首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cartilage engineered from mesenchymal stem cells (MSCs) requires a scaffold to keep the cells in the cartilage defect and to act as a support for inducing hyaline cartilage formation. We developed a novel three-dimensional special poly-lactic-glycolic acid (PLGA) scaffold that provided structural support and stimulated repair. Three-dimensional PLGA scaffolds seeded with cultured MSCs were transplanted into large defects in rabbit knees and analyzed histologically at 4 and 12 weeks after the operation. Our findings showed that in the engineered cartilage with the PLGA scaffold, the defects were filled with smooth, shiny white tissue macroscopically and hyaline-like cartilage histologically at 12 weeks after the transplantation. The structure of the novel PLGA scaffolds provided architectural support for the differentiation of progenitor cells and demonstrated successful induction of in vivo chondrogenesis.  相似文献   

2.
目的探讨采用聚乳酸一聚乙醇酸共聚物(PLGA)生物支架及骨髓间充质干细胞,构建组织工程化脂肪组织的可行性。方法将雄性大鼠骨髓间充质干细胞接种于PLGA支架上,成脂诱导培养1周,扫描电镜观察细胞在支架上的生长及黏附情况;同时,将细胞一支架复合体异体移植于雌性大鼠体内,观察其成脂情况,并使用原位杂交技术鉴定。结果在生物支架上大量成脂细胞呈簇状生长;1个月时可见脂肪组织形成,3个月时脂肪组织成熟。结论PLGA生物支架是一种理想的生物可降解支架,骨髓间充质干细胞接种于PLGA生物支架可用于组织工程化脂肪的研究。  相似文献   

3.
The objective of this study was to obtain fundamental knowledge about in vitro culture systems to enhance the proliferation and differentiation of mesenchymal stem cells (MSCs) in collagen sponge reinforced by the incorporation of poly(glycolic acid) (PGA) fiber. A collagen solution with PGA fiber homogeneously localized at PGA:collagen weight ratios of 0.67, 1.25, 2.5, and 5 was freezedried, followed by cross-linking of combined dehydrothermal, glutaraldehyde, and ultraviolet treatment. Scanning electron microscopy revealed that collagen sponges exhibited homogeneous and interconnected pore structures with an average size of 180 microm, irrespective of PGA fiber incorporation. When rat MSCs were seeded into collagen sponge with or without PGA fiber incorporation, more attached cells were observed in collagen sponge incorporating PGA fiber than in collagen sponge without PGA fiber incorporation, irrespective of the PGA:collagen ratio. The proliferation and osteogenic differentiation of MSCs in PGA-reinforced sponge at a weight ratio of 5 were greatly influenced by the culture method and growth conditions. Alkaline phosphatase (ALP) activity and osteocalcin content of MSCs cultured in PGA-reinforced sponge by the perfusion method became maximum at a flow rate of 0.2 mL/min, although they increased with culture time period. It may be concluded that appropriate perfusion conditions enable MSCs to positively improve the extent of proliferation and differentiation.  相似文献   

4.
Many neurotrophic factors have been shown to promote neurite outgrowth by improving the microenvironment that is required for nerve regeneration. However, the delivery of these bioactive agents to the nerve injury site, as well as effective and local release, remains a challenging problem. We have developed a novel composite nerve conduit comprised of poly(lactic acid-caprolactone) (P(LLA-CL)) and nerve growth factor (NGF). This was developed from core-shell structured biodegradable nanofibers, which were fabricated by coaxial electrospinning of P(LLA-CL) for the shell and bovine serum albumin (BSA) or BSA/NGF for the core. In rats, gaps of 10-mm long sciatic nerves were bridged using an autograft, an empty P(LLA-CL) conduit, a NGF injection P(LLA-CL) conduit, a P(LLA-CL)/NGF composite conduit, respectively. Regenerated nerve fibers were harvested and morphological and functional evaluation of nerve regeneration was performed at 12 weeks postsurgery. Although partial biodegradation and small cracks in the conduits were observed, the conduit outlines remained intact for 12 weeks after surgery. Based on functional and histological observations, the number and arrangement of regenerated nerve fibers, myelination, and nerve function reconstruction was similar in the P(LLA-CL)/NGF conduit group to that of the nerve autograft group (p > 0.05), but was significantly greater to the empty P(LLA-CL) and injection NGF P(LLA-CL) conduit groups (both p < 0.05). Therefore, the composite P(LLA-CL)/NGF conduit, which exhibited favorable mechanical properties and biocompatibility, could effectively promote sciatic nerve regeneration in rats.  相似文献   

