首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Purpose

The isoprenoid geranylgeraniol (GGOH) inhibits nuclear factor-kappa B (NF-κB) activation in the liver, yet the mechanism remains unclear. We investigated the modulation and inhibition of lipopolysaccharide (LPS)-induced NF-κB signaling in the liver of rats fed a GGOH-supplemented diet.

Methods

Rats were fed a diet supplemented with or without GGOH for 10 days. Rats were then intraperitoneally injected with 0.5 mg/kg LPS or vehicle (sterilized saline) and fasted for 18 h. Plasma levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and the liver damage indicators alanine and aspartate aminotransferases (ALT and AST) were assessed. Liver mRNA and proteins were assayed for changes in NF-κB target genes and signal transduction genes.

Results

Rats fed a high-dose, GGOH-supplemented diet showed significantly lower levels of plasma inflammatory cytokines and ALT and AST activities. In the liver, GGOH significantly suppressed NF-κB activation and mRNA expression of its pro-inflammatory target genes. Furthermore, GGOH supplementation substantially suppressed mRNA expression of signal transducer genes upstream of the IκB kinase complex. Western blotting of liver extracts further demonstrated the substantial decrease in total IL-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6), leading to lower signal transduction and inhibition of NF-κB after LPS.

Conclusion

A 10-day, high-dose, GGOH-supplemented diet was sufficient to inhibit LPS-induced inflammation and activation of NF-κB in rat livers. GGOH significantly modulated NF-κB signaling molecules, inhibiting its signal transduction and activation in the liver, thus protecting against liver damage.  相似文献   

2.

Background and aims

Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine—a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis—is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice.

Methods

Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated.

Results

Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway.

Conclusions

These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.  相似文献   

3.

Background

Altered expression of cell adhesion molecules (CAMs) has been implicated in a variety of chronic inflammatory conditions, including atherosclerosis. Regulation of adhesion molecule expression by specific redox-sensitive mechanisms has been reported. Additionally, it has been observed that the extract of Aronia melanocarpa (A. Melanocarpa) fruits, rich in polyphenols, exhibits potent anti-oxidant properties and displays cardioprotective activity.

Methods and results

Human aortic endothelial cells (HAECs) were pretreated with various concentrations (primarily 50?μg/mL) of Aronia Melanocarpa fruit extract prior to treatment with TNFα (10?ng/mL) for various periods of time. The surface protein and mRNA expression of ICAM-1 and VCAM-1 were determined using flow cytometry and real-time RT-PCR, respectively. Adhesion of peripheral blood mononuclear leucocytes (PBMLs) to TNFα-treated HAECs was evaluated by an adhesion assay. Activation of NF-κB was evaluated by measuring NF-κB p65 phosphorylation using flow cytometry. ROS production was determined by reduction in fluorescent 2′,7′-dichlorofluorescein diacetate (DCFH-DA). Tested A. Melanocarpa extract significantly inhibited the expression of ICAM-1 and VCAM-1, attenuated the phosphorylation of NF-κB p65 and decreased intracellular ROS production in TNFα-treated HAECs.

Conclusion

We conclude that A. Melanocarpa fruit extract exhibits anti-inflammatory effects in HAECs by inhibiting the expression of endothelial CAMs, activation of NF-κB and production of ROS.  相似文献   

4.
ObjectiveChronic generation of inflammatory cytokines and reactive oxygen species are implicated in atherosclerosis, aging, cancers, and other chronic diseases. We hypothesized that zinc induces A20 in premonocytic, endothelial, and cancer cells, and A20 binds to tumor necrosis factor (TNF)-receptor associated factor, and inhibits Iκ kinase-α (IKK-α)/nuclear factor-κB (NF-κB), resulting in downregulation of TNF-α and interleukin-1β (IL-1β).MethodsTo test this hypothesis, we used HL-60, human umbilical vein endothelial cells, and SW480 cell lines under zinc-deficient and zinc-sufficient conditions in this study. We measured oxidative stress markers, inflammatory cytokines, A20 protein and mRNA, A20–FRAF-1 complex, and IKK-α/NF-κB signaling in stimulated zinc-deficient and zinc sufficient cells. We also conducted antisense A20 and siRNA studies to investigate the regulatory role of zinc in TNF-α and IL-1β via A20.ResultsWe found that zinc increased A20 and A20–tumor necrosis factor-receptor associated factor-1 complex, decreased the IKK-α/NF-κB signaling pathway, oxidative stress markers, and inflammatory cytokines in these cells compared with zinc-deficient cells. We confirmed that zinc-induced A20 contributes to downregulation of TNF-α and IL-1β by antisense and short interfering RNA A20 studies.ConclusionOur studies suggest that zinc suppresses generation of NF-κB–regulated inflammatory cytokines by induction of A20.  相似文献   

5.

