首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
目的 通过人为制造CT伪影,来研究实际临床操作中单纯伪影对放疗剂量计算的影响。方法 对替换钛合金组件前后的模体进行CT扫描,统计替换前后不同位置的CT值;将钛合金区域的CT值修正为水模体的CT值,并采用Varian的各向异性分析算法(AAA)、Acuros XB (AXB)算法和Pinnacle系统的筒串卷积算法(CCC)3种算法,对替换钛合金组件前后的模体进行剂量计算,统计替换前后不同位置的绝对剂量值,并进行分析。结果 Varian和Pinnacle系统对评价CT值大小比较一致。对于均匀模体,CT值偏差30 HU以下时,3种不同的算法在距离体表0.5 cm时,剂量偏差最大达到12.0%,最小为6.0%;1.5 cm以上偏差的绝对值均<1.0%。对于肺部模体来说,Varian的AAA算法和AXB算法在CT值相差15 HU的情况下,剂量值相差在1.0%左右;但Pinnacle系统的CCC算法在同样情况下剂量值相差较大,相差5.0%左右。结论 CT伪影对放疗剂量计算存在明显影响,导致组织剂量分布发生变化,可能造成浅部肿瘤照射剂量不足,深部肿瘤过量照射。  相似文献   

2.
目的比较能谱CT金属伪影去除算法及虚拟单能图像重建与传统迭代重建在减少脊柱金属植入物伪影的差异。方法 56例脊柱矫形术接受金属植入物行标准能谱CT检查,包括常规迭代重建、金属伪影去除算法和虚拟单能图像重建。测量衰减系数(HU)和噪声(SD),以计算椎旁肌和椎管的信噪比。两名放射科医师独立评价图像质量和伪影减少程度。结果与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像显著降低低密度伪影及高密度伪影。与常规迭代重建相比,金属伪影去除算法和高keV虚拟单能图像椎旁肌(34.6±17.0HU vs. 26.1±13.5HU及34.6±17.0HU vs. 27.0±14.2)和椎管(102.5±60.1HU vs. 72.1±39.3HU及102.5±60.1HU vs.60.1±38.0HU,P均0.05)的噪声伪影减少。观察者间评价主观图像质量的一致性良好,ICC=0.74。在主观图像质量评价中,金属伪影去除算法和高keV虚拟单能图像上表现出伪影减少分别为44/56例(78.6%)、48/56例(85.7%)。结论能谱CT金属伪影去除算法和高keV虚拟单能图像重建上客观及主观伪像均减少,金属伪影去除算法联合虚拟单能图像的组合可能有希望进一步减少伪影。  相似文献   

3.
目的 研究肝动脉化疗栓塞治疗后肝脏肿瘤内碘油沉积对碳离子放疗剂量的影响。方法 对比纯碘油、纯凝胶和碘油凝胶混合物实际相对水阻止本领(RLSP)和其CT图像转化获得的RLSP。在7例典型有碘油沉积病例的CT图像上制定碳离子放疗计划,然后基于前述分析结果,将碘油沉积区域RLSP修正为正常肝组织,将先前制定碳离子放疗计划在修正后CT图像上重新计算,比较在不同CT图像上等效水深度和剂量分布的差异。结果 依据CT图像HU值,碘油和碘油凝胶混合物转化的RLSP比实际测量值增加4.6%~139.0%。7例临床病例中,原始图像上碘油沉积可致射野路径上的等效水深度平均增加(0.89±0.41)cm,可使靶区远端1 cm区域内平均剂量升高(3.83±1.71)Gy (相对生物剂量)。结论 在肝动脉化疗栓塞治疗后有碘油沉积的CT图像上制定碳离子治疗计划时需将碘油沉积部位的HU值或RLSP修正为正常肝组织。  相似文献   

