首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because the metabolites of arachidonic acid participate in many physiopathological responses, including inflammation and platelet aggregation, cyclooxygenase inhibitors are important in the treatment of associated diseases. A biologically active compound, 5-ethyl-4-methoxy-2-phenylquinoline (KTC-5), selectively and concentration dependently inhibited aggregation of platelets from man and ATP release caused by arachidonic acid (200 microM) and collagen (10 microg mL(-1)) without affecting the aggregation caused by thrombin (0.1 U mL(-1)) and U46619 (2 microM). The IC50 value (drug concentration inhibiting maximum response by 50%) of KTC-5 for aggregation induced by arachidonic acid and collagen was 0.11+/-0.04 microM and 0.20+/-0.03 microM, respectively. This inhibitory effect of KTC-5 was reversible and time dependent. KTC-5 specifically inhibited intracellular calcium mobilization initiated by arachidonic acid or collagen without affecting that caused by thrombin or U46619 in human platelets. Furthermore, KTC-5 inhibited thromboxane B2 and prostaglandin D2 formation provoked by arachidonic acid. The IC50 value of KTC-5 for arachidonic-acid-induced thromboxane B2 formation was 0.07+/-0.02 microM. Based on these observations, the data indicated that KTC-5 potently inhibited human platelet aggregation and ATP release mainly via the inhibition of the cyclooxygenase-1 activity. Moreover, KTC-5 inhibited lipopolysaccharide-induced prostaglandin E2 formation in RAW264.7 cells in the presence of external arachidonic acid with an IC50 value of 0.17+/-0.06 microM. Immunoblot analysis showed that KTC-5 did not affect the cyclooxygenase-2 expression in the presence of lipopolysaccharide on RAW264.7 cells. This result indicated that KTC-5 affects the activity of cyclooxygenase-2. According to these data, we concluded that KTC-5 is a cyclooxygenase inhibitor for both subtypes.  相似文献   

2.
Abstract— Diisoeugenol inhibited the platelet aggregation and ATP release of rabbit platelets caused by ADP, arachidonic acid, platelet-activating factor (PAF), collagen and thrombin. Prolongation of the incubation time of platelets with diisoeugenol did not cause further inhibition and the aggregability of platelets could not be restored after washing. In human platelet-rich plasma, diisoeugenol inhibited the biphasic aggregation and ATP release induced by adrenaline and ADP in a concentration-dependent manner. Thromboxane B2 formation caused by arachidonic acid, collagen and thrombin was markedly inhibited by diisoeugenol in a concentration-dependent manner. Diisoeugenol also inhibited the formation of inositol monophosphate caused by collagen, PAF and thrombin. The cAMP level of washed platelets was not changed by diisoeugenol. It is concluded that the antiplatelet effect of diisoeugenol is due to the inhibition of thromboxane formation and phosphoinositides breakdown.  相似文献   

3.
The inhibitory mechanism of 6 traditional Chinese medicines on rabbit platelet aggregation in vitro, and the suppressive effect of oral administration of T?ki-syakuyakusan on hyper-aggregability of the platelet from rabbit fed high cholesterol diet for 2 months, were investigated. Collagen-induced aggregation was inhibited by Keisi-bukury?gan, Kami-sy?y?-san, Dai-saiko-t?, T?ki-syakuyaku-san, Hatimi-zi?-gan and Sy?-saiko-t? in their lower concentrations than those inhibiting arachidonic acid- and thrombin-induced aggregation. These traditional Chinese medicines inhibited the release of [3H]arachidonic acid from membrane phospholipids by phospholipase A2, in [3H]arachidonic acid-labelled platelets under stimulation with collagen and thrombin in the concentration ranges that inhibited each aggregation. In their higher concentrations to inhibit arachidonic acid-induced aggregation, they suppressed the conversion of arachidonic acid to thromboxane A2 by about 50%. However, they had no effect on diacylglycerol formation induced by thrombin. The oral administration of T?ki-syakuyaku-san depressed the increased aggregability of platelets from rabbit fed high cholesterol diet by 20-40% at the period of 1-2 months of feeding, without affecting plasma and platelet cholesterol level. These results indicate that the traditional Chinese medicines used here have an inhibitory effect on platelet phospholipase A2 activation, rather than on cyclooxygenase, and therefore inhibit platelet activation in vitro and ex vivo.  相似文献   