Purpose

Laminaria japonica is a representative marine brown alga used as a culinary item in East Asia. L. japonica extract was shown to exert various biological activities; however, its anti-inflammatory activity has not been reported. The aim of this study is to investigate the molecular mechanisms underlying its anti-inflammatory action.

Methods

Anti-inflammatory mechanisms of L. japonica n-hexane fraction (LHF) were assessed using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. An anti-inflammatory compound isolated from LHF by reverse-phase chromatography was identified using nuclear magnetic resonance (NMR) spectroscopy.

Results

Our results indicate that LHF significantly inhibited LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) secretion in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) with no cytotoxicity. As results, levels of pro-inflammatory cytokines were significantly reduced by pretreatment of LHF in LPS-stimulated RAW 264.7 cells. Treatment of LHF strongly suppressed nuclear factor-κB (NF-κB) promoter-driven expression and nuclear translocation of NF-κB by preventing proteolytic degradation of inhibitor of κB (IκB)-α in LPS-stimulated RAW 264.7 cells. Moreover, LHF inhibited the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. One of the anti-inflammatory compounds was isolated from LHF and identified as fucoxanthin.

Conclusions

These results indicate that the LHF-mediated inhibition of NO and PGE2 secretion in LPS-stimulated macrophages is regulated by NF-κB inactivation through inhibition of IκB-α, MAPKs, and Akt phosphorylation. LHF may be considered as a functional food candidate for the prevention or treatment of inflammatory diseases.  相似文献   

6.

Purpose

Inflammation is a hallmark of many diseases, such as atherosclerosis, autoimmune diseases, obesity, and cancer. Isoflavone-free soy protein diet (SPI?) has been shown to reduce atherosclerotic lesions in a hyperlipidemic mouse model compared to casein (CAS)-fed mice, despite unchanged serum lipid levels. However, possible mechanisms contributing to the athero-protective effect of soy protein remain unknown. Therefore, we investigated whether and how SPI? diet inhibits inflammatory responses associated with atherosclerosis.

Methods

Apolipoprotein E knockout (apoE?/?) mice (5-week) were fed CAS or SPI? diet for 1 or 5 week to determine LPS- and hyperlipidemia-induced acute and chronic inflammatory responses, respectively. Expression of NF-κB-dependent inflammation mediators such as VCAM-1, TNF-α, and MCP-1 were determined in aorta and liver. NF-κB, MAP kinase, and AKT activation was determined to address mechanisms contributing to the anti-inflammatory properties of soy protein/peptides.

Results

Isoflavone-free soy protein diet significantly reduced LPS-induced VCAM-1 mRNA and protein expression in aorta compared to CAS-fed mice. Reduced VCAM-1 expression in SPI?-fed mice also paralleled attenuated monocyte adhesion to vascular endothelium, a critical and primary processes during inflammation. Notably, VCAM-1 mRNA and protein expression in lesion-prone aortic arch was significantly reduced in apoE?/? mice fed SPI? for 5 weeks compared with CAS-fed mice. Moreover, dietary SPI? potently inhibited LPS-induced NF-κB activation and the subsequent upregulation of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1β, and MCP-1. Interestingly, SPI? inhibited NF-κB-dependent inflammatory responses by targeting I-κB phosphorylation and AKT activation with no effect on MAP kinase pathway. Of the five putative soy peptides, four of the soy peptides inhibited LPS-induced VCAM-1, IL-6, IL-8, and MCP-1 protein expression in human vascular endothelial cells in vitro.

Conclusions

Collectively, our findings suggest that anti-inflammatory properties of component(s) of soy protein/peptides may be a possible mechanism for the prevention of chronic inflammatory diseases such as atherosclerosis.  相似文献   

7.
目的探讨白藜芦醇(Res)对脂多糖(LPS)诱导小鼠腹腔巨噬细胞核因子-κB(NF-κB)活化及炎性细胞因子[肿瘤坏死因子(TNF-α)、白介素-1β(IL-1β)、白介素-6(IL-6)]基因表达的调节。方法分别用1mg/LLPS或25mmol/LRes+1mg/LLPS处理体外培养的小鼠巨噬细胞,采用电泳迁移率改变分析法(EMSA)检测细胞中NF-κB活性,逆转录-聚合酶链反应(RT-PCR)和酶联免疫吸附法(ELISA)检测细胞中TNF-α、IL-1β、IL-6mRNA和蛋白的表达。结果LPS组NF-κB活性和TNF-α、IL-1β、IL-6含量在刺激后6~12h明显高于正常对照组(P<0.001),而Res+LPS组NF-κB活性和TNF-α、IL-1β、IL-6含量均显著低于LPS组(P<0.005)。结论LPS可诱导巨噬细胞NF-κB活化,导致TNF-α、IL-1β、IL-6基因表达增强,而Res能抑制NF-κB活化而调节TNF-α、IL-1β、IL-6基因的表达。  相似文献   

8.
9.

