首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
鬼臼毒素-固体脂质纳米粒的制备及质量考察   总被引:8,自引:4,他引:8  
目的:探讨鬼臼毒素-固体脂质纳米粒的制备方法及其质量。方法:实验于2005-12/2006-08在南方医科大学药学部实验室完成。在制备工艺研究上进行单因素考察和正交实验设计优化处方,以鬼臼毒素-固体脂质纳米粒粒径大小和Zeta电位、形态学、包封率、pH值作为样本质量考察指标,最终确定以改良的乳化蒸发-低温固化法制备鬼臼毒素-固体脂质纳米粒。实验评估:①用透射电镜考察纳米粒的形态。②用粒径分析仪检测纳米粒粒径大小和Zeta电位。③用高效液相色谱法测定纳米粒中鬼臼毒素的包封率。④用pH计测定鬼臼毒素-固体脂质纳米粒混悬液的pH值。结果:①鬼臼毒素-固体脂质纳米粒形态:基本呈圆形或椭圆形。②粒径大小和Zeta电位:分别为(75.3±26.2)nm,(23.2±3.1)mV。③包封率:86.4%。④pH值:4.66±0.18。结论:鬼臼毒素-固体脂质纳米粒制备工艺简单,考察制剂质量较理想。  相似文献   

2.
鬼臼毒素-固体脂质纳米粒的皮肤毒理学实验   总被引:5,自引:2,他引:5  
目的:考察鬼臼毒素-固体脂质纳米粒经皮肤用药的安全性。方法:实验于2005-12/2006-11在南方医科大学药学部实验室完成。选择Wistar大鼠140只,Fmmu豚鼠78只。采用改良的乳化蒸发-低温固化法制备5,50mg/L鬼臼毒素-固体脂质纳米粒及空白固体脂质纳米粒。①取豚鼠48只,按随机数字表法分成5,50mg/L鬼臼毒素-固体脂质纳米粒及空白固体脂质纳米粒完整皮肤组和破损皮肤组,每组4只,分别进行单次和多次给药皮肤刺激试验。单次给药方法:豚鼠背部两侧对称脱毛后用手术刀片作#字划痕,以渗血为度。采用同体左右侧自身对照法,左侧为受试区,分别取5,50mg/L鬼臼毒素-固体脂质纳米粒及空白固体脂质纳米粒混悬液0.1mL均匀涂布于受试区,右侧为空白对照区,再以自制单层塑料薄膜和双层纱布封包受试区。分别于去除敷料和清洗受试物后1,24,48h观察涂药部位有无红斑和水肿等情况,以及上述变化的恢复情况与时间。多次给药方法:皮肤处理方法、观察指标及评价指标同上,每日给药1次,连续给药14d。②取大鼠140只,按随机数字表法分成5,50mg/L鬼臼毒素-固体脂质纳米粒及空白固体脂质纳米粒完整皮肤组和破损皮肤组、正常对照组,每组10只,分别进行急性和长期皮肤毒性试验。