首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Y chromosome carries several spermatogenesis genes distributed in three regions: AZFa, AZFb and AZFc. Microdeletions in these regions have been seen in 10% of sterile males with azoospermia or oligozoospermia, the most frequent of them being characterized by a complete deletion of AZFc region. A partial AZFc deletion named gr/gr has been singled out as a risk factor for spermatogenic failure. However, other authors have diagnosed it as a polymorphic deletion with no clinical relevance. We decided to investigate the association of gr/gr deletion and infertility in Brazilian males. We analysed 350 individuals (110 azoospermic, 122 fertile and 118 presumably fertile) and observed 12 g/gr deletions: five in infertile men (4.5%), three among fertile males (2.5%) and four in probably fertile individuals (3.4%). These differences were not statistically significant. Then, we decided to ascertain whether the clinical impact of the gr/gr deletion was associated with the type of Y chromosome. We have identified Y-chromosome haplogroups using 22 unique event polymorphisms (UEPs). Among the individuals with the gr/gr deletion, we found haplogroups R, K*, F*, E1, E3b2 and E3b*, all of which are common in white Brazilian males, and none revealed a particular association with infertility. Taken together, these results show no evidence of association between the occurrence of gr/gr deletion and male infertility.  相似文献   

2.
The Azoospermia Factor c (AZFc) region on the Y chromosome long arm is one of the least stable regions in the human genome. It consists almost entirely of very long repeats and is prone to rearrangement. Numerous structures at AZFc have been identified, and some of them have been reported to be associated with male infertility. We screened 580 Han Chinese in Taiwan for AZFc deletion and duplication using three PCR assays, and characterized the DAZ genes in selected subjects with additional Southern analyses. About 9.5% of our subjects have AZFc partial deletion, 2.8% have partial deletion followed by duplication, and 1.7% have partial duplication. The overall rearrangement frequencies vary significantly between different Y chromosome haplogroups (Yhgs), ranging from 2.9% in O3e to 100% in N and Q. All individuals in Yhg-N lack the sY1191 marker, but one out of three of them actually have four DAZ genes, indicating further duplication after the b2/b3 deletion. Our additional screening of 142 oligospermic men and 107 fertile controls found no significant difference in the frequencies of the gr/gr and the b2/b3 deletion. However, the frequency of AZFc partial duplication in the infertile group (7.0%) was significantly higher than that in the fertile control group (0.9%) and the general Taiwanese population (1.7%). Our results indicate that AZFc partial deletion and partial duplication are common polymorphisms in Han Chinese, and that the AZFc partial duplication, but not the AZFc partial deletion, is a risk factor for male infertility in the Taiwanese population.  相似文献   

3.
Submicroscopic deletions of the Y chromosome and polymorphisms of the androgen receptor (AR) gene in the X chromosome have been observed in men with defective spermatogenesis. To further define the subregions/genes in the Y chromosome causing male infertility and its relationship to polymorphisms of the AR polyglutamine tract, we screened the genomic DNA of 202 subfertile males and 101 healthy fertile controls of predominantly Chinese ethnic origin. Y microdeletions were examined with 16 sequence-tagged site (STS) probes, including the RBM and DAZ genes, spanning the AZFb and AZFc subregions of Yq11, and related to the size of trinucleotide repeat encoding the AR polyglutamine tract. Y microdeletions were detected and confirmed in three out of 44 (6.8%) of azoospermic and three out of 86 (3.5%) severely oligozoospermic patients. No deletions were detected in any of the patients with sperm counts of >0.5 x 10(6)/ml, nor in any of the 101 fertile controls. All six affected patients had almost contiguous Y microdeletions spanning the entire AZFc region including the DAZ gene. The AZFb region, containing the RBM1 gene, was intact in five of the six subjects. Y deletions were not found in those with long AR polyglutamine tracts. Our study, the first in a Chinese population, suggest a cause and effect relationship between Y microdeletions in the AZFc region (possibly DAZ), and azoospermia or near-azoospermia. Y microdeletions and long AR polyglutamine tracts appear to be independent contributors to male infertility.   相似文献   