Purpose

To examine the effect of different dietary fat types on osteopontin (OPN) expressions and inflammation of adipose tissues in diet-induced obese rats.

Methods

Male Sprague–Dawley rats were randomly assigned to one control group fed standard diet (LF, n = 10) and two high-fat diet groups fed isoenergy diet rich in lard or soybean oil (HL or HS, n = 45 each). Diet-induced obese rats in HL and HS group were then subdivided into two groups either continuously fed high-fat diet or switched to low-fat diet for 8 more weeks. Fasting serum glucose, insulin, and OPN concentrations were assayed and QUICKI was calculated; the expression of OPN, IL-6, IL-10, TNF-α, NF-κB, and F4/80 in adipose tissue was determined.

Results

Both high-fat diets lead to comparable development of obesity characterized by insulin resistance and adipose tissue inflammation. Obese rats continuously fed high-fat diet rich in lard oil exhibited the highest fasting serum insulin level and adipose tissue OPN, F4/80, TNF-α, and NF-κB expression level. In both high-fat diet groups, switching to low-fat diet resulted in less intra-abdominal fat mass, decreased expression of F4/80, TNF-α, and NF-κB, while decreased OPN expression was only observed in lard oil fed rats after switching to low-fat diet.

Conclusions

Reducing diet fat or replacing lard oil with soybean oil in high-fat diet alleviates obesity-related inflammation and insulin resistance by attenuating the upregulation of OPN and macrophage infiltration into adipose tissue induced by high-fat diet.  相似文献   

10.
11.

Purpose

The peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) regulates the expression of genes implicated in fatty acid oxidation and oxidative phosphorylation. Its role in liver steatosis is well established, since mice with liver-specific deletion of PGC-1α exhibit lipid accumulation and high-fat diet reduces hepatic PGC-1α expression in mice. In this study, we investigated the role of PGC-1α in the inflammatory changes observed in steatohepatitis induced by high-fat diet.

Methods

C57black/6 mice were fed a high-fat diet containing 30% fat for 10 weeks. After euthanasia, liver morphology was examined by HE staining and inflammation was determined by IL-6, TNF-α, and IL-1β quantification. Liver gene expression of PGC-1 isoforms was evaluated by real-time PCR and p65 NFκB nuclear translocation by Western blotting. HepG2 cells were treated with linoleic acid overload for 72 h to create an in vitro model of steatohepatitis. RNA interference (RNAi) was used to evaluate the involvement of PGC-1α on inflammatory mediators’ production by hepatocytes.

Results

The high-fat diet led to a state of nonalcoholic steatohepatitis, associated with increased deposits of intra-abdominal fat, hyperglycemia and hyperlipidemia. Mice liver also exhibited increased proinflammatory cytokines’ levels, decreased PGC-1α expression, and marked increase in p65 NFκB nuclear translocation. Linoleic acid treated cells also presented increased expression of proinflammatory cytokines and decreased PGC-1α expression. The knockdown of PGC-1α content caused an increase in IL-6 expression and release via enhanced IκBα phosphorylation and subsequent increase of p65 NFκB nuclear translocation.

Conclusion

High-fat diet induces liver inflammation by inhibiting PGC-1α expression and its suppressive effect in NFκB pathway.
  相似文献   

12.
13.

Background

Altered immune function during ageing results in increased production of nitric oxide (NO) and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, ??-tocotrienol, and riboflavin) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-??B activation and NO, TNF-??, IL-6, IL-1??, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice.

Results

The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P?<?0.02) in the activities of chymotrypsin-like, trypsin-like, and post-acidic (post-glutamase) proteasome sites in RAW 264.7 cells at a dose of only 20 ??M. These compounds also inhibited the production of NO by RAW-264.7 cells stimulated with LPS alone (>40%; P?<?0.05), or LPS?+?interferon-?? (IFN-??; >60%; P?<?0.02). Furthermore, resveratrol, pterostilbene, morin hydrate, and quercetin suppressed secretion of TNF-?? (>40%; P?<?0.05) in LPS-stimulated RAW 264.7 cells, and suppressed NF-??B activation (22% to 45%; P?<?0.05) in LPS-stimulated HEK293T cells. These compounds also significantly suppressed LPS-induced expression of TNF-??, IL-1??, IL-6, and iNOS genes in RAW 264.7 cells, and also in thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice.