5.
文题释义:纳米结构:是尺寸介于分子和微米尺度间的物体结构。当纳米羟基磷灰石与高分子材料物理混合后,羟基磷灰石会发生自聚,从而在材料表面产生纳米结构。这种纳米结构有利于细胞(如骨髓充间质干细胞)的黏附,是骨修复材料表面细胞增殖和后期成骨分化的基础。成骨分化:当干细胞接受诱导时可以向成骨细胞转变。淫羊藿苷高分子复合支架与间充质干细胞共培养一段时间后,其骨分化标志物碱性磷酸酶和骨钙素的活性增高,同时成骨相关基因和蛋白(Runx-2、COLⅠ)表达水平上升,即细胞在淫羊藿苷诱导下发生了成骨分化。  摘要背景:近年来,骨组织工程技术为临床治疗骨缺损提供了全新的思路和模式。该研究首次将传统中药与组织工程支架的纳米结构结合,以期探索并构建一种可用于骨缺损治疗的新型骨组织替代材料。目的:研究淫羊藿苷(icariin,ICA)/羟基磷灰石(hydroxyapatite,HA)/聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)复合支架的成骨活性。方法:将HA与PLGA通过物理共混的方式制成HA/PLGA复合支架,然后将其浸泡于不同浓度的ICA溶液中,从而得到ICA/HA/PLGA支架。利用兔骨髓间充质干细胞分别对复合支架的细胞黏附、增殖、成骨作用和细胞毒性进行评价。细胞黏附、细胞增殖和细胞毒性采用MTT法进行检测,碱性磷酸酶活性和骨钙素活性采用ELISA法进行检测,成骨相关基因和蛋白表达水平分别用荧光定量PCR和Western blot法进行检测。结果与结论:①PLGA中加入适量HA可以提高支架的力学强度,且在HA含量为10%时效果最佳,拉伸强度为(1.67±0.37) MPa;压缩模量为(4.17±1.62) MPa,且会在支架表面形成纳米结构;该微结构可以促进骨髓间充质干细胞在支架表面的黏附;②ICA不会影响骨髓间充质干细胞在复合支架上的增殖,且1.00 µmol/L ICA水溶液浸泡后的ICA/HA/PLGA复合支架具有最优的成骨分化功能,其碱性磷酸酶活性、骨钙素活性、成骨相关基因和蛋白(Runx-2和COLⅠ)的表达水平均最高;③ICA/HA/PLGA复合支架无细胞毒性;④结果表明,HA(10%)/ICA(1.00 µmol/L)/PLGA支架具有良好的机械性能、成骨作用和生物相容性,是一种具有良好应用潜力的骨组织工程支架。ORCID: 0000-0002-9770-9109(王德欣) 中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程  相似文献   

6.
This study aims to produce a degradable and bone-bioactive membrane for guiding bone regeneration by combining a degradable polymer, poly(lactic acid) (PLA), with a bioactive inorganic zinc-containing bioactive glass (ZnBG). The in?vitro osteogenic development of rat bone marrow mesenchymal stem cells (rBMSCs) upon different membrane substrates (pure PLA control, PLA-BG, and PLA-ZnBG) was investigated in terms of bone cell phenotype syntheses and mineralization. Results showed significantly stimulated production of alkaline phosphatase and osteocalcin at days 14 and 21 in the membranes containing BG and ZnBG, with more in the samples containing ZnBG. The addition of ZnBG in PLA allowed the rBMSCs to express a high level of bone sialoprotein as confirmed by immunostaining. Cellular mineralization of the secreted extracellular matrix showed a significantly higher Ca level on the BG- and ZnBG-added membrane than on the PLA, and the more so in the ZnBG-added one. Based on the in?vitro assessments using rBMSCs, the ZnBG-added PLA is considered to be of potential use in guiding active bone regeneration within the periodontal pocket.  相似文献   

