首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch1 inhibits neurite outgrowth in postmitotic primary neurons.   总被引:9,自引:0,他引:9  
  相似文献   

2.
Hexokinase is known as the first enzyme and rate-limiting step in glycolysis. The role of hexokinase activity and localization in regulating the rate of axonal regeneration was studied in cultured adult sensory neurons of dorsal root ganglia (DRG). Immunofluorescent staining of DRG demonstrated that small-medium neurons and satellite cells exhibited high levels of expression of hexokinase I. Large neurons had negative staining for hexokinase I. Intracellular localization and biochemical studies in cultured adult rat sensory neurons revealed that hexokinase I was almost exclusively found in the mitochondrial compartment. The hypothesis that neurotrophic factor dependent activation of Akt would regulate hexokinase association with the mitochondria was tested and quantitative Western blotting showed no effect of blockade of the phosphoinositide 3-kinase (PI 3-kinase)/Akt pathway using the inhibitor LY294002, indicating this interaction of hexokinase with mitochondria was not neurotrophic factor or Akt-dependent. Finally, pharmacological blockade of hexokinase activity and inhibition of localization to the mitochondrial compartment with hexokinase II VDAC binding domain (Hxk2VBD) peptide caused a significant inhibition of neurotrophic factor-directed axon outgrowth. The results support a key role for hexokinase activity and/or localization to the mitochondria in the regulation of neurite outgrowth in cultured adult sensory neurons.  相似文献   

3.
A PEO-containing surface coating was investigated as a means to control neurite outgrowth in the presence of serum. Various ratios of end-group-activated tri-block copolymer Pluronic F108 were used to immobilize the extracellular matrix protein fibronectin (FN). Primary cultures of dorsal root ganglion neurons were cultured on F108-immobilized FN or, as a control, on FN adsorbed from solution directly to polystyrene. Although FN surface concentration could be controlled in a dose-dependent manner by either technique, dose-dependent control of neuronal behaviors was best achieved on F108-immobilized FN. This effect was similar regardless of the presence of serum in the culture medium. F108-immobilized FN supported twofold greater maximal neurite outgrowth than did directly adsorbed FN. Furthermore, at similar surface concentrations, F108-FN was significantly more active in promoting neurite outgrowth. Polypropylene filament bundles treated with F108-immobilized FN supported robust outgrowth from explants of dorsal root ganglia, demonstrating the utility of the surface coating on clinically relevant materials with more complex shapes. The ability to control neuronal behaviors in a serum-resistant manner, coupled with enhanced biologic activity, demonstrates the potential for surfactant-based immobilization as a method for generating biointeractive materials for tissue engineering.  相似文献   

4.
Altering levels of serotonin in the primary somatosensory cortex during early postnatal life influences thalamocortical development. Recent in vivo experiments suggest that serotonin may have direct effects on the growth of thalamocortical axons, and the present study was undertaken to determine whether this amine influences process outgrowth from thalamic cells maintained in culture. Ventrobasal thalamic neurons were harvested from newborn rats and maintained in culture for eight days. At the end of this period, 0, 10, 25, 50 or 100 microM serotonin was added to the culture medium. After an additional six days, cultures were fixed and stained with neuron-specific enolase. Quantitative analysis of >500 cells from each condition indicated that 25 microM serotonin, but not the other concentrations of this amine, significantly increased the length of the primary (longest) process growing out from the cell body (P < 0.001), the total (summed) length of all processes (P < 0.0001), total neurites per cell (P < 0.05), number of branch points per cell (P < 0.01) and branch points on the primary neurite (P < 0.0005). These results demonstrate that exposing thalamic cells to serotonin increases process outgrowth from them in the absence of their cortical targets.  相似文献   