4.
目的 探究基于光谱CT虚拟单能图像(VMI)和矫正金属伪影去除技术(OMAR)对头颈部不同部位不同金属植入物伪影的去除作用。方法 采用CIRS人仿真模体分别构建脊柱固定术后模型、金属假牙填充术模型、脑动脉瘤栓塞模型。并以金属不锈钢或者金属钛分别替代等效组织。利用Philips光谱CT分别扫描无金属植入物、金属不锈钢植入物、金属钛植入物条件下的三个部位模型。分别重组出60 keV、80 keV、100 keV、120 keV、140 keV、160 keV、180 keV以及120 kVp下的非OMAR图像和OMAR图像。测量金属植入物旁感兴趣区(ROI)内的CT值和SD值,并计算伪影指数(AI)和信噪比(SNR)。绘制出非OMAR和OMAR的各扫描条件下的AI值柱状图,以及SNR值变化表格,采用配对样本t检验比较差异。两个以上变量采用方差分析F检验进行比较。结果 在颈部脊柱金属植入物模型中,金属钛造成的金属伪影最严重,特别是在VMI60时AI值为160.103,SNR值为1.851;当能级为100 keV时,结合OMAR后AI值为4.689,SNR值为6.471。...  相似文献   

5.
目的 探讨加速器成像射束影像系统(IBL)的全扇形束和大射野(EFOV)两种模式扫描得到的兆伏级锥形束断层(MV CBCT)图像可否用于剂量计算。方法 利用大孔径CT和在IBL的全扇形束和EFOV模式下对CIRS 062M型电子密度模体进行扫描,在Pinnacle计划系统中分别建立电子密度曲线。用CT和加速器MV级CBCT模式扫描头颈、胸、腹盆腔部仿真模体,利用CT图像制作调强计划,并将计划移植于MV CBCT的图像中,利用相应的电子密度曲线计算剂量,比较靶区及危及器官剂量分布。结果 MV CBCT图像中剂量分布比参考计划剂量偏低,并且在头颈、胸、腹盆腔模体中偏差依次增大。与参考计划相比,头颈部靶区剂量和危及器官剂量分布一致,偏差均在3%以内。胸部和腹盆腔靶区和危及器官的剂量分布均有大幅度的降低,偏差分别达到5%和10%,超出了临床接受范围。结论 在加速器IBL中全扇形束模式条件下,头颈部患者扫描得到的MV CBCT图像可在自适应放疗中用于剂量计算,胸、腹盆腔部位在EFOV模式下仅可用于图像引导,不能用于剂量计算。  相似文献   

6.
目的 研究利用盆腔迭代锥形束CT(CBCT)图像用于治疗计划剂量计算的可行性分析,为自适应放疗提供图像保障。方法 使用Varian Halcyon 2.0环形加速器对CIRS 062 M模体(CIRS,Norfolk,VA,USA)进行扫描,测量其不同散射条件下的CT值并计算其平均值,建立锥形束CT-电子密度转换曲线(iterative Cone-beam CT to electron density,ICBCT-ED)。采集CIRS 002PRA盆腔调强专用模体的CT和不同位置的ICBCT图像,设计基于CT图像的VMAT计划,移植至ICBCT图像上,重新进行剂量计算,比较靶区、危及器官及三维体积剂量γ通过率的差异。以患者实际治疗计划为基准,回顾性分析10例盆腔患者全流程三维剂量γ通过率的差异。结果 无散射体的孤立模式与全散射中心位置的CT值偏差较大,最大偏差144 HU。其他全散射位置与中心位置CT值相近,最大偏差<50 HU。基于盆腔模体不同位置处的ICBCT图像的计算结果,无论靶区还是危及器官的剂量偏差均<1 Gy。与基于CT图像的计划相比,基于ICBCT图像的三维剂量γ通过率1%/1 mm和2%/2 mm的平均值分别为(88.86±1.18)%和(98.38±0.89)%。10例盆腔肿瘤患者2%/2 mm和3%/3 mm的平均值范围分别为90.03%~95.43%和93.58%~97.78%。最差结果为膀胱过充盈引起的外轮廓变化造成的剂量差异,2%/2 mm和3%/3 mm的三维剂量通过率仅为85.90%和92.90%。结论 在足够的散射条件下,重建ICBCT-ED转换曲线,利用Halcyon直线加速器的ICBCT图像进行治疗计划设计,其精度是可以满足临床应用的标准的,为将来的自适应放疗提供了保障。  相似文献   