Conclusions

The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-??B activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-??, IL-1??, IL-6, and NO levels, in response to inflammatory stimuli. This is the first report demonstrating that resveratrol and pterostilbene act as proteasome inhibitors, thus providing a mechanism for their anti-inflammatory effects.  相似文献   

14.
侯海峰  贾强  周汝  李成  袁娜  杨明峰  丁国永 《卫生研究》2012,(2):195-198,203
目的观察黄绿青霉素(CIT)对血管内皮细胞表达单核细胞趋化蛋白1(MCP-1)、白细胞介素1β(IL-lβ)、IL-6和IL-8等细胞因子的影响,以及CIT上调肿瘤坏死因子α(TNF-α)诱导的内皮细胞表达MCP-1、IL-lβ、IL-6和IL-8的作用。方法体外原代培养人脐静脉内皮细胞(HUVECs),选择第5~6代进行试验,待细胞融合80%后随机分组,加入TNF-α(10μg/L)、CIT(2μmol/L)建立TNF-α组、CIT组、TNF-α+CIT联合处理组和空白对照组,处理时间24h。用酶联免疫吸附法(ELISA)检测细胞上清液IL-lβ、IL-6、IL-8及MCP-1的含量;免疫荧光染色法测定细胞核转录因子κB(NF-κB)的激活表达;RT-PCR检测各组MCP-1 mRNA表达。结果在TNF-α组和TNF-α+CIT组,细胞上清液IL-lβ、IL-6、IL-8、MCP-1浓度,细胞MCP-1 mRNA表达量,NF-κB P65蛋白表达量均高于空白对照组(P<0.05);且TNF-α+CIT组均高于TNF-α组(P<0.05)。结论 CIT可明显上调TNF-α诱导的内皮细胞MCP-1、IL-lβ、IL-6、IL-8表达和NF-κB的激活。  相似文献   

15.
16.
Moringa oleifera Lamarck is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential antiinflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 μM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 μM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 μM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal-regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB and subsequent binding to NF-κB cis-acting element was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating antiinflammatory or cancer chemopreventive activity.  相似文献   

17.

Introduction

Neutrophils provide the first line of defense of the innate immune system by phagocytosing, killing and digesting bacteria and fungi. During this process, neutrophils produce reactive oxygen species (ROS), which in excess, can damage the cells themselves and surrounding tissues. The carotenoid fucoxanthin (Fc) has been studied concerning its antioxidant and anti-inflammatory actions. Vitamin c (Vc) also demonstrates potent antioxidant action. This study aimed to evaluate the effect of Fc (2 μM) in association with Vc (100 μM) on functional parameters of human neutrophils in vitro.

Materials and methods

We evaluated the migration and phagocytic capacity, intracellular calcium mobilization, ROS production (O 2 ·? , H2O2, HOCl), myeloperoxidase activity, profile of antioxidant enzymes, phosphorylation of p38 MAPK and p65 NFκB subunit, GSH/GSSG ratio and release of pro-inflammatory cytokines (TNF-α and IL-6) in neutrophils under different stimuli.

Results

We verified an increase in phagocytic capacity for all treatments, together with an increase in intracellular calcium only in cells treated with Fc and Fc + Vc. ROS production was reduced by all treatments, although Vc was a better antioxidant than Fc. Phosphorylation of the p-65 subunit of NFκB was reduced in cells treated with Fc + Vc and release of TNF-α and IL-6 was reduced by all treatments. These findings indicate that the regulation of inflammatory cytokines by neutrophils is not exclusively under the control of the NFκB pathway. Fc reduced the activity of some antioxidant enzymes, whereas Vc increased GR activity and the GSH/GSSG ratio.

Conclusion

In conclusion, the results presented in this study clearly show an immunomodulatory effect of the carotenoid fc alone or in combination with Vc on the function of human neutrophils.  相似文献   

18.
19.