4.
Dicentrine is an antiplatelet agent isolated from the Chinese herb Lindera megaphylla. We examined the in vitro effects of dicentrine on various aspects of platelet reactivity. Dicentrine inhibited the aggregation and ATP release of washed rabbit platelets induced by arachidonic acid (AA), collagen, ADP, platelet-activating factor (PAF), thrombin and U46619. Dicentrine also inhibited the thromboxane B2 formation caused by AA, collagen and thrombin in washed intact platelets or that induced by AA in lysed platelet homogenate, while prostaglandin D2 formation caused by AA was not increased. The generation of inositol monophosphates (in the presence of indomethacin) caused by thrombin, collagen and PAF was not suppressed significantly, nor did dicentrine suppress fibrinogen-induced aggregation of elastase-treated platelets. Dicentrine inhibited the intracellular Ca2+ increase in quin-2/AM-loaded platelets caused by thrombin, PAF, collagen and AA. The cyclic AMP level was elevated by dicentrine in a concentration-dependent manner. These data indicate that the inhibitory effect of dicentrine on platelet aggregation and ATP release was due to the inhibition of thromboxane formation and the elevation of the level of cyclic AMP.  相似文献   

5.
Xanthones and their glycosides were tested for their antiplatelet activities in washed rabbit platelets. Tripteroside acetate and norathyriol acetate were the most potent inhibitors. Tripteroside acetate inhibited platelet aggregation and ATP release induced by ADP, arachidonic acid, platelet-activating factor (PAF), collagen, ionophore A23187 and thrombin. The IC50 values of tripteroside acetate toward arachidonic acid- (100 microM) and collagen- (10 micrograms/ml) induced platelet aggregation were 10 and 30 micrograms/ml respectively. It inhibited thromboxane B2 formation of washed platelets caused by arachidonic acid, collagen, thrombin and ionophore A23187 and also that caused by the incubation of lysed platelet homogenate with arachidonic acid. Tripteroside acetate decreased the formation of inositolphosphate caused by thrombin, collagen and PAF, whereas it had no direct effect on fibrinogen-platelet interaction. It is concluded that xanthone derivatives inhibited platelet aggregation and release reaction by diminishing thromboxane formation and phosphoinositide breakdown.  相似文献   

6.
The antiplatelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen (10 microg/mL), thrombin (0.05 U/mL), arachidonic acid (100 microM), a thromboxane (TX) A2 mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin F2, 1 microM) and a Ca2+ ATPase inhibitor thapsigargin (0.5 microM) (IC50 values: 13.8 +/- 1.8, 26.3 +/- 1.2, 8.5 +/- 0.9, 4.3 +/- 1.7 and 49.8 +/- 1.4 microM, respectively). KR-32570 inhibited the collagen-induced liberation of [3H]arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at 50 microM. The TXA2 synthase assay showed that KR-32570 also inhibited the conversion of the substrate PGH2 to TXB2 at all concentrations. Furthermore, KR-32570 significantly inhibited the [Ca2+]i mobilization induced by collagen at 50 microM, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen (10 microg/mL)-induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, TXA2 synthase, the mobilization of cytosolic Ca2+ and NHE-1.  相似文献   

7.
Recent studies have demonstrated that triphenyltin fluoride (TPTF) inhibits collagen-induced aggregation and ATP secretion of rabbit platelets in vivo [S. Manabe and O. Wada, J. Toxic. Sci. 6, 236 (1981)]. The aim of the present investigation was to test the effects in vitro of TPTF on platelet aggregation and to elucidate the mechanism of the inhibitory action by studying the release and metabolism of arachidonic acid and the cyclic AMP contents of rabbit platelets treated in vitro with TPTF. Although no inhibitory effect of TPTF was found on sodium arachidonate-induced platelet aggregation and ATP secretion, TPTF inhibited both reactions induced by collagen. Triphenylarsine and triphenylantimony did not inhibit, even at a concentration of 10(-3) M. The anti-aggregating concentration (IC50) of TPTF was 6.0 x 10(-6) M against collagen. TPTF had no inhibitory effect on the conversion of exogenous arachidonic acid to malondialdehyde (MDA) by platelets, while the collagen-induced production of arachidonate metabolites [MDA, 12-L-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and thromboxane B2] was remarkably inhibited by TPTF. Furthermore, TPTF apparently inhibited the collagen-induced release of arachidonic acid from platelets, although the formation of phosphatidic acid was not inhibited. Total cyclic AMP content after TPTF exposure was not changed significantly. These results indicate that TPTF inhibited the collagen-induced arachidonic acid release from platelet phospholipids, presumably by acting on phospholipase A2. Furthermore, it seems unlikely that the inhibition of arachidonic acid release by TPTF can be explained by the level of cyclic AMP in platelets.  相似文献   

