首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emergence of resistance among mosquitoes is a recent problem. Safe and eco-friendly agents from biological origins are the need of the hour. Nereistoxin, a naturally occurring substance, was first isolated from the marine annelid Lumbriconereis heteropoda and stored in the freezer. In the present study, the toxicity of nereistoxin was evaluated against vector mosquitoes. The larvicidal, ovicidal and adulticidal activities of nereistoxin were assayed for their toxicity against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). The nereistoxin was inversely proportional to the concentration and directly proportional to the mosquitoes. The larvicidal activity after 24 h LC50 value was observed at 0.467, 0.535 and 0.601 ppm for A. stephensi, A. aegypti and C. quinquefasciatus, respectively. The ovicidal activity after 120 h zero percentage of egg hatchability was observed at a concentration of 0.8 ppm for A. stephensi and 1.0 ppm for A. aegypti and C. quinquefasciatus. The results of the adulticidal activity after 24 h LD50 value were observed at 0.022, 0.028 and 0.034 ppm for A. stephensi, A. aegypti and C. quinquefasciatus, respectively. The extracted nereistoxin was characterized and identified by ultraviolet, infrared, nuclear magnetic resonance, mass spectroscopic methods and high pressure liquid chromatography. These results clearly reveal that the nereistoxin served as a potential larvicidal, ovicidal and adulticidal activity against vector mosquitoes.  相似文献   

2.
Malaria is an overwhelming impact in the poorest countries in the world due to their prevalence, virulence and drug resistance ability. Currently, there is inadequate armoury of drugs for the treatment of malaria. This underscores the continuing need for the discovery and development of new effective and safe antimalarial drugs. To evaluate the in vitro and in vivo antimalarial activity of the leaf ethyl acetate extract of Murraya koenigii, bioassay-guided chromatographic fractionation was employed for the isolation and purification of antimalarial compounds. The in vitro antimalarial activity was assayed by the erythrocytic stages of chloroquine-sensitive strain of Plasmodium falciparum (3D7) in culture using the fluorescence-based SYBR Green I assay. The in vivo assay was done by administering mice infected with Plasmodium berghei (NK65) four consecutive daily doses of the extracts through oral route following Peter’s 4-day curative standard test. The percentage suppression of parasitaemia was calculated for each dose level by comparing the parasitaemia in untreated control with those of treated mice. Cytotoxicity was determined against HeLa cells using MTT assay. Histopathology was studied in kidney, liver and spleen of isolated compound-treated Swiss albino mice. The leaf crude ethyl acetate extract of M. koenigii showed good in vitro antiplasmodial activity against P. falciparum. The in vivo test of the leaf crude ethyl acetate extract (600 mg/kg) showed reduced malaria parasitaemia by 86.6 % against P. berghei in mice. Bioassay-guided fractionation of the leaf ethyl acetate extract of M. koenigii led to the isolation of two purified fractions C3B2 (2.84 g) and C3B4 (1.97 g). The purified fractions C3B2 and C3B4 were found to be active with IC50 values of 10.5?±?0.8 and 8.25?±?0.2 μg/mL against P. falciparum, and in vivo activity significantly reduced parasitaemia by 82.6 and 88.2 % at 100 mg/kg/body weight on day 4 against P. berghei, respectively. The isolated fractions C3B2 and C3B4 were monitored by thin-layer chromatography until a single spot was obtained with R f values of 0.36 and 0.52, respectively. The pure compounds obtained in the present investigation were subjected to UV–visible spectroscopy, Fourier transformer infrared spectroscopy, 1D and 2D 1H-Nuclear magnetic resonance (NMR), 13C NMR, DEPT, COSY and Mass spectral analysis. Based on the spectral analysis, it is concluded that the isolated compounds were myristic acid (C3B2) and β-caryophyllene (C3B4). The cytotoxic effect of myristic acid and β-caryophyllene showed the TC50 values of >100 and 80.5 μg/mL, respectively against HeLa cell line. The histopathology study showed that protection against nephrotoxicity of kidney, hepatic damage of liver and splenocytes protection in spleen was achieved with the highest dose tested at 100 mg/kg/body weight. The present study provides evidence of antiplasmodial compounds from M. koenigii and is reported for the first time.  相似文献   

