首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
目的:使用蒙特卡罗程序FLUKA建立点扫描碳离子束流模型并对其进行验证。方法:使用FLUKA建立同步加速器碳离子束流治疗头的几何模型,匹配实验测量数据中的单能标称能量、高斯能谱分布、初始束斑大小以及束流的角分布等各项参数;利用治疗计划系统生成碳离子束流治疗计划,通过γ分析比较FLUKA束流模型与治疗计划系统输出的剂量分布差异,验证该模型的准确性。结果:单能碳离子束流的深度剂量分布差异均在0.1 mm之内,束斑大小最大差异为0.17 mm;对于每个靶区,2 mm/2%标准下的2D-与3D-γ通过率均在95%以上。结论:基于蒙特卡罗程序FLUKA实现了点扫描碳离子束流输运过程的精准模拟。该模型能够用于临床治疗计划的模拟验证,并进一步应用于新型粒子治疗设备在开发阶段的模拟以及生物有效剂量的计算。  相似文献   

2.
目的 分析2 010例调强放疗计划剂量验证结果,为改进和完善调强放疗计划验证方法提供参考。方法 回顾性分析北京大学第三医院2012年2月—2016年2月美国瓦里安公司Trilogy加速器治疗的2 010例计划的剂量验证结果,其中调强放射治疗(IMRT)计划965例,容积旋转调强放疗(VMAT)计划1 045例。计划设计使用Eclipse计划系统,剂量验证采用MatriXX及Multicube模体。分析计划和测量等中心点剂量差异,3%/3 mm标准平面剂量分布的γ通过率。等中心点剂量差异<±3%定为通过,平面剂量分布γ通过率>90%定为通过。分析病变部位、治疗技术(IMRT和VMAT)对计划验证通过率的影响。结果 2 010例计划等中心点剂量平均差异为-0.3%±2.4%,γ通过率为97.9%±3.4%。88.2%和96.7%的计划能够通过点剂量验证和平面剂量验证标准。不同病变部位计划验证γ通过率不同(F=3.09,P<0.05)。不同病变计划点剂量和面剂量验证通过率不同(χ2=40.93、39.15,P<0.05)。IMRT和VMAT计划验证点剂量通过率和面剂量验证通过率差异均无统计学意义(P>0.05)。结论 大部分调强放疗计划能够通过计划验证,不同病变部位计划验证通过率不同,IMRT和VMAT计划验证通过率无差异。  相似文献   

3.
个体化调强适形放疗计划剂量验证方法的建立   总被引:1,自引:1,他引:0       下载免费PDF全文
目的建立个体化调强适形放射治疗(IMRT)计划剂量验证的标准方法,探索调强剂量质量保证实施规范。方法选取2005年间在本院治疗的鼻咽癌患者33例,在三维计划系统上进行计划设计,然后将治疗计划移至固体体模上,得到体模杂交计划。利用电离室和胶片剂量仪对杂交计划的计算剂量同时进行测量验证,根据预设的误差控制标准对结果进行分析评估。结果所有患者的调强计划验证结果中有32例等中心点剂量误差在5%内符合,1例超出标准则重新选取两处剂量变化较缓区域补测点剂量,结果亦在5%内符合;相对剂量的验证以5%剂量偏差和3mm距离偏差为控制标准。所有病例均能满足。结论建立个体化剂量验证的标准方法是准确执行调强放疗计划的重要保证。  相似文献   

4.
调强放疗(IMRT)使用小野和不规则野达到靶区剂量适形的目的.调强野的特点是高剂量梯度和缺乏电荷平衡,相邻子野之间在靶区内可能存在无数接点.标准探测器体积太大,往往不能被贡献原射线到探测器所在部位的所有子野覆盖,致使读数偏离吸收剂量.因此,多倾向于采用小体积电离室验证IMRT的剂量,籍此克服大体积探测器的缺点.本研究拟通过实测探讨0.015 cm^3针点电离室的特性,并与0.6 cm^3电离室比较,确认其在IMRT剂量验证中的价值.  相似文献   