7.
目的探讨宝石能谱CT在去金属体内植入物伪影中的应用。方法对28例有金属体内植入物的患者行能谱扫描,行容积再现(VR)、多平面重建技术(MPR)及最大密度投影(MIP)后处理。结果 VR、MPR、MIP后处理后所得图像均满足影像诊断的需要,影像质量优良率高达90%。结论宝石能谱CT能有效去除金属体内植入物伪影,在去金属体内植入物伪影中显示局部解剖结构起到不可替代的作用。  相似文献   

8.
目的研究能谱成像技术(gemstone spectral imaging,GSI)和多种伪影去除系统(multi artifact reductionsystem,MARS)在减除脊柱金属植入物椎管内伪影方面的临床价值,获得图像质量最佳的单能量图像。方法选取本院15例脊柱金属植入物患者,行能谱CT的GSI扫描及单能量加MARS技术重组,每隔10 keV分别获得40~140 keV共11组单能量图像及11组单能量加MARS图像,每组图像分别选取伪影最重层面(A)和无伪影层面(B)的两幅图像,行感兴趣区(ROI)与邻近脂肪组织CT值和噪声(SD)值的测定,分别记录为CT1、CT2和SD1、SD2,计算对比噪声比(contrast noise ratio,CNR)值,SD值比较采用配对资料t检验。结果 40~140 keV 11组单能量图像中,110 keV单能量图像组,A、B两层面SD值分别为54.12±8.35和34.77±3.50,两者之间差异没有统计学意义(t=2.32,P>0.05),其他10组P值均<0.05,两者差异有统计学意义;40~140 keV 11组单能量加MARS图像中,各组A、B两层面SD值之间差异有统计学意义(P<0.05),不同keV单能量图像中,GSI能谱成像的70 keV图像脊柱椎管内组织与邻近脂肪组织CNR最佳(CNR=9.2±5.07);110 keV+MARS的图像金属植入物伪影有不同程度的消除,但产生一定的图像失真。结论 110 keV单能量图像在减除脊柱金属植入物椎管内伪影方面的效果最佳,110 keV单能量图像优于110 keV+MARS图像,70 keV图像虽然CNR最佳,但噪声明显高于110 keV图像,不利于临床诊断。  相似文献   

9.
目的 建立利用3D打印颅脑辐射等效体模对患者进行个性化放疗剂量验证的方法,为三维适形放射治疗安全提供一种可靠的剂量保证手段。方法 采集两例患者(患者1和患者2)的CT图像数据,基于患者1的图像数据,重建其颅骨与脑组织,制作颅脑体模,验证颅骨与脑组织的等效材料。基于患者2的图像数据,根据3D图像重建并选用组织等效材料重建完全的头颅结构,采用3D打印技术制作全头颅体模。通过对目标区域插入电离室剂量仪并行放射治疗方案,获得头颅体模病灶部的剂量,验证和校准实际放疗计划的安全性。结果 对所获两个体模分别进行DR、CT成像,颅脑体模的等效骨骼与患者1骨骼的X射线灰度值差异为13 721,颅脑体模的等效脑组织与患者1的脑组织的CT值差异为35~40 HU,全头颅体模等效颞肌与患者2的颞肌组织的CT值差异为18~28 HU,影像数据表明体模材质的辐射等效性与人体组织近似,并且等效剂量分布符合常规治疗范围,体模的剂量验证可以有效验证放疗计划系统的准确性。结论 基于3D打印和组织等效技术所设计的个性化放疗体模,可应用于个性化放射治疗验证。体模制作方法简单快速,个性化程度高,为三维适形放射治疗安全提供一种可靠的剂量保证手段。  相似文献   