4.
The Y chromosome carries several genes involved in spermatogenesis, which are distributed in three regions in the euchromatic part of the long arm, called AZFa (azoospermia factor a), AZFb, and AZFc. Microdeletions in these regions have been seen in 10-15% of sterile males with azoospermia or severe oligozoospermia. The relatively high de novo occurrence of these microdeletion events might be due to particular chromosome arrangements associated with certain Y chromosome haplogroups. To test whether there is any association between Y chromosome types and male infertility, we studied a sample of 84 Japanese oligozoospermic or azoospermic males. The patients were analyzed for the presence of Yq microdeletions and also typed with a battery of unique event polymorphisms (UEPs) to define their Y haplogroups. Six of the infertile patients presented likely pathological microdeletions detectable with the sequence tagged sites (STS) markers used. There was no significant association between Y chromosome haplogroups and the microdeletions. We also compared the Y haplogroup frequencies in our subset sample of 51 idiopathic azoospermia patients with 57 fertile control Japanese males, and did not observe any significant differences. Contrary to previous reports, our data suggest that Y microdeletions and other molecular events causally associated with male infertility in Japan occur independently of the Y chromosome background.  相似文献   

5.
The DAZLA (DAZ Like Autosomal) gene on human chromosome 3 shares a high degree of homology with the DAZ (Deleted in AZoospermia) gene family on the Y chromosome, a gene family frequently deleted in males with azoospermia or severe oligospermia. The involvement of both DAZ and DAZLA in spermatogenesis is suggested by their testis-specific expression and their homology with a Drosophila male infertility gene, boule. Whereas male infertility resulting from deletion of the DAZ genes on the Y chromosome occurs sporadically, that due to a defective DAZLA gene is expected to be inheritable. The fraction of males with idiopathic azoospermia or oligospermia that harbour mutations in the DAZLA gene remains unknown. As a prerequisite for mutation screening, the genomic structure of the DAZLA gene was elucidated and found to consist of 11 exons spanning 19 kh. The exon/intron boundaries are conserved between DAZ and DAZLA. The 5' end of both genes are hypomethylated in spermatozoa but not in leukocytes or placenta, consistent with the expression pattern of the genes. The genomic structure of DAZLA paves the way for mutation detection in families with autosomal recessive male infertility.   相似文献   

6.
Deletions of the AZFc interval of the human Y chromosome are found in >5% of male patients with idiopathic infertility and are associated with a severely reduced sperm count. The most common deletion type is large (>1 Mb) and removes members of the Y-borne testis-specific gene families of BPY2, CDY1, DAZ, PRY, RBMY2 and TTY2, which are candidate AZF genes. Four exceptional individuals who have transmitted a large AZFc deletion naturally to their infertile sons have, however, been described. In three cases, transmission was to an only son, but in the fourth case a Y chromosome, shown to be deleted for all copies of DAZ, was transmitted from a father to his four infertile sons. Here we present a second family of this latter type and demonstrate that an AZFc-deleted Y chromosome lacking not only DAZ, but also BPY2 and CDY1, has been transmitted from a father to his three infertile sons. Polymerase chain reaction (PCR) and Southern blot analyses revealed no difference in the size of the AZFc deletion in the father and his sons. We propose that the father carries rare alleles of autosomal or X-linked loci which suppress the infertility that is frequently associated with the absence of AZFc.  相似文献   

7.
BACKGROUND: Male infertility due to severe oligozoospermia and azoospermia has been associated with a number of genetic risk factors. METHODS: In this study 150 men from couples requesting ICSI were investigated for genetic abnormalities, such as constitutive chromosome abnormalities, microdeletions of the Y chromosome (AZF region) and mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. RESULTS: Genetic analysis identified 16/150 (10.6%) abnormal karyotypes, 8/150 (5.3%) AZFc deletions and 14/150 (9.3%) CFTR gene mutations. An abnormal karyotype was found both in men with oligozoospermia and azoospermia: 9 men had a sex-chromosomal aneuploidy, 6 translocations were identified and one marker chromosome was found. Y chromosomal microdeletions were mainly associated with male infertility, due to testicular insufficiency. All deletions identified comprised the AZFc region, containing the Deleted in Azoospermia (DAZ) gene. CFTR gene mutations were commonly seen in men with congenital absence of the vas deferens, but also in 16% of men with azoospermia without any apparent abnormality of the vas deferens. CONCLUSIONS: A genetic abnormality was identified in 36/150 (24%) men with extreme oligozoospermia and azoospermia. Application of ICSI in these couples can result in offspring with an enhanced risk of unbalanced chromosome complement, male infertility due to the transmission of a Y-chromosomal microdeletion, and cystic fibrosis if both partners are CFTR gene mutation carriers. Genetic testing and counselling is clearly indicated for these couples before ICSI is considered.  相似文献   