急性毒性试验方法:脱毛后,分别取5,50mg/L鬼臼毒素-固体脂质纳米粒及空白固体脂质纳米粒混悬液1mL均匀涂布于受试区,连续观察14d,每日观察大鼠体质量、进食量、皮肤、呼吸、体态、眼、中枢神经系统、四肢活动、粪便性状及死亡情况。长期毒性实验方法:皮肤处理方法及观察指标同上,每日给药1次,药量均为0.1mL,连续给药30d,末次给药后24h麻醉后处死动物,取血3 ̄4mL进行血液学、血液生化学及皮肤病理检查。③取豚鼠30只,按随机数字表法分成50mg/L鬼臼毒素-固体脂质纳米粒组、阴性对照组及阳性对照组,每组10只,进行皮肤变态反应试验。方法:脱毛后,3组左侧脱毛区分别涂50mg/L鬼臼毒素-固体脂质纳米粒混悬液、空白固体脂质纳米粒混悬液及10g/L二四二硝基氯苯0.1mL,涂药后以自制单层塑料薄膜和双层纱布封包受试区,6h后去除敷料和清洗受试物。第7天和第14天,以同样方法各重复1次,共3次。于末次给受试物致敏后14d,将受试物0.1mL涂于豚鼠背部右侧脱毛区,6h后去掉受试物,即刻观察皮肤变态反应情况,之后于24,48,72h再次观察皮肤反应。结果:纳入大鼠140只,豚鼠78只,均进入结果分析。①单次和多次给予鬼臼毒素-固体脂质纳米粒对豚鼠完整和破损皮肤均无刺激作用。②单次大剂量给予5mg/L鬼臼毒素-固体脂质纳米粒及空白固体脂质纳米粒,未见对大鼠有急性毒性反应。给予50mg/L鬼臼毒素-固体脂质纳米粒组大鼠分别于给药后的前3,8d出现体质量减轻、食欲下降等全身中毒症状,尤以皮肤破损组表现较明显,以后逐渐恢复;每日小剂量给予5mg/L鬼臼毒素-固体脂质纳米粒及空白固体脂质纳米粒,未见对大鼠有明显长期毒性反应。③给予50mg/L鬼臼毒素-固体脂质纳米粒组大鼠于给药后的18 ̄25d,均出现轻度的皮肤红斑、水肿、糜烂和结痂等炎症反应,于停药后1周内消退,皮肤组织病理学检查可见以表皮为主的急性炎症反应;鬼臼毒素-固体脂质纳米粒对豚鼠皮肤无致敏性。结论:在有效观察时间和一定质量浓度范围内,鬼臼毒素-固体脂质纳米粒对豚鼠皮肤无刺激性及致敏性,对破损皮肤大鼠应用50mg/L鬼臼毒素-固体脂质纳米粒大剂量时易出现全身急性中毒反应而完整皮肤及5mg/L鬼臼毒素-固体脂质纳米粒应用则较安全,小剂量长期应用鬼臼毒素-固体脂质纳米粒对大鼠比较安全无系统吸收毒性,但应用50mg/L鬼臼毒素-固体脂质纳米粒时可以出现轻度的皮肤炎症反应。  相似文献   