3.
Malaria is one of the most prevalent infectious diseases in the world. Treatment for malaria is commonly inadequate due to the lack of quality assured effective drugs. The effectiveness of these drugs is declining at an ever accelerating rate, with consequent increase in malaria related morbidity and mortality. The newest antiplasmodial drug from plants is needed to overcome this problem. Numerous mangroves and mangal associates are used as folklore medicine to treat various human diseases. The mangrove plant species are a good source of potential bioactive entities which exhibits many therapeutic properties. The present study was carried out to test the antiplasmodial activity of five mangrove plant species distributed along the South East coast of India. Bruguiera cylindrica, Ceriops decandra, Lumnitzera racemosa, Rhizophora apiculata, and Rhizophora mucronata mangrove plant extracts exhibited in vitro antiplasmodial activity against chloroquine-sensitive Plasmodium falciparum. Of which, the ethanolic bark extract of R. mucronata exhibited high antiplasmodial activity (IC50 = 62.18 μg.ml−1). Statistical analysis reveals that, significant antiplasmodial activity (P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes was also carried out and it shows that no morphological differences in erythrocytes by the ethanolic extract of mangrove plants after 48 h of incubation. The screening for phytochemical constituents in the mangrove plants were carried out and it reveals that, the presence of alkaloids, triterpenes, flavonoids, tannins, catachin, anthroquinone, phenols, sugars, and proteins. This study shows that the mangrove plants had a source of lead compounds for the development of new drugs for the treatment of malaria.  相似文献   

4.
Malaria is the most important parasitic disease, leading to annual death of about one million people, and the Plasmodium falciparum develops resistance to well-established antimalarial drugs. The newest antiplasmodial drug from a marine microorganism helps in addressing this problem. In the present study, Haliclona Grant were collected and subjected for enumeration and isolation of associated bacteria. The count of bacterial isolates was maximum in November 2007 (18?×?10(4) colony-forming units (CFU)?g(-1), and the average count was maximum during the monsoon season (117?×?10(3) CFU g(-1)). Thirty-three morphologically different bacterial isolates were isolated from Haliclona Grant, and the extracellular ethyl acetate extracts were screened for antiplasmodial activity against P. falciparum. The antiplasmodial activity of bacterium RJAUTHB 14 (11.98 μg[Symbol: see text]ml(-1)) is highly comparable with the positive control chloroquine (IC(50) 19.59 μg[Symbol: see text]ml(-1)), but the other 21 bacterial extracts showed an IC(50) value of more than 100 μg[Symbol: see text]ml(-1). Statistical analysis reveals that significant in vitro antiplasmodial activity (P?相似文献   

5.
6.
Malaria parasite (Plasmodium spp.) infection in the mosquito Anopheles stephensi induces significant expression of A. stephensi nitric oxide synthase (AsNOS) in the midgut epithelium as early as 6 h postinfection and intermittently thereafter. This induction results in the synthesis of inflammatory levels of nitric oxide (NO) in the blood-filled midgut that adversely impact parasite development. In mammals, P. falciparum glycosylphosphatidylinositols (PfGPIs) can induce NOS expression in immune and endothelial cells and are sufficient to reproduce the major effects of parasite infection. These effects are mediated in part by mimicry of insulin signaling by PfGPIs. In this study, we demonstrate that PfGPIs can induce AsNOS expression in A. stephensi cells in vitro and in the midgut epithelium in vivo. Signaling by P. falciparum merozoites and PfGPIs is mediated through A. stephensi Akt/protein kinase B and a pathway involving DSOR1, a mitogen-activated protein kinase kinase, and an extracellular signal-regulated kinase. However, despite the involvement of kinases that are also associated with insulin signaling in A. stephensi cells, signaling by P. falciparum and by PfGPIs is distinctively different from signaling by insulin. Therefore, although mimicry of insulin by PfGPIs appears to be restricted to mammalian hosts of P. falciparum, the conservation of PfGPIs as a prominent parasite-derived signal of innate immunity can now be extended to include Anopheles mosquitoes, indicating that parasite signaling of innate immunity is conserved in mosquito and mammalian cells.  相似文献   

7.
A system for biocontrol of malaria and filarial mosquito vectors has been developed using herbal extracts of three Spilanthes species, S. acmella L.var oleraceae Clarke, S. calva L. and S. paniculata Wall ex DC. Cent percent mortalities was achieved against the late third/early fourth instar larvae of A. stephensi Liston, A. culicifacies species C and C. quinquefasciatus Say using crude hexane extract obtained from flower heads of Spilanthes spp. Of the three plant species, S. acmella extract proved to be the most effective in inducing complete lethality at minimum doses, the respective LC50 and LC90 values being 4.57 and 7.83 (A. stephensi), 0.87 and 1.92 (A. culicifacies) and 3.11and 8.89 ppm (C. quinquefasciatus). This was followed by S. calva and S. paniculata extracts, respectively. This is the first report of achieving cent percent lethality against these mosquito larvae using minimal doses of plant extracts from this or any other plant species.  相似文献   