7.
The biocompatibility and biodegradation rate of component materials are critical when designing a drug-delivery device. The degradation products and rate of degradation may play important roles in determining the local cellular response to the implanted material. In this study, we investigated the biocompatibility and relative biodegradation rates of PLA, PGA and two poly(lactic-co-glycolic acid) (PLGA) polymers of 50 : 50 mol ratio, thin-film component materials of a drug-delivery microchip developed in our laboratory. The in vivo biocompatibility and both in vivo and in vitro degradation of these materials were characterized using several techniques. Total leukocyte concentration measurements showed normal acute and chronic inflammatory responses to the PGA and low-molecular-weight PLGA that resolved by 21 days, while the normal inflammatory responses to the PLA and high-molecular-weight PLGA were resolved but at slower rates up to 21 days. These results were paralleled by thickness measurements of fibrous capsules surrounding the implants, which showed greater maturation of the capsules for the more rapidly degrading materials after 21 days, but less mature capsules of sustained thicknesses for the PLA and high-molecular-weight PLGA up to 49 days. Gel-permeation chromatography of residual polymer samples confirmed classification of the materials as rapidly or slowly degrading. These materials showed thinner fibrous capsules than have been reported for other materials by our laboratory and have suitable biocompatibility and biodegradation rates for an implantable drug-delivery device.  相似文献   

8.
The biocompatibility and biodegradation rate of component materials are critical when designing a drug-delivery device. The degradation products and rate of degradation may play important roles in determining the local cellular response to the implanted material. In this study, we investigated the biocompatibility and relative biodegradation rates of PLA, PGA and two poly(lactic-co-glycolic acid) (PLGA) polymers of 50:50 mol ratio, thin-film component materials of a drug-delivery microchip developed in our laboratory. The in vivo biocompatibility and both in vivo and in vitro degradation of these materials were characterized using several techniques. Total leukocyte concentration measurements showed normal acute and chronic inflammatory responses to the PGA and low-molecular-weight PLGA that resolved by 21 days, while the normal inflammatory responses to the PLA and high-molecular-weight PLGA were resolved but at slower rates up to 21 days. These results were paralleled by thickness measurements of fibrous capsules surrounding the implants, which showed greater maturation of the capsules for the more rapidly degrading materials after 21 days, but less mature capsules of sustained thicknesses for the PLA and high-molecular-weight PLGA up to 49 days. Gel-permeation chromatography of residual polymer samples confirmed classification of the materials as rapidly or slowly degrading. These materials showed thinner fibrous capsules than have been reported for other materials by our laboratory and have suitable biocompatibility and biodegradation rates for an implantable drug-delivery device.  相似文献   

9.
We studied the effects of dexamethasone (Dex) and basic fibroblast growth factor (bFGF) on proliferation and differentiation of rat bone marrow stromal cells (RBMSCs), using three scaffolds: collagen sponge, poly(glycolic acid) (PGA)-collagen sponge, and PGA-collagen (UV) sponge. RBMSCs were seeded into the sponges, and cultured in primary medium, primary medium with Dex, and primary medium with bFGF and Dex. Three weeks after cultivation, we examined alkaline phosphatase (ALP) activity and cell number in the sponges, and also performed macroscopic, light microscopic, and scanning electron microscopic (SEM) observations. Collagen sponge shrank considerably, but PGA-collagen and PGA-collagen (UV) sponges maintained most of their original shape. PGA-collagen (UV) sponge supplemented with bFGF and Dex together had the highest ALP activity and cell number, followed by PGA-collagen sponge. Although collagen sponge showed cell proliferation only on the surface, the other two sponges showed cell proliferation in the interior. SEM showed the best cell attachment to PGA-collagen (UV) sponge in the presence of bFGF and Dex, followed by PGA-collagen sponge. In conclusion, PGA-collagen (UV) and PGA-collagen sponges proved to be much more useful as scaffolding for bone regeneration when combined with bFGF and Dex.  相似文献   

10.
背景:前期研究表明,蚕丝/聚乳酸-羟基乙酸共聚物支架浸提液具有良好的细胞相容性,基本无细胞毒性。 目的:观察蚕丝/聚乳酸-羟基乙酸共聚物纤维细丝混合编织支架体外长期降解过程中降解液对兔骨髓间充质干细胞增殖活性的影响。 方法:将蚕丝/聚乳酸-羟基乙酸共聚物细丝混合编织支架材料置于完全培养基中体外降解14周,每周换液1次,测定各周支架降解液的pH值。将兔骨髓间充质干细胞分组培养,实验组加入各周支架降解液和新鲜完全培养基各100 µL,阴性对照组加入完全培养基200 µL,培养4 d。MTT法检测细胞增殖、生长情况。 结果与结论:①支架降解液pH值的变化:前3周下降缓慢,从7.00降到6.89;第4周起下降较快,6-11周较低,在5.16-5.67之间;12-14周呈上升趋势,回升到6.95。②骨髓间充质干细胞形态:实验组及阴性对照组细胞增殖生长及形态状况基本相似。降解7-10周支架降解液对细胞的生长有抑制作用,细胞数量相对较少、较疏,而其余各周支架降解液对细胞生长无明显抑制作用。③骨髓间充质干细胞的增殖:1-6周及11-14周的支架降解液对细胞增殖无显著影响,细胞相对增殖率均在92.1%以上,毒性分级为0或1级;7-10周的支架降解液虽对细胞增殖有抑制作用,但细胞相对增殖率为82.5%-87.9%,毒性分级为1级,为合格。表明蚕丝丝素/聚乳酸-羟基乙酸共聚物混合编织支架降解液具有良好的细胞相容性。  相似文献   