8.
Y chromosome microdeletion in a father and his four infertile sons.   总被引:16,自引:0,他引:16  
Microdeletions of Yq are associated with azoospermia and severe oligozoospermia. In general, men with deletions are infertile and therefore deletions are not transmitted to sons unless in-vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are performed. We report an unusual family characterized by multiple members with infertility and Yq microdeletion. Complete reproductive history, semen analyses and blood samples were elicited from relevant family members. DNA preparation and quantification were performed using commercial kits. A total of 27 pairs of sequence tagged sites based primer sets specific for the Y microdeletion region loci were used for screening. Southern blots using deleted in azoospermia (DAZ) and ribosomal binding motif (RBM) cDNAs were then analysed for confirmation. The proband, his three brothers and father were all found to be deleted for DAZ but not RBM. At the time of analysis, the proband's father was azoospermic whereas his four sons were either severely oligozoospermic or azoospermic. Unlike their father, the four sons are infertile and have no offspring, except for one of them who achieved a daughter only after IVF/ICSI treatment for infertility. Microdeletions of Yq involving the DAZ gene are associated with a variable phenotypic expression that can include evidently normal fertility.  相似文献   

9.
Screening for Y chromosome microdeletions in 226 Slovenian subfertile men.   总被引:11,自引:0,他引:11  
BACKGROUND: The objective of this study was to estimate the frequency of Y chromosome microdeletions in the Slovenian population of infertile men and to analyse the consequences of mutation in respect to clinical severity and prognosis. METHODS: In a controlled clinical study at the university-based medical genetics service and infertility clinic, 226 infertile men undergoing ICSI were tested. The main outcome measures included polymerase chain reaction amplification of 16 genes and gene families and 42 sequence-tagged sites in the non-recombining region of the Y chromosome, semen, testicular volume and testicular histological analysis, serum FSH concentrations, fertilization and respective pregnancy rates. RESULTS: The incidence of deletions was 4.4%: 8.6% in men with azoospermia and 1.5% in men with oligoasthenoteratozoospermia. Isolated gene deletions were not identified. No statistically significant differences in clinical outcome measures were found in patients with mutations versus patients without mutations. High fertilization (49%) and pregnancy (43%) rates with sperm of patients with Y chromosome deletions were obtained. CONCLUSIONS: Testing for gene-specific microdeletions does not contribute significantly to the sensitivity of microdeletion test. Fertilization and pregnancy rates obtained using sperm of patients with Y chromosome deletions were comparable with those achieved in conventional IVF.  相似文献   

10.
Y chromosome microdeletions and germinal mosaicism in infertile males   总被引:5,自引:0,他引:5  
Molecular deletions of the Y chromosome long arm are a frequent cause of male infertility. Because these deletions are thought to be inherited from fathers without Y chromosome deletions, the question arises as to whether their relatively high incidence in the male population could be due to the existence of a mosaicism in somatic and/or germinal paternal cells. This study included a total of 181 infertile men, among whom 18 were found to have an abnormal karyotype. In the other 163, polymerase chain reaction (PCR) analysis detected nine (5.5%) Y chromosome microdeletions. Blood, spermatozoa or testicular cells from 47 men (27 oligozoospermia, 20 azoospermia), including six Y-deleted patients, were screened for mosaicism using double target fluorescence in-situ hybridization (FISH) with Y centromeric and deleted in azoospermia (DAZ) gene-specific probes. Results indicated that: (i) percentages of double (intact Y chromosome) or single (deleted Y chromosome) fluorescent signals by FISH were in agreement with PCR data, thus demonstrating the reliability of the method; and (ii) a weak germ cell mosaicism was found in only two oligozoospermic patients, carrying 1.97 and 4.13% respectively of spermatozoa with a deleted Y chromosome. Further studies on larger populations are needed to evaluate precisely the incidence of Y deletion mosaicisms in infertile men.  相似文献   