3.
目的:为了克服鬼臼毒素酊剂在临床应用的局限性,进行了鬼臼毒素-固体脂质纳米粒与鬼臼毒素酊经皮外用安全性比较的实验.方法:实验于2006-09/2007-08在南方医科大学药学部实验室完成.①取豚鼠32只,按照随机数字表法分成0.5%鬼臼毒素-固体脂质纳米粒完整皮肤组和破损皮肤组、0.5%鬼臼毒素酊剂完整皮肤组和破损皮肤组,每组4只,分别进行单次和多次给药皮肤刺激试验.单次给药方法:豚鼠背部两侧对称脱毛后用手术刀片作#字划痕制作皮肤破损模型,采用同体左右侧自身对照法,左侧为受试区,分别取0.5%鬼臼毒素-固体脂质纳米粒混悬液及0.5%鬼臼毒素酊剂各0.1 mL均匀涂布于受试区,再以自制单层塑料薄膜和双层纱布封包受试区.分别于去除敷料和清洗受试物后1,24,48 h观察涂药部位有无红斑和水肿等情况,以及上述变化的恢复情况与时间.多次给药方法:皮肤处理方法、观察指标及评价指标同上,每日给药1次,连续给药14 d.②取大鼠100只,按照随机数字表法分成0.5%鬼臼毒素-固体脂质纳米粒、0.5%鬼臼毒素酊剂完整皮肤组和破损皮肤组及正常对照组,每组10只,分别进行急性和长期皮肤毒性试验.急性毒性试验方法:脱毛后,分别取0.5%鬼臼毒素固体-脂质纳米粒、0.5%鬼臼毒素酊剂1 mL均匀涂布于脱毛区,连续观察14 d,每日观察大鼠体质量、进食量、呼吸、体态、眼、中枢神经系统、四肢活动、粪便性状及死亡情况.长期毒性试验方法:皮肤处理方法及观察指标同上,每日给药1次,药量均为0.1 mL,连续给药30 d,末次给药后24 h麻醉后处死动物,取血3.0~4.0 mL进行血液学、血液生化学检查,然后切取各组大鼠涂药中心区域的皮肤组织行皮肤病理检查及激光共聚焦显微镜扫描.结果:纳入大鼠100只、豚鼠32只,均进入结果分析.①单次和多次给予鬼臼毒素-固体脂质纳米粒对豚鼠完整和破损皮肤均无刺激作用.②单次大剂量给予0.5%鬼臼毒素酊剂对豚鼠完整皮肤无刺激性,对破损皮肤有较强的刺激性;每日小剂量给予0.5%鬼臼毒素酊剂对豚鼠完整皮肤、破损皮肤均有较强的刺激性,其中破损皮肤组豚鼠皮肤刺激性出现的最早和最严重.③单次大剂量应用0.5%鬼臼毒素-固体脂质纳米粒和0.5%鬼臼毒素酊剂时大鼠容易出现短期的系统吸收毒性,尤以皮肤破损组症状较明显,其中0.5%鬼臼毒素酊剂组大鼠中毒症状持续时间均较0.5%鬼臼毒素-固体脂质纳米粒组持久.④每日小剂量长期应用0.5%鬼臼毒素-固体脂质纳米粒和鬼臼毒素酊剂对大鼠比较安全无系统吸收毒性.⑤每日小剂量给予0.5%鬼臼毒素-固体脂质纳米粒组大鼠于给药后的18~25 d,均出现轻度的皮肤红斑、水肿、糜烂和结痂等炎症反应及局部毛发生长稀疏、缓慢或无毛发生长,皮肤组织病理学检查可见以表皮为主的急性炎症反应.激光共聚焦显微镜扫描可见以红色荧光显像的药物主要富集于表皮层及毛囊而真皮及皮下组织药物含量相对较少.⑥每日小剂量给予0.5%鬼臼毒素酊剂组大鼠于给药后的4~7 d,均出现程度逐渐加重的皮肤红斑、水肿、糜烂、坏死、结痂及明显的毛发生长障碍,皮肤组织病理学检查可见皮肤全层急性炎症反应,激光共聚焦显微镜扫描可见表皮全层坏死,以红色荧光显像的药物主要富集于真皮、皮下组织、毛囊及其周围,荧光强度相对较0.5%鬼臼毒素-固体脂质纳米粒组强.结论:在有效观察时间和一定浓度范围内,鬼臼毒素-固体脂质纳米粒、鬼臼毒素酊剂对实验动物均无严重系统吸收毒性,但鬼臼毒素-固体脂质纳米粒与鬼臼毒素酊剂相比具有局部不良反应少,不良反应程度轻,不良反应出现迟,皮肤靶向性好等优点.  相似文献   