8.
In this study, we examined whether PC-09, a new pyridazinone derivative, has antiplatelet activity in vitro and further investigated the possible mechanisms involved. Pretreatment with PC-09 resulted in an inhibition on rabbit platelet aggregation and ATP release induced by arachidonic acid, collagen or thrombin, with the IC(50) values of 5.4 to 76.8 muM. The thromboxane B(2) formation caused by collagen or thrombin was markedly inhibited by PC-09, but there was no alteration in that caused by arachidonic acid. The rise of platelet intracellular calcium level stimulated by aggregation agonists and collagen-induced platelet membrane surface glycoprotein IIb/IIIa expression was also reduced by PC-09. In addition, PC-09 itself significantly increased the cyclic AMP level through inhibiting cyclic AMP phosphodiesterase activity. These findings demonstrate that PC-09 is an inhibitor of platelet aggregation, which may be associated with mechanisms including inhibition of thromboxane A(2) formation, intracellular calcium mobilization and platelet surface GPIIb/IIIa expression accompanied by increasing cyclic AMP level.  相似文献   

9.
Platelet activation is involved in serious pathological situations, including atherosclerosis and restenosis. It is important to find efficient antiplatelet medicines to prevent fatal thrombous formation during the course of these diseases. Marchantinquinone, a natural compound isolated from Reboulia hemisphaerica, inhibited platelet aggregation and ATP release stimulated by thrombin (0.1 units mL(-1)), platelet-activating factor (PAF; 2 ng mL(-1)), collagen (10 microg mL(-1)), arachidonic acid (100 microM), or U46619 (1 microM) in rabbit washed platelets. The IC50 values of marchantinquinone on the inhibition of platelet aggregation induced by these five agonists were 62.0 +/- 9.0, 86.0 +/- 7.8, 13.6 +/- 4.7, 20.9 +/- 3.1 and 13.4 +/- 5.3 microM, respectively. Marchantinquinone inhibited thromboxane B2 (TxB2) formation induced by thrombin, PAF or collagen. However, marchantinquinone did not inhibit TxB2 formation induced by arachidonic acid, indicating that marchantinquinone did not affect the activity of cyclooxygenase and thromboxane synthase. Marchantinquinone did inhibit the rising intracellular Ca2+ concentration stimulated by the five platelet-aggregation inducers. The formation of inositol monophosphate induced by thrombin was inhibited by marchantinquinone. Platelet cAMP and cGMP levels were unchanged by marchantinquinone. The results indicate that marchantinquinone exerts antiplatelet effects by inhibiting phosphoinositide turnover.  相似文献   

10.
Abstract: The effects of 2‐chloro‐3‐(4‐hexylphenyl)‐amino‐1,4‐naphthoquinone (NQ304), an antithrombotic agent, on aggregation, binding of fibrinogen to glycoprotein IIb/IIIa and intracellular signals were investigated using human platelets. NQ304 inhibited thrombin‐, arachidonic acid‐ and thapsigargin‐induced aggregation of washed human platelets with the IC50 values of 22.2±0.7, 6.5±0.2, and 7.6±0.1 μM, respectively. NQ304 significantly inhibited fluorescein isothiocyanate‐conjugated fibrinogen binding to human platelet surface glycoprotein IIb/IIIa receptor by 75%, but failed to inhibit the fibrinogen binding to purified glycoprotein IIb/IIIa receptor. This result suggests that NQ304 inhibit platelet aggregation by suppression of an intracellular pathway that involves exposure of the glycoprotein IIb/IIIa receptor, rather than by direct inhibition of fibrinogen‐glycoprotein IIb/IIIa binding. NQ304 significantly inhibited thrombin‐induced increase in intracellular Ca2+ mobilization at the dose of 30 μM and ATP secretion in a dose‐dependent manner. It also inhibited thrombin‐ and arachidonic acid‐induced thromboxane A2 formation in human platelet dose‐dependently. In conclusion, the antiplatelet mechanism of NQ304 may be due to the reduction of the thromboxane A2 formation, inhibition of adenosine triphosphate release and intracellular calcium mobilization.  相似文献   

11.
In the present study, we investigated the effects of TA-993 and its metabolite MB3 on platelet activation in vitro. TA-993 and MB3 concentration-dependently inhibited platelet aggregation and ATP release induced by collagen in human platelets. Thromboxane (Tx) A2 formation, as determined by the production of TxB2, and the increase in intracellular Ca2+ concentration ([Ca2+]i) were also suppressed by TA-993 and MB3. TA-993 and MB3 did not inhibit TxA2 formation caused by arachidonic acid. These results suggest that the inhibition of platelet activation by TA-993 and MB3 is partly mediated by an inhibition of TxA2 formation at a step prior to cyclooxygenase. Furthermore, TA-993 and MB3 inhibited U-46619-induced platelet aggregation without blockade of the increase in [Ca2+]i, suggesting that they are likely to exert some additional effects on the intracellular events induced by Ca2+.  相似文献   