5.
The epithelial cells of the choroid plexus are a continuation of the ventricular ependymal cells and are regarded as modified ependymal cells. The present study was carried out to determine the influence of choroid plexus ependymal cells (CPECs) on axonal growth in vitro. Choroid plexuses were dissected from the fourth ventricle of postnatal day-1–10 mice, mechanically dissociated, and plated in fibronectin-coated culture dishes. CPECs had spread into monolayers with few endothelial cells in 3-week cultures. Some macrophages were scattered on the monolayer of CPECs. Dorsal root ganglia (DRG) were excised from mouse fetuses of 14-day gestation, dissociated with trypsin and cocultured on the CPEC monolayers. For comparison, dissociated DRG neurons were cocultured on astrocyte monolayers or cultured on laminin-coated plates. After 4.5 h culturing, the cultures were fixed and immunohistochemically double-stained for neurites and CPECs using antibodies against -tubulin III and S-100 , respectively. It was demonstrated that neurons extended many long neurites with elaborate branching on the surface of S-100-stained CPECs. In contrast, DRG neurons cultured on the astrocytes and on the laminin-coated plates had much shorter primary neurites with fewer branches than those cultured on the CPECs. The total length of neurites including primary neurites and their branches, of a single DRG neuron was 285 ± 14, 395 ± 15 and 565 ± 12 m on the laminin-coated plates, on astrocytes and on CPECs, respectively. Scanning electron microscopy revealed extension of neurites with well-developed growth cones on the ependymal cells. These results suggest that CPECs have a great capacity to promote neurite outgrowth from DRG neurons in vitro.  相似文献   

6.
In light of controversial reports concerning the effects of chondroitin sulfates on neurite outgrowth, several glycosaminoglycans belonging to this structural class were compared with regard to their influence on axon formation by embryonic day 18 hippocampal neurons. In these studies, chondroitin sulfate A (CS-A), CS-B and CS-C proved weak or inefficient in the neurite outgrowth promotion assay. As expected, CS-D stimulated both the fraction of neurite bearing neurons and the length of their processes. This effect could be neutralized by the monoclonal antibody (mAb) 473HD. In contrast, CS-E enacted a dramatic promotion of neurite outgrowth. This effect persisted in the presence of mAb 473HD, consistent with the observation that this antibody did not react with CS-E in glycosaminoglycan transfer and blotting techniques. We conclude that CSE contains a novel glycosaminoglycan based neurite outgrowth promoting motif, which is distinct from other known activities.  相似文献   

7.
目的 探讨坍塌反应调节蛋白5(CRMP5)对神经元突起生长的作用。方法 构建CRMP5真核表达载体,采用基因转染、实时定量PCR和免疫印迹技术评估CRMP5基因表达;以空载体为对照组,设3个复孔,用时差成像技术和突起提取技术观察和检测原代培养海马神经元突起的生长。结果 成功构建携带增强型绿色荧光蛋白(EGFP)标签蛋白的CRMP5的真核表达载体。脂质体转染技术可成功把CRMP5基因导入细胞,转染的细胞CRMP5表达高于空载体对照组;CRMP5蛋白表达于神经元的胞体和突起,尤其是胞体、突起起始处和突起末端高表达。过表达CRMP5可明显促进突起生长,主要表现为突起的生长,并形成丰富的侧枝;定量结果显示,CRMP5过表达的细胞突起的长度逐渐延长,而且较空载体转染细胞增多,差异显著(P<0.01)。导入CRMP5的细胞突起提取液的吸光度较对照细胞明显升高(P.<0.01)。 结论 CRMP5能促进神经元突起及其分支的生长。  相似文献   

8.
We investigated the changes in intracortical neuronal circuits of the hand motor cortex following sensory stimulation of the fingers in 11 healthy subjects. Motor evoked potentials (MEPs) were recorded from intrinsic hand muscles (right first dorsal interosseous and abductor digiti minimi muscles). Electrical stimulation was applied to a digit near (homotopic) or distant (heterotopic stimulation) from each muscle. The right index or little finger was stimulated electrically, followed by single- or paired-pulse transcranial magnetic stimulation (TMS) at an interval of 25, 200, 600, 1,000 or 1,400 ms. Paired-pulse TMS was applied with interstimuli intervals of 2 ms or 12 ms and was expected to stimulate inhibitory or facilitatory intracortical circuits, respectively. MEPs induced by single-pulse TMS were significantly suppressed 200, 600, and 1,000 ms after heterotopic and homotopic stimuli. Intracortical facilitation was significantly enhanced only after homotopic stimuli and such enhancement was maximal 200 ms after digit stimulation. Intracortical inhibition was slightly weakened after homotopic stimulation but this effect did not reach statistical significance (P=0.25). Our results show that sensory feedback can modify intracortical and corticospinal motor excitability and that intracortical facilitation can be enhanced in a topographic-specific way especially at long latencies. These findings suggest that indirect pathways, probably through somatosensory cortex and other areas, enhance intracortical motor excitability in a somatotopically organized manner. Electronic Publication  相似文献   