11.
The DAZ (Deleted in AZoospermia) and DAZLA (DAZ-like autosomal) genes may be determinants of male infertility. The DAZ gene on the long arm of the human Y chromosome is a strong candidate for the 'azoospermia factor' (AZF). Its role in spermatogenesis is supported by its exclusive expression in testis, its deletion in a high percentage of males with azoospermia or severe oligospermia, and its homology with a Drosophila male infertility gene boule. No DAZ homologous sequences have been found on the mouse Y chromosome. Instead, a Dazla gene was isolated from mouse chromosome 17 and has been considered to be a murine homologue of DAZ. However, the homology between human DAZ and mouse Dazla is not strong, and Dazla contains only one of the seven DAZ repeats found in DAZ. We report the isolation of the human DAZLA gene by screening a human testis cDNA library with a DAZ cDNA clone. DAZLA encodes only one DAZ repeat and shares high homology with the mouse Dazla, indicating that these two genes are homologues. Using a panel of rodent-human somatic cell lines and fluorescence in situ hybridization, the DAZLA gene was mapped to 3p24, a region not known to share homology with mouse chromosome 17. The DAZLA gene may be involved in some familial cases of autosomal recessive male infertility.   相似文献   

12.
The Y chromosome gr/gr subdeletion is associated with male infertility   总被引:6,自引:0,他引:6  
Men with Y chromosome (Yq) AZFc deletions lack all copies of the DAZ gene and have severe spermatogenic failure. A recently described gr/gr subdeletion of AZFc removes two of four copies of DAZ. To better understand the relative frequencies of AZFc and gr/gr deletions and their associated phenotypes, we analysed two large groups of infertile men. A total of 788 men from the Monash Male Infertility (MMI) database with a range of fertility disorders showed similar overall prevalences of AZFc (2.5%) and gr/gr deletions (3.4%). There was no association of gr/gr deletions with sperm density. In 234 control men of known or presumed fertility, only one gr/gr deletion was found. In a further 599 consecutive men presenting for assisted reproductive technologies, we detected 13 (2.2%) AZFc deletions and 28 (4.7%) gr/gr deletions. All AZFc deletions were seen with sperm densities <5 million/ml but again the gr/gr deletion occurred with similar frequency across all sperm density categories. These data show that gr/gr deletions are significantly associated with infertility in the Australian population (P = 0.0015) but not exclusively with reduced sperm density suggesting a complex interaction with other factors important for male fertility. Vertical transmission of gr/gr deletions from father to son by ICSI was demonstrated in four cases. Analysis of 130 ICSI-conceived sons revealed no de novo gr/gr deletions indicating that ICSI is not a risk factor. The data suggest that testing for gr/gr deletions should be considered in the routine genetic assessment of men with idiopathic infertility.  相似文献   

13.
Deletion of RBM and DAZ in azoospermia: evaluation by PRINS.   总被引:10,自引:0,他引:10  
Molecular and cytogenetic studies from infertile men have shown that one or more genes controlling spermatogenesis are located in proximal Yq11.2 in interval 6 of the Y chromosome. Microdeletions within the azoospermia factor region (AZF) are often associated with azoospermia and severe oligospermia in men with idiopathic infertility. We evaluated cells from a normal-appearing 27-year-old man with infertility and initial karyotype of 45,der(X)t(X;Y)(p22.3;p11.2)[8]/46,t(X;Y)(p22.3;p11.2)[12]. By fluorescence in situ hybridization with dual-color whole chromosome paint probes for X and Y chromosomes, we confirmed the Xp-Yp interchange. By primed in situ labeling, we identified translocation of the SRY gene from its original location on Yp to the patient's X chromosome at band Xp22. We also obtained evidence that the apparent marker was a der(Y) (possibly a ring) containing X and Y domains, and observed that the patient's genome was deleted for RBM and DAZ, two candidate genes for AZF.  相似文献   