12.
The in vitro effects of three oral hypoglycaemic agents, gliclazide (1-(4-methylbenzensulfonyl)-3-[3-azabicylo(3,3,0)octyl]urea) , glibenclamide (1-[4-[2-(chloro-2-methoxybenzamide)-ethyl]-phenyl- sulfonyl]-3-cyclohexyl-urea) and glimepiride (1-[4-[2-(3-ethyl-4-methyl-2-oxo-3-pyrroline-carboxamide)- ethyl]-phenylsulphonyl]3-(4-methylcyclohexyl)-urea), on functions of human platelets were evaluated. None of these agents up to a concentration of 40 microM inhibited platelet aggregation induced by thrombin. Glibenclamide and glimepiride in the range of 20-40 microM suppressed Ca2+ release from internal Ca2+ stores induced by thrombin. Gliclazide showed no effect on arachidonic acid metabolism of human platelets. Glimepiride selectively inhibited the cyclooxygenase pathway, while the activities of 12-lipoxygenase and phospholipase A2 were unaffected. Glibenclamide inhibited both the cyclooxygenase and 12-lipoxygenase pathways. It also attenuated arachidonic acid release from phospholipase A2. Oral hypoglycaemic agents with inhibitory effects on arachidonic acid metabolism may prove useful for the treatment of diabetic patients with enhanced platelet functions.  相似文献   

13.
Two aporphines (boldine and laurolitsine) and five phenanthrene alkaloids (litebamine, secoboldine, N-cyanosecoboldine, N-methylsecoglaucine and N-methylsecopredicentrine) were evaluated in-vitro for their ability to inhibit platelet aggregation. All seven alkaloids inhibited aggregation of rabbit platelets and inhibited the release of ATP induced by arachidonic acid and collagen in rabbit platelets. Those aggregations induced by platelet-activating factor (PAF), thrombin, U46619 and ADP were inhibited by the three N-substituted secoboldine derivatives only. Thromboxane B2 formation caused by arachidonic acid was also suppressed by these compounds. They did not affect the generation of [3H]inositol monophosphate caused by collagen, PAF and thrombin in the presence of indomethacin. Platelet cyclic AMP level was unaffected by litebamine, but was increased by N-methyl-secoglaucine. Litebamine suppressed the secondary aggregation, but not the primary aggregation, induced by ADP and adrenaline in platelet-rich plasma from man, whereas N-methylsecoglaucine inhibited both primary and secondary aggregation. It is concluded that the antiplatelet effect of these seven aporphine and phenanthrene alkaloids is mainly a result of inhibition of thromboxane A2 formation; N-methylsecoglaucine has additional antiplatelet activity as a result of increasing the levels of platelet cyclic AMP.  相似文献   

14.
The effects of docosapentaenoic acid (DPA) on platelet aggregation and arachidonic acid metabolism were studied in comparison to those of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Collagen- or arachidonic acid-stimulated platelet aggregation was inhibited dose-dependently by n-3 fatty acids, among which DPA was the most potent inhibitor. These fatty acids inhibited U46619-induced aggregation but to almost the same extent. No effect of the acids on thrombin-induced aggregation was observed. Furthermore, these fatty acids suppressed thromboxane A2 formation by platelets which were exposed to collagen or thrombin, or by platelets to which arachidonic acid was added. In these experiments also, DPA was the most potent inhibitor, whereas DHA was the most effective inhibitor of cyclooxygenase-1 activity. DPA enhanced formation of 12-hydroxyeicosatetraenoic acid in response to collagen or from arachidonic acid by intact platelets, while the other two acids had less of an effect. These results suggest that DPA possesses potent activity for interfering with the cyclooxygenase pathway and accelerating the lipoxygenase pathway, thus inhibiting platelet aggregation most effectively.  相似文献   

