003,96(4):1072-8, table of contents
Type 2 serotonin (5-hydroxytryptamine [5-HT](2)) receptors in the spinal cord have been reported to mediate antinociception using pain threshold tests, but little is known about the actions of spinal 5-HT(2) receptors in sustained pain. In rats, we examined antinociceptive effects of the intrathecal administration of a 5-HT(2A/2C) receptor agonist, alpha-methyl-5-HT maleate (alpha-m-5-HT), using the formalin test and the chronic constriction injury (CCI) model. An intrathecal catheter was implanted for injection of drugs. In the formalin test, flinches were counted from Minute 1 to 2 and Minute 5 to 6 (Phase 1) and then for 1-min periods at 5-min intervals from 10 to 60 min (Phase 2). In rats with CCI, hind paw withdrawal latency after thermal stimulation was measured. In the formalin test, intrathecal administration of alpha-m-5-HT (1 to 100 microg) dose-dependently suppressed the number of flinches in both Phases 1 and 2. In the CCI model, intrathecally administered alpha-m-5-HT (10 to 100 microg) attenuated thermal hyperalgesia in a dose-dependent manner. These effects were reversed by intrathecal pretreatment with a 5-HT(2A/2C) antagonist, ketanserin (30 microg), or a muscarinic receptor antagonist, atropine (30 microg). These findings suggest that spinal 5-HT(2A/2C) receptors mediate antinociception in inflammatory pain and neuropathic pain, and the muscarinic receptors contribute to this action. IMPLICATIONS: Activation of spinal 5-hydroxytryptamine(2A/2C) receptors mediate antinociception in rat-sustained pain models such as inflammatory pain and neuropathic pain, and spinal muscarinic receptors are involved in this action.  相似文献   

17.
Epidural clonidine produces antinociception, but not hypotension, in sheep   总被引:12,自引:0,他引:12  
Intrathecally administered clonidine produces analgesia, but also produces hypotension. To assess the effects of epidural administration, the authors inserted lumbar epidural catheters in seven nonpregnant ewes, and injected, on separate days, clonidine (50-750 mcg), morphine (5-10 mg), and a clonidine-morphine combination (clonidine 150 mcg + morphine 5 mg). Clonidine produced dose-dependent antinociception and sedation, with the lowest maximally effective antinociceptive dose being 300 mcg. Morphine produced less intense antinociception than clonidine, and did not potentiate clonidine's effect. Antinociception, but not sedation, following clonidine injection was reversed by epidural injection of the alpha 2-adrenergic antagonist, idazoxan. Epidurally administered naloxone and prazosin did not reverse clonidine's antinociceptive effect, nor did intravenously administered idazoxan. Epidurally administered clonidine did not decrease blood pressure or heart rate or affect arterial blood gas tensions or spinal cord histology. These data suggest that epidurally administered clonidine produces analgesia by a local, alpha 2-adrenergic mechanism. In sheep, epidurally administered clonidine does not produce hypotension.  相似文献   

18.
BACKGROUND: It has been reported that opioid antinociceptive effects are enhanced in animal models of inflammation, but it remains unclear whether this sensitization to morphine is related to predominant central or peripheral increased effects. METHODS: The authors compared the behavioral effects of intraplantar and intravenous morphine and naloxone in a rat model of repeated acute carrageenan-induced inflammation in which enhanced responses to noxious stimuli result from sensitization in peripheral tissues or central sensitization. The antinociceptive effects of intraplantar morphine (50, 75, 100, 150, and 200 microg), intravenous morphine (0.3, 0.6, and 1 mg/kg), and the pronociceptive effects of intraplantar naloxone methiodide (150 microg) and intravenous naloxone (1 mg/kg) against noxious pressure (vocalization thresholds to paw pressure) in rats were assessed 3 h after one or two carrageenan plantar injections performed 7 days apart. RESULTS: After the first carrageenan injection, intraplantar and intravenous morphine produced significant increase of vocalization thresholds to paw pressure in inflamed but not in noninflamed paws. After the second carrageenan injection, the antinociceptive effects of intraplantar morphine were significantly reduced compared with those obtained after the first carrageenan injection, whereas effects of intravenous morphine were significantly enhanced and present in both hind paws. Intravenous naloxone demonstrated similar pronociceptive patterns after the first and second carrageenan injection. Intraplantar naloxone methiodide produced pronociceptive effects in inflamed hind paw that were significantly enhanced after the second carrageenan injection. CONCLUSIONS: When inflammation is enhanced by recurrent stimulations, the antinociceptive effects of systemic morphine are enhanced. This increase is more likely related to central than peripheral sites of action, beyond endogenous opioid system activation.  相似文献   