14.
15.
Genotyping of Israeli infertile men with idiopathic oligozoospermia   总被引:1,自引:0,他引:1  
Microdeletions of the long arm of the Y chromosome involving the azoospermia factor (AZF) region are associated with severe oligo- or azoospermia. Abnormal androgen receptor (AR) structure or function has also been implicated in male infertility. To assess the contribution of these genetic defects to male infertility, 61 Israeli men with severe oligo- (n = 15) or azoospermia (n = 46), were screened for Y chromosome microdeletions, and the AR-(CAG)n repeat length. Fifty fertile Israeli men were similarly analyzed. PCR amplification of 20-54 simple tag sequences (STSs) located at Yq was used to determine the rate and extent of Y chromosome microdeletions. PCR with primers flanking the AR-(CAG)n region and subsequent size fractionation on gradient acrylamide gels were used to determine AR-(CAG)n length. Five azoospermic individuals (5/61-8.2% and 5/46-10.8% of azoospermic patients) displayed Y chromosome microdeletions. The mean CAG repeat number in infertile men was 18.6 +/- 3.0 compared with 16.6 + 2.7 in fertile men (n = 50), a statistically significant difference (p = 0.003). Y chromosome microdeletions contribute to male infertility in our azoospermic population, and the mean length of the AR-CAG is significantly longer in our infertile population than in fertile men.  相似文献   

16.
COMMENTS   总被引:4,自引:0,他引:4  
Human spermatogenesis is regulated by a network of genes located on autosomes and on sex chromosomes, but especially on the Y chromosome. Most results concerning the germ cell function of the Y genes were obtained by genomic breakpoint mapping studies of the Y chromosome of infertile patients. Although this approach has the benefit of focussing on those Y regions that contain most likely the Y genes of functional importance, its major drawback is the fact that fertile control samples were often missing. In fertile men, molecular and cytogenetic analyses of the Y chromosome has revealed highly polymorphic chromatin domains especially in the distal euchromatic part (Yq11.23) and in the heterochromatic part (Yq12) of the long arm. In sterile patients cytogenetic analyses mapped microscopically visible Y deletions and rearrangements in the same polymorphic Y regions. The presence of a Y chromosomal spermatogenesis locus was postulated to be located in Yq11.23 and designated as AZoospermia Factor (ZF). More recently, molecular deletion mapping in Yq11 has revealed a series of microdeletions that could be mapped to one of three different AZF loci: AZFa in proximal Yq11 (Yq11.21), AZFb and AZFc in two non‐overlapping Y‐regions in distal Yq11 (Yq11.23). This view was supported by the observation that AZFa and AZFb microdeletions were associated with a specific pathology in the patients' testis tissue. Only AZFc deletions were associated with a variable testicular pathology and in rare cases AZFc deletions were even found inherited from father to son. However, AZFc deletions were found with a frequency of 10–20% only in infertile men and most of them were proved to be “de novo”, i.e. the AZFc deletion was restricted to the patient's Y chromosome. Based mainly on positional cloning experiments of testis cDNA clones and on the Y chromosomal sequence now published in GenBank, a first blueprint for the putative gene content of the AZFc locus can now be given and the gene location compared to the polymorphic DNA domains. This artwork of repetitive sequence blocks called AZFc amplicons raised the question whether the AZFc chromatin is still part of the heterochromatic domain of the Y long arm well known for its polymorphic extensions or is decondensed and part of the Yq11.23 euchromatin? We discuss also the polymorphic DAZ gene family and disclose putative origins of its molecular heterogeneity in fertile and infertile men recently identified by the analyses of Single Nucleotide Variants (SNVs) in this AZFc gene locus.  相似文献   

