首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temozolomide (TMZ) is a promising chemotherapeutic agent for treating glioblastomas. However, resistance develops quickly with a high frequency. Glioblastoma stem cells (GSCs) causing resistance to drug therapy were considered to be one of key factors. The mechanisms underlying GSCs resistance to TMZ are not fully understood. MicroRNAs (miRNAs) have emerged to play important roles in tumorigenesis and drug resistance. Previous study showed that miR-125b was necessary for GSCs fission and for making stem cells insensitive to chemotherapy. Thus, exploring the functions and mechanisms of miR-125b action on TMZ-treated GSCs would be valuable. In this study, we found that miR-125b was up-regulated in TMZ-resistant cells, inhibition of which caused a marked increase of TMZ-induced cytotoxicity and apoptosis and a subsequent decrease in the resistance to TMZ in GSCs. Moreover, we demonstrated that the pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) was a direct target of miR-125b. Down-regulation of Bak1 inhibited TMZ-induced apoptosis and led to an increased resistance to TMZ. Restoring Bak1 expression recovered TMZ sensitivity on GSCs. Taken together; our data strongly support an important role for miR-125b on conferring TMZ resistance through targeting Bak1 expression.  相似文献   

2.
To identify microRNAs (miRNAs) specifically involved in the acquisition of temozolomide (TMZ) resistance in glioblastoma multiforme (GBM), we first established a resistant variant, U251R cells from TMZ-sensitive GBM cell line, U251MG. We then performed a comprehensive analysis of miRNA expressions in U251R and parental cells using miRNA microarrays. miR-195, miR-455-3p and miR-10a were the three most up-regulated miRNAs in the resistant cells. To investigate the functional role of these miRNAs in TMZ resistance, U251R cells were transfected with miRNA inhibitors consisting of DNA/LNA hybrid oligonucleotides. Suppression of miR-455-3p or miR-10a had no effect on cell growth, but showed modest cell killing effect in the presence of TMZ. On the other hand, knockdown of miR-195 alone displayed moderate cell killing effect, and combination with TMZ strongly enhanced the effect. In addition, using in silico analysis combined with cDNA microarray experiment, we present possible mRNA targets of these miRNAs. In conclusion, our findings suggest that those miRNAs may play a role in acquired TMZ resistance and could be a novel target for recurrent GBM treatment.  相似文献   

3.
4.
Inflammation is an important factor promoting the progression of glioblastoma. In the present study we examined the contribution of Ras signaling and TNFα/IL-1β cytokines to the development of the glioblastoma inflammatory microenvironment. Enhanced activation of Ras through de-regulated activation of receptor tyrosine kinases, such as EGFR, PDGFR and cMet, is a hallmark of the majority of glioblastomas. Glioblastoma microenvironment contains high levels of TNFα and IL-1β, which mediate inflammation through induction of a local network of cytokines and chemokines. While many studies have focused on Ras- and TNFα/IL-1β-driven inflammation in isolation, little is known about the co-operation between these oncogenic and microenvironment-derived stimuli. Using constitutively active HRasG12V that mimics enhanced Ras activation, we demonstrate that elevated Ras activity in glioblastoma cells leads to up-regulation of IL-6 and IL-8. Furthermore, Ras synergizes with the microenvironment-derived TNFα and IL-1β resulting in amplified IL-6/IL-8 secretion. IL-8 secretion induced by Ras and TNFα/IL-1β is attenuated by inhibitors targeting Erk, JNK and p38 MAPK pathways. IL-6 secretion significantly decreased upon inhibition of JNK and p38 MAPK pathways. Interestingly, although constitutively active HRasG12V does not increase basal or TNFα/IL-1β stimulated p38 MAPK activity, HRasG12V increased the efficacy of the p38 MAPK inhibitor SB203580 to inhibit IL-1β-induced IL-6 secretion. In summary, oncogenic Ras co-operates with the microenvironment-derived TNFα/IL-1β to sustain inflammatory microenvironment, which was effectively attenuated via inhibition of p38 MAPK signaling.  相似文献   

5.
6.
MET signaling regulates glioblastoma stem cells   总被引:1,自引:0,他引:1  
Glioblastomas multiforme (GBM) contain highly tumorigenic, self-renewing populations of stem/initiating cells [glioblastoma stem cells (GSC)] that contribute to tumor propagation and treatment resistance. However, our knowledge of the specific signaling pathways that regulate GSCs is limited. The MET tyrosine kinase is known to stimulate the survival, proliferation, and invasion of various cancers including GBM. Here, we identified a distinct fraction of cells expressing a high level of MET in human primary GBM specimens that were preferentially localized in perivascular regions of human GBM biopsy tissues and were found to be highly clonogenic, tumorigenic, and resistant to radiation. Inhibition of MET signaling in GSCs disrupted tumor growth and invasiveness both in vitro and in vivo, suggesting that MET activation is required for GSCs. Together, our findings indicate that MET activation in GBM is a functional requisite for the cancer stem cell phenotype and a promising therapeutic target.  相似文献   