8.
The entomopathogenic fungi Fusarium oxysporum are the next generation mosquito controlling agent. F. oxysporum basically contains unique toxin and can be a selectively good agent in tropical countries. We are reporting here the efficacy of the metabolites of F. oxysporum against the larvae of Anopheles stephensi and Culex quinquefasciatus in the laboratory. F. oxysporum was grown on Czapek Dox broth. The bioassays were run at five different concentrations (1.30, 1.60, 1.77, 1.90, and 2.00 ppm). The LC50, LC90, and LC99 values with 95% fiducial limits and probit equations were calculated by probit analysis. The mortality was observed after 24, 48, and 72 h against all instars. The LC90 values in the case of C. quinquefasciatus after 48 h when calculated were 1.85, 1.92, 1.87, and 1.87 ppm, respectively, while LC99 values calculated were 2.24, 2.25, 2.18, and 2.19 ppm. Moreover, after 48 h in the case of A. stephensi, the LC50 values for the first, second, third, and fourth instars were recorded as 1.48, 1.51, 1.71, and 1.50 ppm, respectively. The LC90 values recorded were 1.88, 1.91, 1.93, and 1.89 ppm and LC99 values observed were 2.36, 2.23, 2.26, and 2.21 ppm. The results obtained 24, 48, and 72 h have been compared and it was observed significantly that 48 h after exposure the metabolite has more pathogenicity. The results of the metabolites of F. oxysporum may be considered as a new bio-control agent for vector mosquitoes if the field trial succeeds.  相似文献   

9.
Since ancient times, plant and microbial products were used in various aspects. However, their use against insects decreased when chemical products became developed. Recently, concerns increased with respect to public health and environmental security requiring detection of natural products that may be used against insects. In this study, mosquito Larvicidal and ovicidal activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of the leaf of three plants, Eclipta alba, Cardiospermum halicacabum, and Andrographis paniculata, were tested against the early third-instar larvae of Anopheles stephensi (Liston) (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of A. paniculata, E. alba, and C. halicacabum against the larvae of A. stephensi (LC50 = 79.68, 112.56, and 133.01 ppm; LC90 = 154.66, 220.68, and 270.72 ppm), respectively. Mean percent hatchability of the ovicidal activity was observed 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Mortality of 100% with methanol and ethyl acetate extract of A. paniculata and methanol extract of E. alba were exerted at 200 ppm and methanol and benzene extract of C. halicacabum exerted at 150 ppm. This is an ideal eco-friendly approach for the control of the malaria vector, A. stephensi. Therefore, this study provides first report on the larvicidal and ovicidal activities against malaria vector, A. stephensi of E. alba plant extracts.  相似文献   

10.
Morinda citrifolia leaf extract was tested for larvicidal activity against three medically important mosquito vectors such as malarial vector Anopheles stephensi, dengue vector Aedes aegypti, and filarial vector Culex quinquefasciatus. The plant material was shade dried at room temperature and powdered coarsely. From the leaf, 1-kg powder was macerated with 3.0 L of hexane, chloroform, acetone, methanol, and water sequentially for a period of 72 h each and filtered. The yield of extracts was hexane (13.56 g), chloroform (15.21 g), acetone (12.85 g), methanol (14.76 g), and water (12.92 g), respectively. The extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. The M. citrifolia leaf extract at 200, 300, 400, 500, and 600 ppm caused a significant mortality of three mosquito species. Hexane, chloroform, acetone, and water caused moderate considerable mortality; however, the highest larval mortality was methanolic extract, observed in three mosquito vectors. The larval mortality was observed after 24-h exposure. No mortality was observed in the control. The third larvae of Anopheles stephensi had values of LC(50)?=?345.10, 324.26, 299.97, 261.96, and 284.59 ppm and LC(90)?=?653.00, 626.58, 571.89, 505.06, and 549.51 ppm, respectively. The Aedes aegypti had values of LC(50)?=?361.75, 343.22, 315.40, 277.92, and 306.98 ppm and LC(90)?=?687.39, 659.02, 611.35, 568.18, and 613.25 ppm, respectively. The Culex quinquefasciatus had values of LC(50)?=?382.96, 369.85, 344.34, 330.42, and 324.64 ppm and LC(90)?=?726.18, 706.57, 669.28, 619.63, and 644.47 ppm, respectively. The results of the leaf extract of M. citrifolia are promising as good larvicidal activity against the mosquito vector Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. This is a new eco-friendly approach for the control of vector control programs. Therefore, this study provides first report on the larvicidal activities against three species of mosquito vectors of this plant extracts from India.  相似文献   