17.
Human spermatogenesis is regulated by a network of genes located on autosomes and on sex chromosomes, but especially on the Y chromosome. Most results concerning the germ cell function of the Y genes were obtained by genomic breakpoint mapping studies of the Y chromosome of infertile patients. Although this approach has the benefit of focussing on those Y regions that contain most likely the Y genes of functional importance, its major drawback is the fact that fertile control samples were often missing. In fertile men, molecular and cytogenetic analyses of the Y chromosome has revealed highly polymorphic chromatin domains especially in the distal euchromatic part (Yq11.23) and in the heterochromatic part (Yq12) of the long arm. In sterile patients cytogenetic analyses mapped microscopically visible Y deletions and rearrangements in the same polymorphic Y regions. The presence of a Y chromosomal spermatogenesis locus was postulated to be located in Yq11.23 and designated as AZoospermia Factor (ZF). More recently, molecular deletion mapping in Yq11 has revealed a series of microdeletions that could be mapped to one of three different AZF loci: AZFa in proximal Yq11 (Yq11.21), AZFb and AZFc in two non-overlapping Y-regions in distal Yq11 (Yq11.23). This view was supported by the observation that AZFa and AZFb microdeletions were associated with a specific pathology in the patients' testis tissue. Only AZFc deletions were associated with a variable testicular pathology and in rare cases AZFc deletions were even found inherited from father to son. However, AZFc deletions were found with a frequency of 10-20% only in infertile men and most of them were proved to be "de novo", i.e. the AZFc deletion was restricted to the patient's Y chromosome. Based mainly on positional cloning experiments of testis cDNA clones and on the Y chromosomal sequence now published in GenBank, a first blueprint for the putative gene content of the AZFc locus can now be given and the gene location compared to the polymorphic DNA domains. This artwork of repetitive sequence blocks called AZFc amplicons raised the question whether the AZFc chromatin is still part of the heterochromatic domain of the Y long arm well known for its polymorphic extensions or is decondensed and part of the Yq11.23 euchromatin? We discuss also the polymorphic DAZ gene family and disclose putative origins of its molecular heterogeneity in fertile and infertile men recently identified by the analyses of Single Nucleotide Variants (SNVs) in this AZFc gene locus.  相似文献   

18.
Background: Complete deletion of the complete AZFc interval of the Y chromosome is the most common known genetic cause of human male infertility. Two partial AZFc deletions (gr/gr and b1/b3) that remove some copies of all AZFc genes have recently been identified in infertile and fertile populations, and an association study indicates that the resulting gene dose reduction represents a risk factor for spermatogenic failure.

Methods: To determine the incidence of various partial AZFc deletions and their effect on fertility, we combined quantitative and qualitative analyses of the AZFc interval at the DAZ and CDY1 loci in 300 infertile men and 399 control men.

Results: We detected 34 partial AZFc deletions (32 gr/gr deletions), arising from at least 19 independent deletion events, and found gr/gr deletion in 6% of infertile and 3.5% of control men (p>0.05). Our data provide evidence for two large AZFc inversion polymorphisms, and for relative hot and cold spots of unequal crossing over within the blocks of homology that mediate gr/gr deletion. Using SFVs (sequence family variants), we discriminate DAZ1/2, DAZ3/4, CDY1a (proximal), and CDY1b (distal) and define four types of DAZ-CDY1 gr/gr deletion.

Conclusions: The only deletion type to show an association with infertility was DAZ3/4-CDY1a (p = 0.042), suggesting that most gr/gr deletions are neutral variants. We see a stronger association, however, between loss of the CDY1a SFV and infertility (p = 0.002). Thus, loss of this SFV through deletion or gene conversion could be a major risk factor for male infertility.

  相似文献   

19.
Lu C  Zhang F  Xia Y  Wu B  Gu A  Lu N  Wang S  Shen H  Jin L  Wang X 《Journal of human genetics》2007,52(8):659-663
A significant proportion of male infertility is accompanied by an abnormal semen analysis, azoospermia or severe oligozoospermia, which is generally assumed to be the result of spermatogenic failure. The genetic contribution in the process of spermatogenesis, particularly the role of the Y chromosome in determination of semen quality, is still obscure. In order to explore the relationship between Y chromosome haplogroup and spermatogenic failure, we collected 285 idiopathic infertile males with azoo-/oligozoospermia and 515 fertile men, adopted 12 binary markers and recruited the subjects (cases and controls) in the same region to test whether there is a possible susceptibility of certain Y haplogroups to spermatogenic failure in the Han Chinese population. The results indicated that the prevalences of hg K* in the control and the case population were 0.78% (4/515) and 2.80% (8/285), respectively. The difference between the frequencies of the hg K* in the infertile males and the normal control population was significant [odds ratio (OR) = 3.69; 95% confidence interval (CI) = 1.10–12.36] (P = 0.028). However, in the other haplogroups no significant differences were found. In conclusion, Y haplogroup-K* might bear a risk factor of male infertility, and the individuals in the haplogroup need to be further examined. Chuncheng Lu and Feng Zhang contributed equally to this work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号