10.
目的:研究宝石CT能谱扫描在减少金属伪影方面的临床价值。方法:对31例体内含有金属植入物的受检者行能谱扫描(Gemstone spectral imaging,GSI),扫描后获得混合能量图像(140kVp),用能谱分析软件(GSI Viewer)进行分析,以10keV为间距在40~140keV间进行11种不同能量的单能量图像重建,选取最优单能量图像,再行金属伪影消除重建(Metal-Artifacts Reduction System,MARs),对混合能量图像及能谱图像(110keV单能量图像或单能量+MARs图像)进行感兴趣区(ROI)SD值的测定,计算出伪影的SD值。并且所有图像均由三位有经验的放射医师采用盲法进行独立评分,按金属伪影对图像质量的影响程度予以记3、2、1、0分(3分为基本无伪影;2分为图像质量较好,有部分伪影;1分为图像伪影较重,尚能观察;0分为伪影很重,图像无法观察)。对所获数据采用SPSS 17.0进行配对t检验分析。结果:在110keV单能量区图像信噪比较高,因此所有图像均于110keV行MARs重建。能谱图像(110keV单能量图像或单能量+MARs图像)的评分与混合能量图像的评分之间,以及能谱图像组与混合能量图像组金属伪影的SD值之间均存在显著性差异(P=0.000〈0.05),即能量图像的金属伪影明显降低,图像质量优于混合能量的图像质量。结论:宝石CT能谱扫描能显著减少受检部位的金属伪影与硬化伪影,使含金属植入物的受检部位CT图像质量明显提高,具有较高的临床价值。  相似文献   

11.
目的研究不同CT值赋值法对脑转移瘤放疗计划剂量计算的影响,为基于磁共振(MR)图像进行放疗计划设计提供基础。方法选取35例接受放疗的脑转移瘤患者,每位患者在放疗前同一天分别进行CT和MR模拟定位,基于CT图像制定三维适形放射治疗(3D-CRT)或调强放射治疗(IMRT)计划为原计划Plan1。将CT图像和MR图像刚性配准,在CT和MR图像上勾画主要的组织和器官,计算各组织器官的群体化CT值。基于CT图像,采用3种CT值赋值法生成3组伪CT,分别为:全组织赋予140 HU;空腔、骨骼和软组织分别赋予-700、700和20 HU;不同组织器官分别赋予群体化的CT值。Plan1在3组伪CT上重新计算剂量分布,分别获得Plan2、Plan3、Plan4,然后比较这3组计划和Plan1的剂量学差异。结果骨骼、空腔平均CT值分别为(735.3±68.0)、(-723.9±27.0)HU,软组织的平均CT值基本分布在-70~70 HU。Plan2、Plan3、Plan4相比Plan1的剂量差异依次减小,在剂量指标比较中,眼晶状体最大剂量差异最大,分别可达5.0%以上、1.5%~2.0%、1.0%~1.5%,其余剂量指标差异的95%置信区间上限基本不超过2.0%、1.2%、0.8%。在像素点剂量比较中,局部靶区病例中差异>1%的区域主要分布在靠近射野的皮肤处,而全脑靶区病例中主要分布在骨骼与空腔、软组织交界处,以及靠近射野的皮肤处。此外,CT值赋值法在3D-CRT的剂量学差异大于IMRT,在全脑靶区病例大于局部靶区病例。结论不同CT值赋值法对脑转移瘤放疗计划剂量计算的影响显著,对骨骼、空腔和软组织赋予合适CT值,剂量计算偏差可基本控制于1.2%以内,而对各组织器官赋予群体化的CT值,可进一步将偏差控制于0.8%以内,满足临床要求。  相似文献   