11.
Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. The aim of the present study, to evaluate the larvicidal, pupicidal, repellent, and adulticidal activities of methanol crude extract of Artemisia nilagirica were assayed for their toxicity against two important vector mosquitoes, viz., Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). The fresh leaves of A. nilagirica were washed thoroughly in tap water and shade dried at room temperature (28?±?2?°C) for 5?C8?days. The air-dried materials were powdered separately using commercial electrical blender. From the plants, 500?g powdered was macerated with 1.5?L organic solvents of methanol sequentially for a period of 72?h each and filtered. The larval and pupal mortality was observed after 24?h of exposure; no mortality was observed in the control group. The first- to fourth-instar larvae and pupae of A. stephensi had values of LC50?=?272.50, 311.40, 361.51, 442.51, and 477.23?ppm, and the LC90?=?590.07, 688.81, 789.34, 901.59, and 959.30?ppm; the A. aegypti had values of LC50?=?300.84, 338.79, 394.69, 470.74, and 542.11?ppm, and the LC90?=?646.67, 726.07, 805.49, 892.01, and 991.29?ppm, respectively. The results of the repellent activity of plant extract of A. nilagirica plants at five different concentrations of 50, 150, 250, 350, and 450?ppm were applied on skin of fore arm in man and exposed against adult female mosquitoes. In this observation, the plant crude extract gave protection against mosquito bites without any allergic reaction to the test person, and also, the repellent activity is dependent on the strength of the plant extracts. The adult mortality was found in methanol extract of A. nilagirica, with the LC50 and LC90 values of 205.78 and 459.51?ppm for A. stephensi, and 242.52 and 523.73?ppm for A. aegypti, respectively. This result suggests that the leaf extract have the potential to be used as an ideal eco-friendly approach for the control of vector mosquito as target species.  相似文献   

12.
The aim of the study was to screen 11 selected traditional medicinal plants from West Africa for their in vitro antiplasmodial activity in order to determine the activity of single and of combination of plant extracts and to examine the activity of isolated pure compounds. Ethanolic and aqueous extracts of the 11 selected plants and pure compounds from Phyllanthus muellerianus and Anogeissus leiocarpus were tested in vitro against Plasmodium falciparum 3D7. Proliferation inhibitory effects were monitored after 48 h. Among the plants and pure compounds investigated in this study, geraniin from P. muellerianus, ellagic, gentisic, and gallic acids from A. leiocarpus, and extracts from A. leiocarpus, P. muellerianus and combination of A. leiocarpus with P. muellerianus affected the proliferation of P. falciparum most potently. Significant inhibitory activity was observed in combination of A. leiocarpus with P. muellerianus (IC(50)?=?10.8 μg/ml), in combination of A. leiocarpus with Khaya senegalensis (IC(50)?=?12.5 μg/ml), ellagic acid (IC(50)?=?2.88 μM), and geraniin (IC(50)?=?11.74 μM). In general growth inhibition was concentration-dependent revealing IC(50) values ranging between 10.8 and -40.1 μg/ml and 2.88 and 11.74 μM for plant extracts and pure substances respectively. Comparison with literature sources of in vivo and in vitro toxicity data revealed that thresholds are up to two times higher than the determined IC(50) values. Thus, the present study suggests that geraniin from P. muellerianus; ellagic acid, gallic acid, and gentisic acid from A. leiocarpus; and combination of extracts from A. leiocarpus with either P. muellerianus or K. senegalensis could be a potential option for malaria treatment.  相似文献   