9.
We examined the neurite outgrowth of sensory neurons on astrocytes following the genetic deletion of N-cadherin (NCAD). Deletion abolished immunostaining for NCAD and the other classical cadherins, indicating that NCAD is likely the only classical cadherin expressed by astrocytes. Only 38% of neurons grown on NCAD-deficient astrocytes for 24 h produced neurites, as compared to 74% of neurons grown on NCAD-expressing astrocytes. Of the neurons that produced neurites, those grown on NCAD-deficient astrocytes had a mean total length of 378 μm, as compared to 1093 μm for neurons grown on NCAD-expressing astrocytes. Thus, the loss of NCAD greatly impairs the formation and extension neurites on astrocytes.  相似文献   

10.
There is an accumulation of evidence implicating a role for vitamin D(3) in the developing brain. The receptor for this seco-steroid is expressed in both neurons and glial cells, it induces nerve growth factor (NGF) and it is a potent inhibitor of mitosis and promoter of differentiation in numerous cells. We have therefore assessed the direct effect of vitamin D(3) on mitosis, neurite outgrowth, as well as NGF production as a possible mediator of those effects, in developing neurons. Using cultured embryonic hippocampal cells and explants we found the addition of vitamin D(3) significantly decreases the percentage of cultured hippocampal cells undergoing mitosis in conjunction with increases in both neurite outgrowth and NGF production. The role of vitamin D(3) during brain development warrants closer scrutiny.  相似文献   

11.
12.
Neurite outgrowth is elicited from whole explants or dissociated neurons of 8--10-day-old chick embryo sensory, dorsal root ganglia when cultured in the presence of a high speed supernatant fraction (105,000 g) from homogenates of chick or rat heart, liver or brain. The neurite promoting activity is not identical to mouse nerve growth factor (NGF) and is non-dialyzable. Expression of this neurogenic factor would appear to be developmentally regulated as its activity is barely detectable in organs from 6--9-day-old embryos but specific activity rises dramatically in homogenates of organs from embryos of greater than 11 days incubation. Greatest activity is found in chick heart and rat brain with only trace levels in lung or kidney and none in spinal cord.  相似文献   

13.
目的探讨CRMP5对大鼠海马神经元突起生长的影响。方法将带FAM标记的CRMP5的特异性干扰片段及阴性对照转染培养成熟的海马神经元,用免疫荧光的方法验证干扰片段对神经元内源性CRMP5的干扰效果,并利用共聚焦显微镜观察神经元突起以及侧枝的形成。结果携带FAM的si RNA可以成功的进入细胞,分布于神经元的胞体以及树突;免疫荧光证实CRMP5 si RNA可以有效的沉默CRMP5蛋白的表达;沉默CRMP5基因表达后的海马神经元突起短小,而且缺少分支,而对照细胞突起长,分支多;定量分析显示,导入CRMP5 si RNA的细胞突起的长度较对照细胞缩短,差异显著(P0.05);突起的数目比较,一级突起数目无显著差异,而二级及其以上突起的数目明显减少,差异显著(P0.05)。结论沉默CRMP5可抑制海马神经元突起的生长和侧枝形成。  相似文献   

14.
Dorsal root ganglion neurons from neonatal rats were grown in culture for 12 h and the extent of neurite outgrowth determined by counting the fraction of neurons with neurites. In the presence of high K+, veratridine or bradykinin the extent of neurite outgrowth was reduced by about 60%. The inhibitory effect of depolarisation was reversible and was abolished by nifedipine. gamma-Aminobutyric acid (GABA), baclofen and 2-chloroadenosine had no effect on neurite outgrowth in control cultures but abolished the inhibitory effect of depolarisation.  相似文献   

15.
This research aims to improve the nerve-electrode interface of the cochlear implant using polymer technology to encourage neuron survival, elongation and adhesion to the electrodes. Polypyrrole (Ppy) doped with p-toluene sulphonate (pTS) is an electroactive polymer into which neurotrophin-3 (NT3) can be incorporated. Ppy/pTS+/-NT3 was synthesised over gold electrodes and used as a surface for auditory neuron explant culture. Neurite outgrowth from explants grown on Ppy/pTS was equivalent to tissue culture plastic but improved with the incorporation of NT3 (Ppy/pTS/NT3). Electrical stimulation of Ppy/pTS/NT3 with a biphasic current pulse, as used in cochlear implants, significantly improved neurite outgrowth from explants. Using (125)I-NT3, it was shown that low levels of NT3 passively diffused from Ppy/pTS/NT3 during normal incubation and that electrical stimulation enhanced the release of biologically active NT3 in quantities adequate for neuron survival. Furthermore, Ppy/pTS/NT3 and its constituents were not toxic to auditory neurons and the Ppy/pTS/NT3 coating on gold electrodes did not alter impedance. If applied to the cochlear implant, Ppy/pTS/NT3 will provide a biocompatible, low-impedance substrate for storage and release of NT3 to help protect auditory neurons from degradation after sensorineural hearing loss and encourage neurite outgrowth towards the electrodes.  相似文献   