7.
Role of miR-10b in breast cancer metastasis   总被引:1,自引:0,他引:1  
Ninety percent of cancer-related mortality is caused by metastasis. Current cancer treatments can control many primary tumors but rarely stop the metastatic spread. Accumulating evidence demonstrates that miRNAs are involved in cancer initiation and progression. Furthermore, several miRNAs have been found to regulate metastasis. In particular, recent studies provide the first functional evidence that overexpression of a specific miRNA, miR-10b, can contribute to the development of metastasis, which can be exploited therapeutically in treating breast cancer metastasis in mice. Further in-depth analysis should provide more precise evaluation of the roles, mechanisms, and therapeutic utility of this miRNA in breast cancer.  相似文献   

8.
Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells   总被引:1,自引:0,他引:1  
Micro RNAs (miRNAs) are non-coding small RNAs and constitute a novel class of negative gene regulators that are found in both plants and animals. Several miRNAs play crucial roles in cancer cell growth. To identify miRNAs specifically deregulated in anaplastic thyroid cancer (ATC) cells, we performed a comprehensive analysis of miRNA expressions in ARO cells and primary thyrocytes using miRNA microarrays. MiRNAs in a miR-17-92 cluster were overexpressed in ARO cells. We confirmed the overexpression of those miRNAs by Northern blot analysis in ARO and FRO cells. In 3 of 6 clinical ATC samples, miR-17-3p and miR-17-5p were robustly overexpressed in cancer lesions compared to adjacent normal tissue. To investigate the functional role of these miRNAs in ATC cells, ARO and FRO cells were transfected with miRNA inhibitors, antisense oligonucleotides containing locked nucleic acids. Suppression of miR-17-3p caused complete growth arrest, presumably due to caspase activation resulting in apoptosis. MiR-17-5p or miR-19a inhibitor also induced strong growth reduction, but only miR-17-5p inhibitor led to cellular senescence. On the other hand, miR-18a inhibitor only moderately attenuated the cell growth. Thus, we have clarified functional differences among the members of the cluster in ATC cells. In conclusion, these findings suggest that the miR-17-92 cluster plays an important role in certain types of ATCs and could be a novel target for ATC treatment. ( Cancer Sci 2008; 99: 1147–1154)  相似文献   

9.
Temozolomide preferentially depletes cancer stem cells in glioblastoma   总被引:1,自引:0,他引:1  
The prognosis of patients suffering from glioblastoma (GBM) is dismal despite multimodal therapy. Although chemotherapy with temozolomide may contain tumor growth for some months, invariable tumor recurrence suggests that cancer stem cells (CSC) maintaining these tumors persist. We have therefore investigated the effect of temozolomide on CD133(+) and CD133(-) GBM CSC lines. Although differentiated tumor cells constituting the bulk of all tumor cells were resistant to the cytotoxic effects of the substance, temozolomide induced a dose- and time-dependent decline of the stem cell subpopulation. Incubation with sublethal concentrations of temozolomide for 2 days completely depleted clonogenic tumor cells in vitro and substantially reduced tumorigenicity in vivo. In O(6)-methylguanine-DNA-methyltransferase (MGMT)-expressing CSC lines, this effect occurred at 10-fold higher doses compared with MGMT-negative CSC lines. Thus, temozolomide concentrations that are reached in patients were only sufficient to completely eliminate CSC in vitro from MGMT-negative but not from MGMT-positive tumors. Accordingly, our data strongly suggest that optimized temozolomide-based chemotherapeutic protocols might substantially improve the elimination of GBM stem cells and consequently prolong the survival of patients.  相似文献   

10.
TGF-beta, neuronal stem cells and glioblastoma   总被引:3,自引:0,他引:3  
Golestaneh N  Mishra B 《Oncogene》2005,24(37):5722-5730
Transforming growth factor beta (TGF-beta) signaling leads to a number of biological end points involving cell growth, differentiation, and morphogenesis. Typically, the cellular effect accompanies an induction of mesodermal cell fate and inhibition of neural cell differentiation. However, during pathological conditions, these defined effects of TGF-beta can be reversed; for example, the growth-inhibitory effect is replaced with its tumor promoting ability. A multitude of factors and cross-signaling pathways have been reported to be involved in modulating the dual effects of TGF-beta. In this review, we focus on the potential role of TGF-beta signal transduction during development of neural progenitor cells and its relation to glioblastoma development from neural stem cells.  相似文献   