13.
14.
The effect of the malarial parasite, Plasmodium falciparum Welch, on the daily survival rates and longevity of Anopheles gambiae Giles sensu lato and Anopheles funestus Giles was determined for wild-caught, naturally infected females from western Kenya. Mosquitoes were collected inside houses and held in cages until death, after which they were assayed for P. falciparum circumsporozoite protein by an enzyme-linked immunosorbent assay (ELISA). Survival rates of field populations determined by parity rates were significantly higher than survival rates estimated by regression for Anopheles dying in cages. Overall, An. gambiae s.l. had a significantly higher daily mortality rate (means = 17.5%) than An. funestrus (means = 13.2%). P. falciparum ELISA infection rates, which were higher for An. gambiae s.l. (means = 19.8%; n = 1,221) than for An. funestus (means = 11.9%; n = 1,128), did not increase as a function of time for caged Anopheles. For An. gambiae s.l., there was a significant negative correlation between holding time and P. falciparum ELISA absorbance, suggesting that detectable circumsporozoite protein and perhaps the number of sporozoites may decrease with time in the vector. In western Kenya, an area where Anopheles populations often have extremely high malaria infection rates. Plasmodium infections did not reduce vector survivorship.  相似文献   

15.
16.
Malaria, both Plasmodium falciparum (Welch) and Plasmodium vivax (Grassi & Feletti), has reemerged as a significant public health disease issue in Peru, especially in forested areas in the eastern part of the country. The spread of Anopheles darlingi Root, the principal South American malaria vector, into new areas of Peru is thought to be a factor in this resurgence. However, epidemiological evidence suggests that in malaria endemic areas of eastern Peru where An. darlingi does not occur, other species are involved in malaria transmission. The objective of this study was to analyze Anopheles species collected from 11 provinces within four departments in eastern Peru during 2001 and 2002 for infections with P. falciparum and P. vivax. More than 84,000 Anopheles mosquitoes representing 13 species were tested by enzyme-linked immunosorbent assay for the presence of Plasmodium circumsporozoite (CS) proteins. Of these, only An. darlingi and Anopheles benarrochi Gabaldón, Cova García & López were found positive. In total, 14 (0.98%) of 1,432 pools of An. darlingi were positive for Plasmodium species; specifically 10 (0.70%) pools were positive for P. falciparum, two (0.14%) were positive for P. vivax VK210, and two (0.14%) were positive for P. vivax VK247 proteins. Nine (0.14%) of 6,323 pools of An. benarrochi were positive for Plasmodium; five (0.08%) of 6,323 pools were positive for P. falciparum, two (0.03%) were positive for P. vivax VK247, one (0.02%) was positive for mixed P. vivax VK210/VK247 infections, and one (0.02%) was positive for mixed P. falciparum and P. vivax VK210 CS-proteins. Although infection rates in An. benarrochi were significantly lower (0.14%) than rates found for An. darlingi (0.98%), our data suggest that An. benarrochi may play a role in transmitting and maintaining Plasmodium species in various malaria endemic areas of eastern Peru.  相似文献   

17.
Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and ecofriendly reducing and capping agents. The present study was carried out to establish the larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf extract of Nerium oleander (Apocynaceae) against the first to fourth instar larvae and pupae of malaria vector, Anopheles stephensi (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by the aqueous extract of the plant parts to generate extremely stable silver nanoparticles in water. The results were recorded from UV–Vis spectrum, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy analysis. The production of the AgNPs synthesized using leaf extract of N. oleander was evaluated through a UV–Vis spectrophotometer in a wavelength range of 200 to 700 nm. This revealed a peak at 440 nm in N. oleander leaf extracts, indicating the production of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 509.12 cm?1 (C–H bend alkenes), 1,077.05 cm?1 (C–O stretch alcohols), 1,600.63 cm?1 (N–H bend amines), 2,736.49 and 2,479.04 cm?1 (O–H stretch carboxylic acids), and 3,415.31 cm?1 (N–H stretching due to amines group). An SEM micrograph showed 20–35-nm-size aggregates of spherical- and cubic-shaped nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of silver. Larvicidal activity of aqueous leaf extract of N. oleander and synthesized AgNPs was carried out against Anopheles stephensi, and the results showed that the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of Anopheles stephensi with the following values: LC50 of instar larvae 20.60, 24.90, 28.22, and 33.99 ppm; LC90 of instar larvae 41.62, 50.33, 57.78, and 68.41 ppm; and LC50 and LC90 of pupae 39.55 and 79.10 ppm, respectively. The aqueous leaf extract exhibited larval toxicity against the first to fourth instar larvae and pupae of Anopheles stephensi with the following values: LC50 of instar larvae 232.90, 273.71, 318.94, and 369.96 ppm; LC90 of instar larvae 455.95, 563.10, 639.86, and 730.30 ppm; and LC50 and LC90 of pupae 426.01 and 805.13 ppm, respectively. The chi-square value was significant at p?<?0.05 level. The possible larvicidal activity may be due to penetration of nanoparticles through a membrane. The results could suggest that the use of plant N. oleander to synthesize silver nanoparticles is a rapid, environmentally safer, and greener approach for mosquito control. This could lead us to a new possibility in vector-control strategy.  相似文献   