5.
目的 研究调强放疗(IMRT)多叶光栅野吸收剂量和二维剂量分布验证方法。方法 选取8台医用加速器,6 MV X射线照射野为5 cm×5 cm时,分别使用热释光剂量计(TLD)和EBT3胶片剂量计核查调强放疗多叶光栅野光子线束吸收剂量,并使用EPT3胶片剂量计核查调强放疗多叶光栅野光子线束二维剂量分布。结果 使用多叶光栅野热释光验证方法和胶片剂量计方法,剂量相对偏差范围分别是-1.4%~6.8%和-1.8%~7.8%。有7台结果符合国际原子能机构(IAEA)剂量偏差在±5%的要求;二维剂量分布通过率范围为73.4%~97.0%,有7台符合二维剂量分布通过率> 90%的要求。结论 热释光剂量计和胶片剂量计用于调强放疗多叶光栅野剂量学参数验证是可行的,适合审管部门大规模开展的IMRT的治疗计划系统(TPS)吸收剂量和二维剂量分布验证。  相似文献   

6.
目的建立个体患者适形调强放疗(IMRT)计划的模体内剂量实测验证技术。方法选择1例鼻咽癌患者,设计IMRT计划。将患者计划转移到模体上设计杂交计划。执行杂交计划时,用针点电离室测量感兴趣点的剂量,并与该点的计算剂量比较。用胶片剂量测量系统测量杂交计划中感兴趣平面的剂量,胶片与计划剂量矩阵登记后,依次进行计划,胶片分析、计划,胶片剖面分析和计划/胶片等剂量线分析。采用复合判断标准评价验证结果。结果针点电离室测量得到杂交计划单次照射的总剂量为121.5cGy,比计算值低约4%。计划,胶片分析得到高剂量、高梯度区域的距离差别均在4mm以内;计划/胶片剖面分析显示,计划与胶片在通过靶区的剖面具有较好的一致性;计划,胶片等剂量线分析显示,计划与胶片对应值的等剂量线重合良好。按照复合判断标准,该计划验证通过。结论初步建立了个体患者IMRT计划的模体内剂量实测验证技术,建立并优化了剂量登记技术、剂量归一方法和评价方法。  相似文献   

7.
目的 测试三维剂量验证系统CompassR测量重建及独立计算剂量的精度,评估其临床应用可行性。方法 设计一系列宽度分别为2、1、0.5 cm的条纹状射野,并选取11例肺部调强放疗(IMRT)计划,使用胶片和电离室对被测系统的平面剂量分布和特定点绝对剂量进行验证测试;使用CompassR对IMRT模体计划做基于解剖信息的三维剂量验证,验证体积γ通过率、平均剂量偏差等参数。结果 条纹状射野测试,与胶片测量相比,被测系统重建和计算剂量γ通过率大于90%(选用3%/3 mm、2%/2 mm标准),宽度为0.5 cm射野在半影区内γ通过率略差,被测系统重建和计算剂量曲线与胶片测量的曲线最大偏离分别3.21%和2.70%;IMRT计划特定点绝对剂量偏差在3%以内,最大偏差发生在肺部,IMRT计划等中心平面测量重建与胶片测量的γ通过率平均为(94.65±1.93)% (选用3%/3 mm标准);三维剂量验证结果,靶区及危及器官的体积γ通过率均大于90%,平均剂量的偏差<1%。结论 测试系统剂量精度可满足IMRT计划验证要求,并能给出与患者解剖结构相关的体积剂量误差与位置误差的信息,有利于评估其对临床的影响。  相似文献   

8.
目的用Scaled Conjugate Gradient(SCG)算法对IMRT计划射束权重进行优化。方法优化过程采用基于剂量的目标函数,建立了剂量均匀性约束和组织重要程度约束,用等剂量线和剂量-体积直方图来评估计划的优劣。结果SCG算法是一种有效的IMRT射束权重的优化方法,能够得到较高适形度的剂量分布。结论SCG算法在IMRT射野参数优化中具有较为广阔的应用前景。  相似文献   