12.
Tomotherapy adaptive dose calculation offers the ability to verify and adjust the therapeutic plan during the treatment. Using tomotherapy adaptive dose calculation, the planned fluence pattern can be used to recalculate the dose distribution on pretreatment megavoltage computed tomography (MVCT) images. Zipper artifacts, which appear as increased density in the central region of MVCT images, may affect the accuracy of adaptive dose recalculation. The purpose of this study was to evaluate the dosimetric effects of zipper artifacts on tomotherapy adaptive dose calculation. MVCT images of a cylindrical water phantom of 22-cm diameter were acquired on a tomotherapy system. The zipper artifacts were enclosed by a cylindrical planning target volume (PTV) contoured on these images. For comparison, artifact-free images were created by replacing the computed tomography (CT) numbers of zipper artifacts with the mean CT number of water. Treatment plans were generated by giving a uniform dose of 2 Gy to the PTV based on these modified images; it was then applied to the images that have the zipper artifacts. The impacts of different pitch ratios on the artifacts were assessed. The dose distribution differences between the 2 sets of images were compared. The absorbed dose that covered 95% volume of PTV and maximum dose, minimum dose, and mean dose of the PTV were also calculated and compared. The water phantom was scanned on the tomotherapy system twice per week for 12 consecutive weeks. The mean CT number of zipper artifacts (101 HU) was three times higher than that of water (34 HU). The CT number value and location of zipper artifacts were not affected by the pitch ratio. Gamma analysis was performed between the original and recalculated dose distributions. The discrepancies between the isodose distributions calculated by two sets of images were within 1%/1-mm tolerance. The dosimetric impact from zipper artifacts was found insignificant such that the recalculated dose was underestimated by less than 0.5%.  相似文献   

13.
IntroductionCone-beam CT (CBCT) image quality is important for its quantitative analysis in adaptive radiation therapy. However, due to severe artifacts, the CBCTs are primarily used for verifying patient setup only so far. We have developed a learning-based image quality improvement method which could provide CBCTs with image quality comparable to planning CTs (pCTs). The accuracy of dose calculations based on these CBCTs is unknown. In this study, we aim to investigate the dosimetric accuracy of our corrected CBCT (CCBCT) in brain stereotactic radiosurgery (SRS) and pelvic radiotherapy.Materials and MethodsWe retrospectively investigated a total of 32 treatment plans from 22 patients, each of whom with both original treatment pCTs and CBCTs acquired during treatment setup. The CCBCT and original CBCT (OCBCT) were registered to the pCT for generating CCBCT-based and OCBCT-based treatment plans. The original pCT-based plans served as ground truth. Clinically-relevant dose volume histogram (DVH) metrics were extracted from the ground truth, OCBCT-based and CCBCT-based plans for comparison. Gamma analysis was also performed to compare the absorbed dose distributions between the pCT-based and OCBCT/CCBCT-based plans of each patient.ResultsCCBCTs demonstrated better image contrast and more accurate HU ranges when compared side-by-side with OCBCTs. For pelvic radiotherapy plans, the mean dose error in DVH metrics for planning target volume (PTV), bladder and rectum was significantly reduced, from 1% to 0.3%, after CBCT correction. The gamma analysis showed the average pass rate increased from 94.5% before correction to 99.0% after correction. For brain SRS treatment plans, both original and corrected CBCT images were accurate enough for dose calculation, though CCBCT featured higher image quality.ConclusionCCBCTs can provide a level of dose accuracy comparable to traditional pCTs for brain and prostate radiotherapy planning and the correction method proposed here can be useful in CBCT-guided adaptive radiotherapy.  相似文献   