16.
The function of the amyloid precursor protein (APP), a key molecule in Alzheimer's disease (AD) remains unknown. Among the proteins that interact with the APP cytoplasmic domain in vitro and in heterologous systems is Disabled-1, a signaling molecule of the reelin pathway. The physiological consequence of this interaction is unknown. Here we used an in vitro model of hippocampal neurons grown on a reelin substrate that inhibits neurite outgrowth. Our results show that an excess of APP cytoplasmic domain internalized by a cell permeable peptide, is able to antagonize the neurite outgrowth inhibition of reelin. The APP cytoplasmic domain binds Disabled-1 and retains it in the cytoplasm, preventing it from reaching the plasma membrane and sequesters tyrosine phosphorylated Disabled-1, both of which disrupt reelin signaling. In the context of AD, increased formation of APP cytoplasmic domain in the cytosol released after cleavage of the A beta peptide, could then inhibit reelin signaling pathway in the hippocampus and thus influence synaptic plasticity.  相似文献   

17.
There is increasing evidence that neuropeptides have trophic functions during embryogenesis. We examined the ability of angiotensin II, substance P, sornatostatin-28 and luteinising hormone-releasing hormone to influence neurite outgrowth from embryonic chick sympathetic neurons in culture. Nanomolar concentrations of angiotensin II inhibited neurite outgrowth, whereas the other peptides had no effect at similar concentrations. The effect of angiotensin II on neurite outgrowth is likely to be mediated by an atypical angiotensin receptor, as it was only weakly inhibited by [sar1,ala8]angiotensin II, and was not inhibited by losartan, an inhibitor of mammalian AT1 receptors, or PD123319, an AT2 inhibitor. Neurite outgrowth was also inhibited by angiotensin III and angiotensin IV but not by angiotensinogen I1−14. The study provides further evidence that angiotensin peptides, like classical neurotransmitters, may have trophic functions during embryogenesis.  相似文献   

18.
目的 研究维生素C(Vitamin C,Vit.C)对大鼠背根神经节神经元轴突生长的影响,为探讨神经再生新策略提供基础。 方法 取新生SD大鼠背根神经节(dorsal root ganglion, DRG)进行神经元分离培养。在培养液中加入不同浓度的维生素C(0, 100, 200, 400 μmol/L)处理24 h后通过βIII tubulin, RhoA免疫组化以及鬼笔环肽染色对神经元突起的数量和长度、生长锥伪足数量、神经元胞体大小及其内RhoA表达强度进行分析。 结果 神经元突起的数量、长度,生长锥伪足的数量以及神经元胞体面积均随维生素C的浓度增高而增长,而神经元内RhoA表达强度则相应降低。 结论 维生素C可促进体外大鼠背根节神经元突起的生长,这可能与RhoA表达下调相关。  相似文献   

19.
20.
Degradable hydrogels are useful vehicles for the delivery of growth factors to promote the regeneration of diseased or damaged tissue. In the central nervous system, there are many instances where the delivery of neurotrophins has great potential in tissue repair, especially for treatment of spinal cord injury. In this work, hydrogels based on poly(ethylene glycol) that form via a photoinitiated polymerization were investigated for the delivery of neurotrophins. The release kinetics of these factors are controlled by changes in the network crosslinking density, which influences neurotrophin diffusion and subsequent release from the gels with total release times ranging from weeks to several months. The release and activity of one neurotrophic factor, ciliary-neurotrophic factor (CNTF), was assessed with a cell-based proliferation assay and an assay for neurite outgrowth from retinal explants. CNTF released from a degradable hydrogel above an explanted retina was able to stimulate outgrowth of a significantly higher number of neurites than controls without CNTF. Finally, unique microsphere/hydrogel composites were developed to simultaneously deliver multiple neurotrophins with individual release rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号