11.
背景:组织工程骨成骨功能终末细胞需要骨髓间充质干细胞在体外加以诱导或在体内以基因转染等技术加以诱导。 目的:研究Ⅰ型胶原修饰的聚乳酸聚乙醇酸微球支架上骨髓间充质干细胞黏附和成骨分化的能力。 方法:制备聚乳酸聚乙醇酸微球支架,分离纯化雌性SD大鼠骨髓间充质干细胞。将培养至第3代骨髓间充质干细胞与未经处理的聚乳酸聚乙醇酸微球及Ⅰ型胶原修饰的聚乳酸聚乙醇酸微球共同培养14 d,观察细胞在不同支架表面的黏附生长。 结果:扫描电镜及FDA-PI染色发现,骨髓间充质干细胞可在聚乳酸聚乙醇酸微球支架上生长,而与未修饰的聚乳酸聚乙醇酸微球相比骨髓间充质干细胞更容易在Ⅰ型胶原修饰的聚乳酸聚乙醇酸微球上黏附增殖。Ⅰ型胶原修饰的聚乳酸聚乙醇酸微球有利于骨髓间充质干细胞的黏附、增殖,并且有一定诱导干细胞成骨分化的能力。  相似文献   

12.
背景:2个月以内短期生物相容性实验显示,壳聚糖、聚乳酸和聚羟基乙酸对大鼠外周神经均无毒性,可作为组织工程化神经材料。 目的:评价壳聚糖/聚乳酸羟基乙酸组织工程化神经植入Beagle犬体内6个月后的慢性生物相容性。 方法:在壳聚糖神经导管中插入聚乳酸羟基乙酸纤维制备成组织工程化神经,移植桥接Beagle犬坐骨神经50mm缺损,同时以Beagle犬50mm自体神经移植作为对照组。 结果与结论:植入壳聚糖/聚乳酸羟基乙酸组织工程化神经6个月后,Beagle犬精神、食欲、活动等一般情况良好,体质量增加与对照组相当;植入后2,4,6个月血液学和血清生化检测结果与对照组无明显差异;再生神经及其周边组织未出现变性、坏死,心、肝、脾、肺、肾等主要脏器大体解剖和组织切片未见异常。表明壳聚糖/聚乳酸羟基乙酸组织工程化神经植入Beagle犬体内6个月后慢性生物相容性良好。  相似文献   

13.
The aim of this study was to investigate the effect of demineralized bone particle/ poly(lactic-co-glycolic acid) (DBP/PLGA) scaffolds on the proliferation of mesenchymal stem cells (MSCs). DBP/PLGA hybrid scaffolds were fabricated by solvent casting/salt-leaching with DBP contents of 0, 20, 40, and 80 wt%. MSCs were seeded on the DBP/PLGA scaffolds and then evaluated by a series of analytical process: SEM, MTT, RT-PCR, and in vivo histological assay. As the DBP contents increased, the cell attachment behavior and cell viability also increased. A DBP content of 80 wt% marked the best water absorption performance and the highest cell viability. Gene expression of aggrecan on DBP/PLGA scaffolds tended to increase, whereas that on PLGA scaffolds was decreased at 1 week. However, strong expression of aggrecan was observed at 2 weeks regardless of the contents of DBP. Scaffolds showed a trend of increasing type II and I collagen at 2 weeks. The results showed that MSCs on DBP/PLGA scaffolds showed more efficient cell proliferation and tissue formation in the presence of tissue-inductive stimuli. Suitable biomaterials could be more conducive to proliferation of MSCs. These results suggest that the DBP/PLGA scaffolds are a feasible biomaterial for intervertebral disc regeneration.  相似文献   