4.
目的 分析影响舒芬太尼脂质纳米粒制备的主要因素.方法 利用改良的乳化蒸发-低温固化技术,制备舒芬太尼固体脂质纳米粒混悬液,以单因素分析法筛选处方和工艺,并对该制剂表征进行考察.结果 制备的SUFSLN混悬液呈外观均一、稳定的半透明胶体状分散体系,略带淡蓝色乳光.平均粒径为(115.4±1.6)nm,Zeta电位为(-27.3±1.4)mv、包封率为(80.21±2.44)%.结论 改良的乳化蒸发-低温固化技术,可以用于制备舒芬太尼固体脂质纳米粒混悬液.  相似文献   

5.
背景:布洛芬因溶解度和溶血问题,目前仍无注射给药剂型上市.目的:将自制的磁流体载入固体脂质纳米粒中,制备布洛芬磁性固体脂质纳米粒.方法:以包封率为指标,用正交设计确定布洛芬固体脂质纳米粒的最优处方.以共沉淀法制备Fe3O4磁流体作为磁性材料,采用乳化分散-超声法,按照最优处方制备布洛芬磁性固体脂质纳米粒.观察其表面形态、粒径大小、分布和Zeta电位、饱和磁化强度、包封率及体外释放特征.结果与结论:通过正交实验得最优处方为布洛芬0.05 g、F-68 0.2 g、吐温80 0.05 g、卵磷脂0.1 g、单硬脂酸甘油酯0.05 g、磁流体2.5 mL.用该工艺和处方制备的布洛芬磁性固体脂质纳米粒粒子呈均匀球形;平均粒径、zeta电位为(122±16) nm和(-13.3±6.94) mV;药物包封率和Fe3O4铁包封率分别为84.15%和83.19%;布洛芬在给定介质中36 h释放较完全,符合制剂学性质要求.  相似文献   

6.
吴冬冬 《中国临床康复》2011,(34):6382-6384
背景:布洛芬因溶解度和溶血问题,目前仍无注射给药剂型上市。目的:将自制的磁流体载入固体脂质纳米粒中,制备布洛芬磁性固体脂质纳米粒。方法:以包封率为指标,用正交设计确定布洛芬固体脂质纳米粒的最优处方。以共沉淀法制备Fe3O4磁流体作为磁性材料,采用乳化分散-超声法,按照最优处方制备布洛芬磁性固体脂质纳米粒。观察其表面形态、粒径大小、分布和Zeta电位、饱和磁化强度、包封率及体外释放特征。结果与结论:通过正交实验得最优处方为布洛芬0.05g、F-680.2g、吐温800.05g、卵磷脂0.1g、单硬脂酸甘油酯0.05g、磁流体2.5mL。用该工艺和处方制备的布洛芬磁性固体脂质纳米粒粒子呈均匀球形;平均粒径、zeta电位为(122±16)nm和(-13.3±6.94)mV;药物包封率和Fe3O4铁包封率分别为84.15%和83.19%;布洛芬在给定介质中36h释放较完全,符合制剂学性质要求。  相似文献   

7.
目的:纳米脂质载体是近年来继固体脂质纳米粒发展起来的第2代亚微粒载药系统,具有较高的载药量和物理稳定性。探讨鬼臼毒素-脂质纳米粒(podophyllotoxin-loaded nanostructured lipid carrier,PPT-NLC)的制备方法及理化性质。方法:实验于2006—08/2007—10在南方医科大学药学部实验室完成。选择固体脂质硬脂酸、单硬脂酸甘油脂和液态脂质油酸,采用改良的乳化蒸发-低温固化法制备PPT-NLC,用同法制备不含油酸的PPT-固体脂质纳米粒(Solid lipid nanoparticles,SLN)纳米粒混悬液。用透射电镜、Zeta电位仪、高效液相色谱法、pH计考察PPT—NLC理化性质,并比较SLN与NLC的包封率和稳定性。结果:透射电镜下PPT—NLC外形呈圆形或椭圆形,平均粒径为(88.2±8.4)nm,多分散指数为0.190±0.085,Zeta电位为(-33.2±3.1)mV,包封率为86.6%。PPT-SLN分别为(75.3±16.2)nm,0.300±0.072,(-25.2±3.4)mV,包封率为76.5%。结论:PPT-NLC制备工艺简单,分布均匀,稳定性较SLN好,包封率高。  相似文献   