11.
Wang X  Han L  Zhang A  Wang G  Jia Z  Yang Y  Yue X  Pu P  Shen C  Kang C 《Oncology reports》2011,25(1):97-105
Aberrantly expressed miRNAs are linked to the regulation of oncogenes and/or tumor suppression genes within the cell signal transduction pathway network, thereby contributing to carcinogenesis. miRNA function can be antagonized, thus representing a novel anti-tumor approach for integrated cancer therapy. In this study, we designed adenovirally-expressed shRNAs that functionally co-repressed the expression of miR-221 and miR-222, which are related to glioblastoma, to overcome the low efficiency of gene therapy. In addition, we generated novel shRNAs whose 3' ends were mutated in the region complementary to the target miRNA's 5' seed region to reduce the stability of binding with the miRNA. Various inhibition levels of miRNA were achieved: classic shRNAs yielded the greatest reduction in miRNA levels, followed by mutated shRNAs and the blank control, as determined by qRT-PCR. These results were confirmed by the protein expression of p27kip1, the validated target of miR-221/222, the effect on cell cycle arrest in G1 phase, and the impact on cell apoptosis. These results suggested that we could produce shRNAs encoded by adenovirus that co-repressed multiple tumor-related miRNAs simultaneously, and that the level of repression and the effect on the function of a specific miRNA could be achieved in a semi-quantitative manner.  相似文献   

12.
Glioblastomas (GBMs) are the most common and aggressive type of brain tumor. GBMs usually show hyperactivation of the PI3K-Akt pathway, a pro-tumorigenic signaling cascade that contributes to pathogenesis. Girdin, an actin-binding protein identified as a novel substrate of Akt, regulates the sprouting of axons and the migration of neural progenitor cells during early postnatal-stage neurogenesis in the hippocampus. Here, we show that Girdin is highly expressed in human glioblastoma (GBM). Stable Girdin knockdown in isolated GBM stem cells resulted in decreased expression of stem cell markers, including CD133, induced multilineage neural differentiation, and inhibited in vitro cell motility, ex vivo invasion, sphere-forming capacity and in vivo tumor formation. Furthermore, exogenous expression of the Akt-binding domain of Girdin, which competitively inhibits its Akt-mediated phosphorylation, diminished the expression of stem cell markers, SOX2 and nestin, and migration on the brain slice and induced the expression of neural differentiation markers glial fibrillary acidic protein/βIII Tubulin. Our results reveal that Girdin is required for GBM-initiating stem cells to sustain the stemness and invasive properties.  相似文献   

13.

Purpose

The cancer stem cell (CSC) hypothesis suggests a hierarchical organization of cells within the tumor, in which only a subpopulation of stem-like cells is responsible for the rise and progression of the tumor. Glioblastomas (GBM), a lethal brain tumor, may contain a variable proportion of active CSCs. On the other hand, the phosphatidylinositol 3-kinase (PI3 K)/Akt/mammalian target of rapamycin (mTOR) pathway is highly active in up to 70 % of GBM. The kinase mTOR is a key component of the PI3K pathway that mediates the regulation of growth and cell survival signaling. However, clinical trials with rapamycin, an effective inhibitor of mTOR, have not been up to the created expectations and a plausible explanation is missing. In this work, we analyze the effect of rapamycin on the GBM-CSC population.

Methods

The efficacy of rapamycin in vitro was tested on two primary cell lines derived from human GBM surgical resections that fulfill the criteria to be considered as CSCs. We confirmed the inhibition state of the PI3K/Akt/mTOR pathway analyzing the mTOR direct target ribosomal protein S6. We assayed the growth rate, CD133 expression and ability of forming colonies in soft agar of the CSCs under different doses of rapamycin. The efficacy of rapamycin in vivo was assayed in a CSCs-based orthotopic xenograft.

Results and conclusions

We report the efficacy of rapamycin by reducing CSCs proliferation and tumorigenic potential in vitro. Despite these encouraging results, the efficacy in vivo was very poor. This finding confirms the limited use of rapamycin as a monotherapy for glioblastomas.  相似文献   

14.
Glioblastomas rely mainly on aerobic glycolysis to sustain proliferation and growth; however, little is known about the regulatory mechanisms of metabolism in glioblastoma stem cells. We show that miR-143 is significantly down-regulated in glioma tissues and glioblastoma stem-like cells (GSLCs), while miR-143 over-expression inhibits glycolysis by directly targeting hexokinase 2, and promotes differentiation of GSLCs. Moreover, miR-143 inhibits proliferation of GSLCs under hypoxic conditions and decreases tumor formation capacity of GSLCs in vivo. We also show that a combination of miR-143 and 2-DG, a widely used glycolysis inhibitor, has synergistic effects against GSLCs. miR-143 is a potential therapeutic target for glioblastoma treatment.  相似文献   