19.
To clarify the supraspinal and spinal actions of a cholinergic agonist, carbachol, and an opioid, oxycodone, we studied their antinociceptive and behavioral effects when administered into brainstem medial pontine reticular formation (mPRF) or spinal subarachnoid space with or without pretreatment of muscarinic receptor subtype antagonist. Sprague-Dawley rats were implanted with a 24-gauge stainless steel guide cannula into the mPRF and chronically implanted with a lumbar intrathecal catheter. Antinociception was tested using tail flick latency, motor coordination was evaluated by the rotarod test, and overt sedation was assessed using a behavioral checklist. Carbachol (0.5-4.0 microg) administered into the mPRF produced significant dose- and time-dependent antinociception, sedation, and motor dysfunction. These were completely blocked by pretreatment with atropine and the M(2) muscarinic antagonist, methoctramine, and partially blocked by pretreatment with M(1) pirenzepine but not with M(3) p-fHHSID: Oxycodone administered into the mPRF did not produce such effects. Spinal carbachol and oxycodone produced antinociception without any behavioral effects; their antinociceptive effects were completely blocked by pretreatment with atropine and M(2) antagonist. These results suggest that the antinociceptive action of carbachol is mediated by muscarinic cholinergic receptor activation, especially by M(2) receptor subtype in mPRF and spinal cord, and that although oxycodone seems unlikely to affect the cholinergic transmission of mPRF, spinal oxycodone-induced analgesia is at least partly mediated via the activation of M(2) receptor subtype at the spinal cord. IMPLICATIONS: Carbachol-induced antinociception and sedation is mediated with the activation of M(2) muscarinic receptors. Oxycodone administered into brainstem medial pontine reticular formation did not cause any antinociceptive or behavioral effects, but its spinal administration produced a significant antinociception via M(2) muscarinic receptor activation  相似文献   

20.
Previous reports indicate that there may be an interaction between gamma-aminobutyric acid receptors and opioid receptors systems within the spinal cord, the antinociceptive effects of which have not been elucidated. We examined the effects of intrathecally coadministered morphine and muscimol or baclofen on somatic and visceral antinociception in rats. The tail flick (TF) test and colorectal distension (CD) test were used to assess somatic and visceral antinociceptive effects, respectively. Motor function was also assessed. The measurements were performed for 180 min after the intrathecal administration of morphine (0.1-10 micrograms), muscimol (0.2-10 micrograms), baclofen (0.03-1 microgram), combination of morphine and muscimol or baclofen, or saline. Morphine, muscimol, or baclofen increased both TF latency and CD threshold in a dose-dependent fashion. Although morphine 0.1 microgram, muscimol 0.2 microgram, or baclofen 0.03 microgram alone did not significantly increase TF latency and CD threshold, the combination of morphine 0.1 microgram and muscimol 0.2 microgram or baclofen 0.03 microgram significantly increased both TF latency and CD threshold. The coadministration of muscimol or baclofen increased the antinociceptive effects of morphine in intensity and duration. None of the rats showed motor dysfunction after the coadministration of morphine and muscimol 0.2 microgram, although muscimol produced motor paralysis of the lower limbs in a dose-dependent fashion. Those results suggest a clinical relevance of the coadministration of mu-opioids and GABA receptor agonists for pain control. Implications: We examined the antinociceptive interaction between morphine and muscimol or baclofen at the spinal level in rats. Intrathecal muscimol or baclofen potentiated both somatic and visceral antinociceptive effects of morphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号