14.
Objective:To investigate the feasibility of using deep learning image reconstruction (DLIR) to significantly reduce radiation dose and improve image quality in contrast-enhanced abdominal CT.Methods:This was a prospective study. 40 patients with hepatic lesions underwent abdominal CT using routine dose (120kV, noise index (NI) setting of 11 with automatic tube current modulation) in the arterial-phase (AP) and portal-phase (PP), and low dose (NI = 24) in the delayed-phase (DP). All images were reconstructed at 1.25 mm thickness using ASIR-V at 50% strength. In addition, images in DP were reconstructed using DLIR in high setting (DLIR-H). The CT value and standard deviation (SD) of hepatic parenchyma, spleen, paraspinal muscle and lesion were measured. The overall image quality includes subjective noise, sharpness, artifacts and diagnostic confidence were assessed by two radiologists blindly using a 5-point scale (1, unacceptable and 5, excellent). Dose between AP and DP was compared, and image quality among different reconstructions were compared using SPSS20.0.Results:Compared to AP, DP significantly reduced radiation dose by 76% (0.76 ± 0.09 mSv vs 3.18 ± 0.48 mSv), DLIR-H DP images had lower image noise (14.08 ± 2.89 HU vs 16.67 ± 3.74 HU, p < 0.001) but similar overall image quality score as the ASIR-V50% AP images (3.88 ± 0.34 vs 4.05 ± 0.44, p > 0.05). For the DP images, DLIR-H significantly reduced image noise in hepatic parenchyma, spleen, muscle and lesion to (14.77 ± 2.61 HU, 14.26 ± 2.67 HU, 14.08 ± 2.89 HU and 16.25 ± 4.42 HU) from (24.95 ± 4.32 HU, 25.42 ± 4.99 HU, 23.99 ± 5.26 HU and 27.01 ± 7.11) with ASIR-V50%, respectively (all p < 0.001) and improved image quality score (3.88 ± 0.34 vs 2.87 ± 0.53; p < 0.05).Conclusion:DLIR-H significantly reduces image noise and generates images with clinically acceptable quality and diagnostic confidence with 76% dose reduction.Advances in knowledge:(1) DLIR-H yielded a significantly lower image noise, higher CNR and higher overall image quality score and diagnostic confidence than the ASIR-V50% under low signal conditions. (2) Our study demonstrated that at 76% lower radiation dose, the DLIR-H DP images had similar overall image quality to the routine-dose ASIR-V50% AP images.  相似文献   

15.
BACKGROUND AND PURPOSE:Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx.MATERIALS AND METHODS:Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value.RESULTS:A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality.CONCLUSIONS:Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area.

Imaging plays a crucial role in the staging of oral cancers and is essential for determining tumor resectability, choosing suitable anatomic reconstruction, and planning radiation therapy. The imaging method of choice for evaluating the oral cavity and oropharynx is MR imaging because it provides higher soft-tissue contrast and is less susceptible to artifacts caused by dental hardware. Yet, the limited availability and higher costs of MR imaging, as well as individual patient conditions (breathing or swallowing disorders, claustrophobia, electronic implants such as pacemakers or ferromagnetic foreign bodies), make CT an important alternative option for many patients. Thus, CT is used frequently to stage or follow-up patients because of its wide availability, relatively low cost, and very short scan time. In patients with dental fillings or implants, however, image quality can be degraded by photon starvation and beam hardening.1 Due to these artifacts, tumors may be only partially visible or completely obscured, making it challenging to define tumor extent. Moreover, streak artifacts may obscure ipsilateral or contralateral lymph node metastases, which can potentially change the therapeutic approach.The use of high-resolution kernels and extended CT-value ranges2 improves image quality; evaluating the surrounding soft tissue, however, remains challenging or even impossible in many cases and can lead to missed findings. For metal artifact reduction (MAR),3,4 sinogram in-painting methods have been proposed. Areas affected by metal artifacts are regarded as missing data and are filled in by different interpolation techniques, such as linear interpolation metal artifact reduction (LIMAR). Because LIMAR is associated with algorithm-induced artifacts, normalized MAR (NMAR) was developed, and it has demonstrated the potential to improve image quality in patients with artifacts from dental hardware and to improve the diagnostic accuracy of head and neck and of pelvic CT5,6 while minimizing algorithm-induced artifacts.An extension of the MAR methods (ie, LIMAR and NMAR) is a frequency-split technique that also recovers noise texture and anatomic details in close proximity to metal. In a previous study of pelvic CT, this technique delineated adjacent bone and tissue next to metal implants more accurately than NMAR.6The aim of this study was to evaluate a novel 3D iterative approach using normalized and frequency split metal artifact reduction in clinical routine head and neck imaging. The resulting image quality was compared with that of filtered back-projection (FBP) reconstructions and LIMAR.  相似文献   