15.
16.
Isolation of cancer stem cells from adult glioblastoma multiforme   总被引:45,自引:0,他引:45  
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor and is comprised of a heterogeneous population of cells. It is unclear which cells within the tumor mass are responsible for tumor initiation and maintenance. In this study, we report that brain tumor stem cells can be identified from adult GBMs. These tumor stem cells form neurospheres, possess the capacity for self-renewal, express genes associated with neural stem cells (NSCs), generate daughter cells of different phenotypes from one mother cell, and differentiate into the phenotypically diverse populations of cells similar to those present in the initial GBM. Having a distinguishing feature from normal NSCs, these tumor stem cells can reform spheres even after the induction of differentiation. Furthermore, only these tumor stem cells were able to form tumors and generate both neurons and glial cells after in vivo implantation into nude mice. The identification of tumor stem cells within adult GBM may represent a major step forward in understanding the origin and maintenance of GBM and lead to the identification and testing of new therapeutic targets.  相似文献   

17.
MicroRNA-10b (miR-10b) has been reported to play an important role in some types of cancer, but the effectsand possible mechanisms of action of miR-10b in the metastasis of nasopharyngeal carcinoma cells (NPC) havenot been explored. The aim of the present study was to investigate the function of miR-10b in nasopharyngealcarcinoma and to determine the molecular mechanisms underlying its action. The MTT assay was used toassess proliferation of CNE-2Z cells. Wound healing and transwell migration assays were applied to assesscell migration and invasion, while and expression of E-cadherin and MMP-9 were detected using Western blotanalysis. Real-time PCR was employed to detect the expression of genes related to migration and invasion andthe 2-ΔΔCt method was used to calculate the degree of expression. MTT assay showed the expression of miR-10bto have no effect on the proliferation of NPC cell lines. The wound healing assay showed that miR-10b mimicspromoted the mobility and invasion of NPC cell lines. Inhibitors of miR-10b reduced the ability of NPC cell linesto migrate and invade. In addition, the expression of genes related to migration and invasion, such as E-cadherin,vimentin, and MMP-9, were confirmed to be different in the CNE-2Z NPC cell line transfected with miR-10bmimics and with miR-10b inhibitors. In the present study, miR-10b was found to upregulate the expression ofMMP-9 and knockdown of miR-10b was found to significantly downregulate the expression of E-cadherin. Onthe whole, these results showed that miR-10b plays an important role in the invasion and metastasis of NPCcells.  相似文献   

18.
19.
目的:探讨miR-124对胶质瘤细胞增殖的抑制作用及作用靶点.方法:应用生物信息整合分析,SOS1是miR-124负向调节胶质瘤细胞的靶点.应用细胞转染和荧光素酶检测分析证实miR-124对SOS1的作用关系.结果:SOS1是miR-124作用靶点,miR-124直接作用于SOS1 mRNA 3'端非编码区(UTR),但不作用于突变型的3(UTR).miR-124通过作用于靶点SOS1抑制了体外胶质瘤细胞的增殖.结论:SOS1在恶性胶质瘤细胞中呈正向调控,miR-124的含量上升可导致SOS1含量下降,miR-124通过调节SOS1/Raf/ERK信号通路在抑制细胞生长中起重要作用.  相似文献   

20.

Background

Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of glioblastoma stem cells (GSCs). Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-SOX2OT on the biological behaviors of GSCs.

Results

Real-time PCR demonstrated that SOX2OT expression was up-regulated in glioma tissues and GSCs. Knockdown of SOX2OT inhibited the proliferation, migration and invasion of GSCs, and promoted GSCs apoptosis. MiR-194-5p and miR-122 were down-regulated in human glioma tissues and GSCs, and miR-194-5p and miR-122 respectively exerted tumor-suppressive functions by inhibiting the proliferation, migration and invasion of GSCs, while promoting GSCs apoptosis. Knockdown of SOX2OT significantly increased the expression of miR-194-5p and miR-122 in GSCs. Dual-luciferase reporter assay revealed that SOX2OT bound to both miR-194-5p and miR-122. SOX3 and TDGF-1 were up-regulated in human glioma tissues and GSCs. Knockdown of SOX3 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and decreased TDGF-1 mRNA and protein expression through direct binding to the TDGF-1 promoter. Over-expression of miR-194-5p and miR-122 decreased the mRNA and protein expression of SOX3 by targeting its 3’UTR. Knockdown of TDGF-1 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and inhibited the JAK/STAT signaling pathway. Furthermore, SOX3 knockdown also inhibited the SOX2OT expression through direct binding to the SOX2OT promoter and formed a positive feedback loop.

Conclusion

This study is the first to demonstrate that the SOX2OT-miR-194-5p/miR-122-SOX3-TDGF-1 pathway forms a positive feedback loop and regulates the biological behaviors of GSCs, and these findings might provide a novel strategy for glioma treatment.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号