9.
目的 分析PTW 729电离室矩阵不同验证方法用于宫颈癌术后调强放疗计划验证的结果差异。 方法 回顾性分析2020年8至12月于南通大学第二附属医院行宫颈癌术后调强放疗的10例女性患者的放疗资料。患者年龄44~69岁,中位年龄59岁,均采用七野均分方式进行调强放疗计划设计。采用治疗计划系统分别在4.2 cm厚的固体水+电离室矩阵+5.0 cm厚的固体水组成的RW3固体水模体图像上生成二维射野角度归0°验证计划(V1),在PTW Octavius 4D模体图像上生成二维射野角度归0°验证计划(V2)、二维实际射野角度验证计划(V3)和三维实际射野角度验证计划(V4)。在加速器上实测后分析宫颈癌术后调强放疗计划不同验证模体(V1 vs. V2)、二维射野角度归0°和二维实际射野角度验证(V2 vs. V3)、二维和三维验证(V1、V2、V3 vs. V4)的结果差异。计量资料的比较采用配对t检验。 结果 (1)V1的计划验证通过率高于V2[(99.72±0.44)%对(94.95±6.13)%,t=2.621,P<0.05],而评估点数低于V2(311±50对392±61,t=−6.992,P<0.05)。(2)V2的 180°和232°射野的单野验证通过率均高于V3[(96.86±3.79)% 对(95.72±3.56)%,(98.50±2.28)%对(92.98±5.04)%,t=2.294、4.052,均P<0.05 ]。(3)V1、V2、V3的计划验证通过率显著高于V4 [(99.72±0.44)%、(94.95±6.13)%、(94.72±6.43)%对(86.91±2.63)%,t=17.912、6.645、5.962,均P<0.05],而评估点数显著低于V4 (311±50、392±61、391±60对726 034±61 656,t=−37.244、−37.253、−37.252,均P<0.05)。 结论 PTW 729电离室矩阵不同验证方法获得的调强放疗计划验证结果存在一定差异,尤其是180°和232°的单野验证结果。评判宫颈癌术后调强放疗计划是否通过验证需结合所采用的验证方法并对剂量差异区域的评估点进行分析。  相似文献   

10.
COMPASS系统在鼻咽癌容积旋转调强剂量验证中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 探讨COMPASS三维剂量验证系统在鼻咽癌容积旋转调强剂量验证中的应用.方法 选取8例鼻咽癌病例在Masterplan治疗计划系统中进行旋转调强计划设计,然后将治疗计划分别传输至COMPASS系统和控制加速器运行的MOSAIQ网络上.比较计划系统计算结果和COMPASS实际测量结果差异的主要指标,如靶区的平均剂量(Dmean)、95%体积剂量(D95%)和γ值,脊髓、脑干的Dmean和D1%左右腮腺的Dmean、V30.结果 计划系统计算结果和COMPASS实际测量的结果二者在靶区的γ通过率均>95%,各个靶区的D95%平均偏差大多<3%,各个靶区Dmean的偏差平均值在1%以内.脊髓和脑干的D1%的平均偏差分别为(4.3±3.0)%和(5.9±2.9)%,二者Dmean的平均偏差分别为(5.3±3.0)%和(8.0±3.5)%.COMPASS测量的脊髓和脑干的剂量都比计划系统计算的结果小.左右腮腺Dmean差异的平均值分别为(6.1±3.1)%、(4.7±4.4)%,V30的差异分别为(9.4±7.5)%和(9.4±9.9)%.结论 COMPASS三维剂量验证系统是容积旋转调强剂量验证的一个非常理想的工具,可以快速、直观地分析出靶区和正常器官理论和实际照射情况下的差异.  相似文献   

11.
The objective of this study was to evaluate the procedures for patient-specific quality assurance measurements using modulated scanned and energy stacked beams for proton and carbon ion teletherapy. Delivery records from 1734 portal measurements were analyzed using a 3-point pass criteria: more than 22 of 24 chambers in a water phantom (WP) had to have a measured dose difference from the planned portal doses less than or equal to 3%, or the distance from the measurement point location to a point location in the plan having the same dose had to be less than or equal to 3?mm (distance to agreement [DTA]), and the mean dose deviation of all chambers had to be less than 3%. Stratification of results showed some associations between measurement parameters and pass rates. For proton portals, pass rates were high at all measurement depths, but for carbon ion portals, pass rates decreased as a function of increasing measurement depth. Pass rates of both proton and carbon ion portals with 1 WP were slightly lower than those with a second WP. The total pass rates were 97.7% and 91.9% for proton and carbon ion patient portals, respectively. In general, the measured doses exhibited good agreement with the treatment planning system (TPS) calculated doses. When the chamber position was deeper than 150?mm in carbon ion beams, a lower pass rate was observed, which may have been caused by ion chamber array setup uncertainty (lateral and depth) in highly modulated portals or incorrect modeling of scatter by the TPS. These deviations need further investigation.  相似文献   