8.
鬼臼毒素纳米脂质载体的制备及质量考察   总被引:4,自引:0,他引:4  
目的:纳米脂质载体是近年来继固体脂质纳米粒发展起来的第2代亚微粒载药系统,具有较高的载药量和物理稳定性.探讨鬼臼毒素-脂质纳米粒(podophyllotoxin-loaded nanostructured lipid carrier,PPT-NLC)的制备方法及理化性质.方法:实验于2006-08/2007-10在南方医科大学药学部实验室完成.选择固体脂质硬脂酸、单硬脂酸甘油脂和液态脂质油酸,采用改良的乳化蒸发-低温固化法制备PPT-NLC,用同法制备不含油酸的PPT-固体脂质纳米粒(Solid lipid nanoparticles,SLN)纳米粒混悬液.用透射电镜、Zeta电位仪、高效液相色谱法、pH计考察PPT-NLC理化性质,并比较SLN与NLC的包封率和稳定性.结果:透射电镜下PPT-NLC外形呈圆形或椭圆形,平均粒径为(88.2±8.4)nm,多分散指数为0.190±0.085,Zeta电位为(-33.2±3.1)mV,包封率为86.6%.PPT-SLN分别为(75.3±16.2)nm,0.300±0.072,(-25.2±3.4)mV,包封率为76.5%.结论:PPT-NLC制备工艺简单,分布均匀,稳定性较SLN好,包封率高.  相似文献   

9.
目的探讨青蒿素固体脂质纳米粒(ART—SLN)的体外释药性质。方法采用动态透析法测定释药介质中的青蒿素累计释放含量,并用不同的数学模型模拟释放行为。结果青蒿素在乙醇溶液中的溶出曲线采用Weibull方程拟合效果最佳。结论ART—SLN具一定缓释作用,达到预期目标。  相似文献   

10.
李萌  王芳 《临床误诊误治》2010,23(7):606-608
目的观察高温乳化-低温固化法制备的芦丁固体脂质纳米粒(RT-SLN)的理化性质及体外释药特性。方法以硬脂酸为脂质材料,采用高温乳化-低温固化法制备芦丁固体脂质纳米粒,以均匀设计法优化处方及制备工艺,并对其形态、粒径、Zeta电位、包封率(EE)、体外释药特征等进行评价。结果所制备的RT-SLN外观呈类球形,粒径为(192.47±31.8)nm,Zeta电位(-18.90±0.27)mV。以EE为评价指标表进行处方筛选,回归方程计算得优化工艺为药物-硬脂酸比1∶4,硬脂酸用量200mg,聚山梨酯-80浓度12mg/ml,聚乙二醇-400浓度5%、转速1500r/min,初乳与分散相体积比为1∶7,预测优化值为90.11%,其95%的可信区间为83.71%~96.51%,平均EE(89.34±0.93)%。72h药物累积释放约85%,体外释药符合Higuchi方程:Q=8.345t1/2+15.023(r=0.9892)。结论高温乳化-低温固化法适于制备RT-SLN,制备的RT-SLN具有缓释作用,能提供平稳的血药浓度,利于提高患者的用药依从性。  相似文献   

11.
12.
This study aimed to enhance the in vivo antitumor effects of camptothecin (CPT), a strong antitumor agent whose delivery is limited by poor aqueous solubility and instability of the active lactone form. CPT was loaded into sterically stabilized, solid lipid nanoparticles (CPT-SLNs) formulated for intravenous administration. The influence of preinjected blank SLNs on the tumor targeting, pharmacokinetics and antitumor activity of CPT-SLNs was investigated. The CPT-SLNs composed of trilaurin-based lipid matrix containing poloxamer188 and pegylated phospholipid as stabilizers were prepared by hot homogenization method and evaluated for in vitro characteristics and in vivo performance. The CPT-SLNs showed an in vitro long-term sustained release pattern and effectively protected the CPT lactone form from hydrolysis under physiological conditions. Notable tumor targeting and tumor growth inhibition were observed after intravenous administration of CPT-SLNs to mice with subcutaneous transplants of CT26 carcinoma cells. In pharmacokinetic studies in rats, CPT-SLNs markedly elevated plasma CPT level and prolonged blood circulation compared to free CPT. Nonetheless, high uptake of CPT-SLNs by reticuloendothelial system (RES)-rich tissues resulted in limited tumor targeting of CPT-SLNs and plasma CPT levels. Preinjection of blank SLNs before administration of CPT-SLNs to tumor-bearing mice substantially reduced the accumulation of CPT-SLNs in RES organs. This led to significantly enhanced tumor targeting, improved pharmacokinetic parameters and increased antitumor efficacy of CPT-SLNs. These results suggested that the in vivo antitumor effects of CPT-SLNs could be further enhanced by preinjection of blank SLNs. Therefore, CPT-SLNs with preinjected blank SLNs could be a potential approach for stable and effective CPT-based cancer therapy.  相似文献   