14.
The aim of this study was to demonstrate the induction of chondrogenesis by transforming growth factor (TGF)-beta1 from synovium-derived mesenchymal stem cells in a three-dimensional polyglycolic acid (PGA) scaffold, and to evaluate the effects of insulin-like growth factor (IGF)-I on TGF-beta1-induced chondrogenesis. Adult human synovial membranes were obtained from the knees of patients with osteoarthritis or rheumatoid arthritis. Cells were expanded in monolayers, seeded onto a PGA scaffold, and cultured for 4 or 8 weeks in chondrogenic medium containing TGF-beta1 with or without IGF-I. As a control, the cells were cultured in chondrogenic medium without TGF-beta1. The glycosaminoglycan content was quantified using dimethylmethylene blue dye-binding assay, and the DNA content was measured fluorometrically. Histological examination was also performed using safranin-O staining. The expression of mRNA for aggrecan and collagen type II was confirmed by RT-PCR. After 4 weeks of cultivation with TGF-beta1, the cells differentiated to a chondrocytic phenotype, and these chondrogeneses were more potent when cultured for 8 weeks. The combination of IGF-I and TGF-beta1 produced higher amounts of glycosaminoglycan than TGF-beta1 alone at 8 weeks. In conclusions, chondrogenesis from human synovium-derived mesenchymal cells was identified, and IGF-I plays a role in maintaining the extracellular matrix in combination with TGF-beta1.  相似文献   

15.
Nanofibrous poly(L-lactic acid) (PLLA) scaffolds were fabricated by an electrospinning technique and characterized by scanning electron microscopy, mercury porosimeter, atomic force microscopy and contact-angle test. The produced PLLA fibers with diameters ranging from 150 to 350 nm were randomly orientated with interconnected pores varying from several microm to about 140 microm in-between to form a three-dimensional architecture, which resembles the natural extracellular matrix structure in human body. The in vitro cell culture study was performed and the results indicate that the nanofibrous scaffold not only supports neural stem cell (NSC) differentiation and neurites out-growth, but also promotes NSC adhesion. The favorable interaction between the NSCs and the nanofibrous scaffold may be due to the greatly improved surface roughness of the electrospun nanofibrous scaffold. As evidenced by this study, the electrospun nanofibrous scaffold is expected to play a significant role in neural tissue engineering.  相似文献   

16.
Mesenchymal stem cells (MSCs) were cultivated on the surface of nerve growth factor (NGF)-conjugated aligned nanofibrous meshes for neuronal differentiation. Amine-terminated poly(ethylene glycol) was conjugated to poly(ε-caprolactone) to prepare amine-functionalized block copolymers. The synthesized polymer was electrospun in a rotating drum to prepare aligned nanofibrous meshes. A nerve growth factor was chemically immobilized on the surface-exposed amine groups of the electrospun nanofibrous meshes in the aqueous phase. In vitro release profiles of the nerve growth factor were investigated for NGF-immobilized nanofibrous meshes. The conjugated nerve growth factor was not released for 7 days, while the growth factor physically adsorbed on the nanofibrous meshes showed an initial burst release. MSCs were cultivated on the NGF-conjugated nanofibrous meshes for 5 days, and total RNA was extracted from the cultivated cells. mRNA was extracted from cells for measuring expression levels of neuronal differentiation markers, including nestin, tubulin βIII and map2, in the cultivated stem cells. The conjugation of NGF significantly increased the expression levels of the marker proteins for neuron cells while physically adsorbed NGFs on nanofibrous meshes showed low expression of these marker genes. Furthermore, alignments of nanofibrous meshes clearly increased the expression levels of neuronal makers while the nanofibrous mesh without the topographical cue did not affect neuronal differentiation of the cultivated stem cells. Confocal microscopy revealed that the stem cells on the NGF-conjugated aligned nanofibrous meshes showed intense staining with antibodies against neuronal makers as well as elongated morphology compared to other groups. Thus, the NGF-conjugated nanofibrous meshes with topographical cues significantly increased the neuronal differentiation of mesenchymal stem cells in comparison to NGF-adsorbed nanofibrous meshes.  相似文献   