12.
《Medical Dosimetry》2014,39(4):300-308
In this study, we investigated the correlation between 2-dimensional (2D) and 3D gamma analysis using the new PTW OCTAVIUS 4D system for various parameters. For this study, we selected 150 clinically approved volumetric-modulated arc therapy (VMAT) plans of head and neck (50), thoracic (esophagus) (50), and pelvic (cervix) (50) sites. Individual verification plans were created and delivered to the OCTAVIUS 4D phantom. Measured and calculated dose distributions were compared using the 2D and 3D gamma analysis by global (maximum), local and selected (isocenter) dose methods. The average gamma passing rate for 2D global gamma analysis in coronal and sagittal plane was 94.81% ± 2.12% and 95.19% ± 1.76%, respectively, for commonly used 3-mm/3% criteria with 10% low-dose threshold. Correspondingly, for the same criteria, the average gamma passing rate for 3D planar global gamma analysis was 95.90% ± 1.57% and 95.61% ± 1.65%. The volumetric 3D gamma passing rate for 3-mm/3% (10% low-dose threshold) global gamma was 96.49% ± 1.49%. Applying stringent gamma criteria resulted in higher differences between 2D planar and 3D planar gamma analysis across all the global, local, and selected dose gamma evaluation methods. The average gamma passing rate for volumetric 3D gamma analysis was 1.49%, 1.36%, and 2.16% higher when compared with 2D planar analyses (coronal and sagittal combined average) for 3 mm/3% global, local, and selected dose gamma analysis, respectively. On the basis of the wide range of analysis and correlation study, we conclude that there is no assured correlation or notable pattern that could provide relation between planar 2D and volumetric 3D gamma analysis. Owing to higher passing rates, higher action limits can be set while performing 3D quality assurance. Site-wise action limits may be considered for patient-specific QA in VMAT.  相似文献   

13.
目的 对主动式点扫描质子重离子加速器剂量传输系统进行质量检测,为相关设备质量检测研究提供参考。方法 在4个治疗室中,分别采用0.6 cc指型电离室和辐射胶片测量质子重离子加速器在每间治疗室的输出剂量重复性、剂量线性、剂量日稳定性、深度剂量分布、束流扫描位置偏差和射野的一致性。结果 4个治疗室分别对应的4个终端的剂量重复性变异系数均<1.5%,剂量线性最大偏差均<2%,剂量日稳定性偏差均<2%,深度剂量分布稳定性均在2%之内,束流扫描位置偏差均<1 mm,射野一致性中射野大小偏差均<2 mm,射野平坦度均<±5%。结论 本研究涉及的主动式点扫描质子重离子加速器质量检测的各项指标均符合国际电工委员会(IEC)相关标准草案的要求。  相似文献   

14.
《Medical Dosimetry》2014,39(4):309-313
Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.  相似文献   

15.
目的 介绍国产首台质子治疗装置配套治疗计划系统(未取得注册证的Raystation10B科研版)建模与初步剂量验证的方法与结果。并通过剂量验证结果分析验证建模精度。方法 治疗计划系统(TPS)建模方法主要包括积分深度剂量(integrated depth dose,IDD)曲线的采集与建模、空气中束斑采集与建模、通过扫描点距为2.5 mm、照射野为10 cm×10 cm的方野来进行绝对剂量标定建模。本研究通过测量3种不同复杂程度案例的剂量分布并与TPS的剂量分布对比,验证和分析建模精度并给出机器束流参数的要求和调试建议。结果 TPS模型拟合的低能区IDD曲线峰值比实际测量值偏低,中高能区拟合的较好。所有能区射程都拟合准确。3种不同复杂程度案例实际测量与治疗计划靶区平均剂量偏差都在±5%(国家型式检测标准)以内,高剂量梯度区域位置偏差(DTA)都<3 mm。结论 该治疗计划系统的建模精度总体上满足测量验证的要求。但由于TPS模型中蒙特卡罗模拟的IDD分辨率低且低能区布拉格峰非常尖锐,低能区IDD建模拟合精度不足。  相似文献   

16.
目的 研究主动式点扫描质子重离子加速器所形成照射野的一致性的检测方法。方法 在标定过的离子束流下进行EBT3胶片刻度,建立EBT3胶片的剂量刻度曲线,然后在4个治疗室中,EBT3胶片放置于固体水模体中进行照射,胶片位置针对质子和碳离子不同能量(质子:94.29、150.68和212.62 MeV;碳离子:175.99、283.43和412.54 MeV/u)前后放置不同厚度的固体水模体插板,最后扫描EBT3胶片图像,分析照射野剂量分布大小和规定照射野大小的差异及平坦度。结果 4个治疗室,不同条件下照射野一致性检测的照射野大小均<2 mm,平坦度均控制在5%之内。结论 EBT3胶片可以检测主动式点扫描质子重离子加速器的照射野一致性。  相似文献   

17.