Background

Changes in immune function believed to contribute to a variety of age-related diseases have been associated with increased production of nitric oxide (NO). We have recently reported that proteasome inhibitors (dexamethasone, mevinolin, quercetin, δ-tocotrienol, and riboflavin) can inhibit lipopolysaccharide (LPS)-induced NO production in vitro by RAW 264.7 cells and by thioglycolate-elicited peritoneal macrophages derived from four strains of mice (C57BL/6, BALB/c, LMP7/MECL-1-/- and PPAR-α-/- knockout mice). The present study was carried out in order to further explore the potential effects of diet supplementation with naturally-occurring inhibitors (δ-tocotrienol and quercetin) on LPS-stimulated production of NO, TNF-α, and other pro-inflammatory cytokines involved in the ageing process. Young (4-week-old) and senescent mice (42-week old) were fed control diet with or without quercetin (100 ppm), δ-tocotrienol (100 ppm), or dexamethasone (10 ppm; included as positive control for suppression of inflammation) for 4 weeks. At the end of feeding period, thioglycolate-elicited peritoneal macrophages were collected, stimulated with LPS, LPS plus interferon-β (IFN-β), or LPS plus interferon-γ (IFN-γ), and inflammatory responses assessed as measured by production of NO and TNF-α, mRNA reduction for TNF-α, and iNOS genes, and microarray analysis.

Results

Thioglycolate-elicited peritoneal macrophages prepared after four weeks of feeding, and then challenged with LPS (10 ng or 100 ng) resulted in increases of 55% and 73%, respectively in the production of NO of 46-week-old compared to 8-week-old mice fed control diet alone (respective control groups), without affecting the secretion of TNF-α among these two groups. However, macrophages obtained after feeding with quercetin, δ-tocotrienol, and dexamethasone significantly inhibited (30% to 60%; P < 0.02) the LPS-stimulated NO production, compared to respective control groups. There was a 2-fold increase in the production of NO, when LPS-stimulated macrophages of quercetin, δ-tocotrienol, or dexamethasone were also treated with IFN-β or IFN-γ compared to respective control groups. We also demonstrated that NO levels and iNOS mRNA expression levels were significantly higher in LPS-stimulated macrophages from senescent (0.69 vs 0.41; P < 0.05), compared to young mice. In contrast, age did not appear to impact levels of TNF-α protein or mRNA expression levels (0.38 vs 0.35) in LPS-stimulated macrophages. The histological analyses of livers of control groups showed lesions of peliosis and microvesicular steatosis, and treated groups showed Councilman body, and small or large lymphoplasmacytic clusters.

Conclusions

The present results demonstrated that quercetin and δ-tocotrienols inhibit the LPS-induced NO production in vivo. The microarray DNA analyses, followed by pathway analyses indicated that quercetin or δ-tocotrienol inhibit several LPS-induced expression of several ageing and pro-inflammatory genes (IL-1β, IL-1α, IL-6, TNF-α, IL-12, iNOS, VCAM1, ICAM1, COX2, IL-1RA, TRAF1 and CD40). The NF-κB pathway regulates the production of NO and inhibits the pro-inflammatory cytokines involved in normal and ageing process. These ex vivo results confirmed the earlier in vitro findings. The present findings of inhibition of NO production by quercetin and δ-tocotrienol may be of clinical significance treating several inflammatory diseases, including ageing process.  相似文献   

20.

Background

Inflammation has played a key role in the causation of atherosclerosis. However, the effects of grape seed extract (GSE) on the pro-inflammatory intracellular signaling, enzyme activity, and inflammatory mediators of endothelial cells have not been sufficiently studied, and less information exists on the comparison between GSE and vitamin C, a well-known antioxidant compound, on their anti-inflammatory properties.

Purpose

We investigated the effects of GSE and vitamin C on the cell viability, oxidative stress, monocyte adhesion, the expression of nuclear factor-??B inhibitor (I??B), intercellular adhesion molecule-1 (ICAM-1) and cyclooxygenase-2 (COX-2), and the production of prostaglandin E2 (PG E2) in TNF-??-treated human umbilical vein endothelial cells (HUVECs).

Methods

Cell viability was measured by MTT assay. The adhesion of THP-1 to HUVECs was evaluated by cell adhesion assay. The oxidized nucleoside 8-hydroxydeoxyguanosine (8-OHdG) (an indicator of oxidative damage to DNA), ICAM-1, and PG E2 were measured by ELISA. I??B and COX-2 expression were evaluated by western blot analysis.

Results

TNF-?? (10, 20, and 50?ng/mL), GSE (50 and 200???g/mL), or vitamin C (100???M) did not affect cell viability. GSE (50?C100???g/mL) attenuated TNF-?? (20?ng/mL)-induced 8-OHdG production, THP-1 adhesion, the expression of I??B degradation, ICAM-1 and COX-2, and the production of PGE2 in a dose-dependent manner. Vitamin C (100???M) also showed significant antioxidative and anti-inflammatory effects.

Conclusions

GSE effectively ameliorates TNF-??-induced inflammatory status of HUVECs. The findings of the present study suggest that consumption of GSE may be beneficial to inflammatory atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号