18.
Vector control is a critical requirement in epidemic disease situations, as is an urgent need to develop new and improved mosquito control methods that are economical and effective yet safe for nontarget organisms and the environment. Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, activity of silver nanoparticles (AgNPs) synthesized using Euphorbia hirta (E. hirta) plant leaf extract against malarial vector Anopheles stephensi (A. stephensi) was determined. Range of concentrations of synthesized AgNPs (3.125, 6.25, 12.5, 25, and 50?ppm) and methanol crude extract (50, 100, 150, 200, and 250?ppm) were tested against larvae of A. stephensi. The synthesized AgNPs from E. hirta were highly toxic than methanolic crude extract against malarial vector, A. stephensi. The synthesized AgNPs were characterized by UV-vis spectrum, scanning electron microscopy (SEM), and X-ray diffraction. SEM analyses of the synthesized showed that AgNPs, measuring 30-60?nm in size, were clearly distinguishable. The synthesized AgNPs showed larvicidal effects after 24?h of exposure; however, the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of values LC(50) (10.14, 16.82, 21.51, and 27.89?ppm, respectively), LC(90) (31.98, 50.38, 60.09, and 69.94?ppm, respectively), and the LC(50) and LC(90) values of pupae of 34.52 and 79.76?ppm, respectively. Methanol extract exhibited the larval toxicity against the first to fourth instar larvae and pupae of values LC(50) (121.51, 145.40, 169.11, and 197.40?ppm, respectively), LC(90) (236.44, 293.75, 331.42, and 371.34?ppm, respectively), and the LC(50) and LC(90) values of pupae of 219.15 and 396.70?ppm, respectively. No mortality was observed in the control. These results suggest that synthesized silver nanoparticles are a rapid, eco-friendly, and single-step approach; the AgNPs formed can be potential mosquito larvicidal agents.  相似文献   

19.
The aim of the present study was to assess the larvicidal property of marine actinobacterial compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one (DMBPO) extracted and isolated from Streptomyces VITSVK5 sp. tested against the larvae of Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae), Anopheles stephensi Liston, and Culex tritaeniorhynchus Giles (Diptera: Culicidae). The isolate bacteria was taxonomically characterized, identified, and designated as Streptomyces VITSVK5 sp. The crude extract was loaded on silica gel column and eluted with chloroform:methanol. The isolated pure compound was analyzed by thin layer chromatography using chloroform and methanol as the solvent system and confirmed by high-performance liquid chromatography. The structure of the purified compound was established from infrared, ultraviolet, 1H-nuclear magnetic resonance (NMR), 13C-NMR, and mass spectral data. The chemical shift assignments obtained for the aliphatic compound from 1H-NMR corresponding to the molecular formula C13H17NO. Bioassay-guided fractionation led to the isolation of compound which was identified as DMBPO. In the present study, Streptomyces VITSVK5 sp. crude extract and different fractions were tested against the larvae of parasites at the concentration of 1,000 ppm. Those fractions showing 100% mortality in 24 h alone was selected for further column chromatographic separation. The purified compound, C13H17NO, was tested in the concentrations of 500, 250, 125, 62.5, and 31.25 ppm and observed the percent larval mortality of 100, 70, 64, 40, and 28 against R. microplus; 100, 79, 63, 36, and 22 against A. stephensi; and 100, 84, 67, 42, and 27 against C. tritaeniorhynchus, respectively. The crude extract showed parasitic effects after 24 h of exposure at 1,000 ppm, and parasite mortality was observed against the larvae of R. microplus (LC50?=?210.39 ppm, r 2?=?0.873); A. stephensi (LC50?=?169.38 ppm, r 2?=?0.840); and C. tritaeniorhynchus (LC50?=?198.75 ppm, r 2?=?0.887). The maximum efficacy was observed in purified marine actinobacterial compound DMBPO with LC50 and r 2 values against the larvae of R. microplus (84.31 ppm, 0.889); A. stephensi (88.97 ppm, 0.817), and C. tritaeniorhynchus (74.95 ppm, 0.781), respectively. The control (distilled water) showed nil mortality in the concurrent assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号