Objective:

The purpose of this study was to evaluate spot scanning proton therapy with an anthropomorphic prostate phantom at the Proton Therapy Center of The University of Texas MD Anderson Cancer Center at Houston, TX (PTCH).

Methods:

An anthropomorphic prostate phantom from the Radiological Physics Center (RPC), The University of Texas MD Anderson Cancer Center, Houston, TX, was used, which contained thermoluminescent dosemeters and GAFCHROMIC® EBT2 film (ISP Technologies, Wayne, NJ). The phantom was irradiated by the Hitachi synchrotron (Hitachi America, Ltd, Tarrytown, NY), and the results were compared between the treatment planning system (TPS) and RPC measurements.

Results:

RPC results show that the right/left, inferior/superior and posterior/anterior aspects of the coronal/sagittal and EBT2 film measurements were within ±7%/±4 mm of the TPS. The RPC thermoluminescent dosemeter measurements of the prostate and femoral heads were within 3% of the TPS.

Conclusion:

The RPC prostate phantom is a useful mechanism to evaluate spot scanning beam proton therapy within certain confidence levels.

Advances in knowledge:

The RPC anthropomorphic prostate phantom could be used to establish quality assurance of spot scanning proton beam for patients with prostate cancer.During the past decade, the use of proton beams in the treatment of cancer has increased. Passive scattering has been the most common technique for delivery of proton beams. Passive scattering uses range modulation wheels with a combination of field shaping apertures and compensators to deliver a uniform dose distribution to the target [14]. Until recently, the proton scanning technology has only been available at one facility, namely the Paul Scherrer Institute in Switzerland [5]. The spot-scanning beam at the Paul Scherrer Institute moves only along the longitudinal axis and is combined with a moving couch. The scanning proton beams confine the dose distribution to the target volume by depositing the dose using pencil beams of different energies to deliver the dose without using any scattering or range-modulating devices [6]. This is considered an improvement with respect to passively scattered proton beams because there are no apparatuses in the beam path to produce contamination by neutrons [7].The principle of scanning beam is simple and is based on the fact that protons, being charged particles, are subject to Lorentz forces. That is, when subjected to an electric field, protons are accelerated, and when subjected to a magnetic field, protons are deflected. In depth, the Bragg peaks are stacked by altering the proton energy. Through this combination of scanning and energy variation, the Bragg peak can be effectively placed anywhere within the target in three dimensions. Dose uniformity is then achieved by a treatment planning optimisation of the individual fluences of each pencil beam [8]. The Radiological Physics Center (RPC), The University of Texas MD Anderson Cancer Center, Houston, TX, has several anthropomorphic phantoms, which are used as part of the credentialing services for participation in the National Cancer Institute (NCI, at the National Institutes of Health, Bethesda, MD) sponsored clinical trials. The pelvis phantom was originally designed to be of mailable quality assurance to test intensity-modulated radiation therapy (IMRT) procedures. With this in mind, the design and materials were chosen to simulate the pelvis region of a patient with the anatomy present to create restrictions for treatment planning and delivery in typical IMRT cases. The relative stopping power of each material is used to construct the phantom to verify the tissue equivalence of the materials used. In the treatment of prostate cancer, the Proton Therapy Center at Houston, TX (PTCH), uses two opposing beams. Previously, RPC used a prostate phantom for passive scattering proton beam and found that by using an appropriate value of relative stopping power, the prostate phantom could be used to evaluate proton passive beam therapy. The evaluation of spot scanning is a new challenge. Therefore, the purpose of this study was to evaluate spot scanning for prostate therapy using the RPC phantom.  相似文献   

18.
The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm3) and pinpoint chamber (0.015 cm3), PTW-Octavius phantom with semiflex chamber (0.125 cm3) and 2D array (0.125 cm3), and indigenously made Circular wax phantom with 0.6 cm3 chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm3 with a maximum variation of ?4.76%, ?1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm3. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm3 ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose measurements using the semiflex ionization chamber with intermediate volume (0.125 cm3) shows good agreement with the TPS calculated among the detectors used in this study. Positioning is very important when using smaller volume chambers because they are more sensitive to geometrical errors within the treatment fields. It is also suggested to average the dose over the sensitive volume for larger-volume chambers. The ionization chamber-phantom combinations used in this study can be used interchangeably for routine RapidArc patient-specific quality assurance with a satisfactory accuracy for clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号