17.
Rapid progress in the field of nerve tissue engineering has opened up the way for new therapeutic strategies for spinal cord injury (SCI). Bone marrow-derived mesenchymal stem cells (MSCs) could be differentiated into neural lineages, which can be used as a potential cell source for nerve repair. Schwann cells (SCs) have been reported to support structural and functional recovery of SCI. In this study, we co-cultured neurotrophin-3 (NT-3) gene-modified SCs and NT-3 receptor tyrosine protein kinase C (TrkC) gene-modified MSCs in a three-dimensional porous poly(lactic-acid-co-glycolic acid) (PLGA) conduit with multiple channels in vitro for 14 days. Our results showed that more than 50% of the grafted MSCs were MAP2- and β-III-tubulin-positive cells, and the MSCs expressed a high level of β-III-tubulin detected by Western blotting, indicating a high rate of neuronal differentiation. Furthermore, immunostaining of PSD95 revealed the formation of a synapse-like structure, which was confirmed under electron microscopy. In conclusion, co-culture of NT-3 gene-modified SCs and TrkC gene-modified MSCs in the PLGA multiple-channeled conduit can promote MSCs' differentiation into neuron-like cells with synaptogenesis potential. Our study provides a biological basis for future application of this artificial MSCs/SCs/PLGA complex in the SCI treatment.  相似文献   

18.
Highly oriented poly(glycolic acid) (PGA) fibres with an initial tensile strength of 1.1 GPa and different lamellar morphologies were prepared and studied during degradation in aqueous media at 37°C. A combination of small- and wide-angle X-ray scattering was used to study the structural changes during degradation and to generate two structural models of highly oriented PGA fibres with different lamellar morphologies. It is shown that as a result of crystallisation during degradation PGA crystals grow preferentially along the (110) and (020) directions of the crystal lattice or perpendicular to the orientation direction of the fibres. (1)H nuclear magnetic resonance measurements revealed three phases within the fibres with different relaxation times: (1) a mobile amorphous phase with a short relaxation time; (2) a semi-rigid phase with an intermediate relaxation time; (3) a rigid crystalline phase with a longer relaxation time. It is shown that the mobile amorphous phase degrades very rapidly and that it plays only a small role in the tensile mechanical behaviour of the fibres during degradation. It is shown that semi-rigid chains connecting crystalline domains are responsible for transferring the stress between crystalline domains and carrying the tensile deformation. It is proposed that once these tie molecules degrade considerably the oriented fibres very rapidly lose their strength retention.  相似文献   

19.
Nanofibrous poly(L-lactic acid) (PLLA) scaffolds were fabricated by an electrospinning technique and characterized by scanning electron microscopy, mercury porosimeter, atomic force microscopy and contact-angle test. The produced PLLA fibers with diameters ranging from 150 to 350 nm were randomly orientated with interconnected pores varying from several μm to about 140 μm in-between to form a three-dimensional architecture, which resembles the natural extracellular matrix structure in human body. The in vitro cell culture study was performed and the results indicate that the nanofibrous scaffold not only supports neural stem cell (NSC) differentiation and neurites out-growth, but also promotes NSC adhesion. The favorable interaction between the NSCs and the nanofibrous scaffold may be due to the greatly improved surface roughness of the electrospun nanofibrous scaffold. As evidenced by this study, the electrospun nanofibrous scaffold is expected to play a significant role in neural tissue engineering.  相似文献   

20.
Xu X  Yee WC  Hwang PY  Yu H  Wan AC  Gao S  Boon KL  Mao HQ  Leong KW  Wang S 《Biomaterials》2003,24(13):2405-2412
Prolonged delivery of neurotrophic proteins to the target tissue is valuable in the treatment of various disorders of the nervous system. We have tested in this study whether sustained release of nerve growth factor (NGF) within nerve guide conduits (NGCs), a device used to repair injured nerves, would augment peripheral nerve regeneration. NGF-containing polymeric microspheres fabricated from a biodegradable poly(phosphoester) (PPE) polymer were loaded into silicone or PPE conduits to provide for prolonged, site-specific delivery of NGF. The conduits were used to bridge a 10 mm gap in a rat sciatic nerve model. Three months after implantation, morphological analysis revealed higher values of fiber diameter, fiber population and fiber density and lower G-ratio at the distal end of regenerated nerve cables collected from NGF microsphere-loaded silicone conduits, as compared with those from control conduits loaded with either saline alone, BSA microspheres, or NGF protein without microencapsulation. Beneficial effects on fiber diameter, G-ratio and fiber density were also observed in the permeable PPE NGCs. Thus, the results confirm a long-term promoting effect of exogenous NGF on morphological regeneration of peripheral nerves. The tissue-engineering approach reported in this study of incorporation of a microsphere protein release system into NGCs holds potential for improved functional recovery in patients whose injured nerves are reconstructed by entubulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号