13.
14.
15.
Preparation of solid lipid nanoparticles using a membrane contactor.   总被引:5,自引:0,他引:5  
Solid lipid nanoparticles (SLN) were introduced at the beginning of the 1990s, as an alternative to solid nanoparticles, emulsions and liposomes in cosmetic and pharmaceutical preparations. The present study investigates a new process for the preparation of SLN using a membrane contactor. The lipid phase is pressed, at a temperature above the melting point of the lipid, through the membrane pores allowing the formation of small droplets. The aqueous phase circulates inside the membrane module, and sweeps away the droplets forming at the pore outlets. SLN are formed by the following cooling of the preparation to room temperature. The influence of process parameters (aqueous phase and lipid phase temperatures, aqueous phase cross-flow velocity and lipid phase pressure, membrane pore size) on the SLN size and on the lipid phase flux is investigated. It is shown that the membrane contactor allows the preparation of SLN with a lipid phase flux between 0.15 and 0.35 m3/h m2, and a mean SLN size between 70 and 215 nm. The advantages of this new process are its facility of use, the control of the SLN size by an appropriate choice of process parameters, and its scaling-up abilities.  相似文献   

16.
Poor solubility of etoposide and associated poor bioavailability of the drug was circumvented by developing solid lipid nanocarrier system. The objective of the research work was to prepare etoposide loaded solid lipid nanoparticles (SLN) for improved efficacy and therapy of metastasized cancers. Entrapment of drug into nanoparticulate system modifies the pharmacokinetic and biodistribution profile of the drug with improved therapeutic efficacy. Solid lipid nanoparticles of various triglycerides were prepared using hot homogenization technique. Further, the process and formulation parameters viz. homogenization cycle and pressure, type of lipid were optimized. Developed nanoparticles were characterised for particle size, in vitro dissolution studies, DSC thermogram, surface morphology and cytotoxicity assay. Pharmacokinetic and biodistribution study were performed to assess the distribution of the drug in vivo. Modulation of the therapeutic activity of the drug was studied by performing antimetastatic activity on a B16F10 melanoma mouse model. The obtained results exhibited suitability of trimysristin for fabrication of nanoparticles. Characterisation of nanoparticles depicted formation of homogenous, spherical particles entrapping approximately 50% of the drug. The results for the performed MTT assay suggested that the developed nanoparticles exhibited cytotoxicity in a time- and concentration-dependent fashion. These findings concord with the results of the in vitro dissolution profile. Pharmacokinetic parameters demonstrated increase in area under curve (AUC), t1/2 and mean residence time (MRT) for drug in plasma. Further there is enhancement in the ratio of the drug that reaches to the highly perfused organs (upon encapsulation into solid lipid nanoparticles). Generally, cancer cells metastasized through the blood or lymphatic system. Accumulation of the drug in the highly perfused organ suggests suitability of the developed nanoparticles for targeting metastasized tumors. This was proved by the findings of the in vivo B16F10 mouse melanoma model. Improvement in the tumoricidal activity and survival rate of the animals substantiates the application of nanoparticles for improved therapeutic activity of etoposide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号