16.
目的 探讨能谱成像技术(GSI)减少金属伪影的价值.方法 选取离体附肉猪腰椎骨模型1具,在相同CT剂量指数(CTDI)条件下分别行GSI和常规120kVp扫描;随后于L2、L4水平植入钛钉并行重复扫描.金属植入前后的GSI图像均以间距为10 keV在40~140 keV间重建11种单能量(Mono)+金属伪影消除技术(MARs)图像.主观评定钛钉植入后120kVp组和GSI组图像质量差异,并量化分析:(1)在金属伪影最重层面自金属边缘由近及远选取3个面积相同的ROI,依次记为ROI近、ROI中、ROI远,分别测量植入前120kVp和Mono组、植入后120 kVp、Mono+MARs组的CT值及CT标准差(SD)值,并采用LSD检验和Bonferroni检验比较3个ROI植入前Mono组和植入后Mono+MARs组CT值的差异.(2)计算对比噪声比(CNR)和伪影指数(AI);比较不同组金属植入前后的CT值、SD值和CNR值;通过伪影指数确定观察金属伪影的最佳keV范围.结果 (1)GSI组图像质量优于常规120kVp组.(2)伪影指数最小的keV范围是80~100 keV.(3)ROI近的植入前Mono组和植入后Mono+MARs组CT值分别为(80.25±16.00)和(30.10±10.45)HU,差异有统计学意义(Z=2.978,P<0.05);ROI中和ROI远的植入前Mono组、植入后Mono+MARs组CT值分别为(63.21±6.61)和(54.84±10.60)HU、(76.54±9.07)和(73.20±5.39)HU,差异均无统计学意义(t值分别为0.530、0.822,P值均>0.05).结论 能谱成像技术能准确校正距离金属3 cm范围外的伪影,并提供准确的CT值.  相似文献   

17.
《Medical Dosimetry》2023,48(1):1-7
We investigated delivered dose and dose accumulation features in the dose tracking module of RayStation version 11B before potential integration into the spine stereotactic radiosurgery (SSRS) program at our institution. End-to-end testing with a rigid Rando phantom was performed, and 10 retrospective clinical cases were selected for evaluation. Pre-treatment cone beam CTs (pCBCT) were corrected for Hounsfield unit (HU) integrity and contours were rigidly copied from the reference plan. We then calculated the delivered dose to the corrected cone beam CT (cCBCT). A deformable image registration (DIR) was generated between cCBCT and reference planning CT (rCT) using controlling region of interests. Deformed delivered dose to the rCT was summed to generate the accumulated dose for multiple fractions. The end-to-end tests of the phantom study revealed an improvement of cCBCT HU information by > 100 HU compared to the pCBCT. When compared to the reference plan, the delivered dose and deformed delivered dose were within 1.0% for the GTV and CTV and 3.0% for the spinal cord, respectively. Nearly all 10 clinical cases demonstrated delivered dose and accumulated dose deviations < 3.0% from the reference plan. However, 2 patients rendered delivered dose deviations between 3.0% and 4.0%, showing the effectiveness of the module. The dose tracking module in RayStation version 11B could potentially be utilized to aid clinical decision-making for external body shape change or positional deviation in SSRS for rigid target and critical structures. Evaluation before clinical application under one's specific practice is required, and results must be carefully analyzed specially near the high dose gradient area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号