15.
The effects of 2-chloro-3-(4-hexylphenyl)-amino-1,4-naphthoquinone (NQ304), an antithrombotic agent, on aggregation, binding of fibrinogen to glycoprotein IIb/IIIa and intracellular signals were investigated using human platelets. NQ304 inhibited thrombin-, arachidonic acid- and thapsigargin-induced aggregation of washed human platelets with the IC50 values of 22.2+/-0.7, 6.5+/-0.2, and 7.6+/-0.1 microM, respectively. NQ304 significantly inhibited fluorescein isothiocyanate-conjugated fibrinogen binding to human platelet surface glycoprotein IIb/IIIa receptor by 75%, but failed to inhibit the fibrinogen binding to purified glycoprotein IIb/IIIa receptor. This result suggests that NQ304 inhibit platelet aggregation by suppression of an intracellular pathway that involves exposure of the glycoprotein IIb/IIIa receptor, rather than by direct inhibition of fibrinogen-glycoprotein IIb/IIIa binding. NQ304 significantly inhibited thrombin-induced increase in intracellular Ca2+ mobilization at the dose of 30 microM and ATP secretion in a dose-dependent manner. It also inhibited thrombin- and arachidonic acid-induced thromboxane A2 formation in human platelet dose-dependently. In conclusion, the antiplatelet mechanism of NQ304 may be due to the reduction of the thromboxane A2 formation, inhibition of adenosine triphosphate release and intracellular calcium mobilization.  相似文献   

16.
1. In the present study, the antiplatelet effects and mechanisms of a new synthetic compound YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole] were examined. 2. YD-3 inhibited the aggregation of washed rabbit platelets caused by thrombin (IC(50)=28.3 microM), but had no or little inhibitory effect on that induced by arachidonic acid, collagen, platelet-activating factor (PAF) or U46619. YD-3 also suppressed generation of inositol phosphates caused by thrombin. On the other hand, thrombin-induced fibrin formation was not affected by YD-3, indicating YD-3 does not inhibit the proteolytic activity of thrombin. 3. In washed human platelets, however, YD-3 had only mild inhibitory effect on the low concentration (0.05 u ml(-1)) of thrombin-induced human platelet aggregation, and did not affect that induced by higher concentrations (> or =0.1 u ml(-1)) of thrombin or SFLLRN, the protease-activated receptor 1 (PAR1) agonist peptide. By contrast, YD-3 inhibited both human and rabbit platelet aggregation elicited by trypsin with IC(50) values of 38.1 microM and 5.7 microM, respectively. 4. YD-3, at 100 microM, had no effect on ristocetin-induced glycoprotein Ib (GPIb)-dependent aggregation of human platelets. In addition, platelets treated with chymotrypsin, which cleaves GPIb, enhanced rather than attenuated the inhibition of YD-3 on thrombin-induced human platelet aggregation. These data indicate that GPIb plays no role in the antiplatelet effect of YD-3. 5. In SFLLRN-desensitized human platelets, high concentration of thrombin (1 u ml(-1)) could still elicit intracellular Ca(2+) mobilization, and the rise of [Ca(2+)](i) was prevented by either leupeptin or YD-3. 6. Our results suggest that YD-3 inhibits a non-PAR1 thrombin receptor which mediates the major effect of thrombin in rabbit platelets, but in human platelets, this receptor function becomes significant only when the function of PAR1 has been blocked or attenuated.  相似文献   

17.
The antiplatelet effect of the pyridazinone analogue, 4, 5-dihydro-6-[4-[2-hydroxy-3-(3,4 dimethoxybenzylamino)propoxy]naphth-1-yl]-3(2H)-pyridazinone (HCL-31D), was investigated in vitro with rabbit platelets. HCL-31D dose-dependently inhibited the platelet aggregation and ATP release induced by collagen (10 microg/ml), arachidonic acid (100 microM) or thrombin (0.1 U/ml) with an IC(50) of about 0.95-5.41 microM. HCL-31D (0.5-5 microM) increased the platelet cyclic AMP level in a dose-dependent manner. Furthermore, HCL-31D potentiated cyclic AMP formation caused by prostaglandin E(1) but not that caused by 3-isobutyl-1-methylxanthine (IBMX). HCL-31D also attenuated phosphoinositide breakdown and intracellular Ca(2+) elevation induced by collagen, arachidonic acid or thrombin. HCL-31D inhibited the formation of thromboxane B(2) induced by collagen or thrombin but not by arachidonic acid. In addition, HCL-31D did not affect platelet cylooxygenase and thromboxane synthase activity. These data indicate that HCL-31D is an inhibitor of phosphodiesterase and that its antiplatelet effect is mainly mediated by elevation of cyclic AMP levels.  相似文献   

18.
Sirtinol, a cell permeable six-membered lactone ring, is derived from naphthol and potent inhibitor of SIR2 and its naphtholic may have the inhibitory effects on platelets aggregation. In this study, platelet function was examined by collagen/epinephrine (CEPI) and collagen/ADP-induced closure times using the PFA-100 system reveal that CEPI-CT and CADP-CT were prolonged by sirtinol. The platelets aggregation regulated by physiological agonists such as: thrombin, collagen and AA and U46619 were significantly inhibited by sirtinol. Increases cAMP level was observed when sirtinol treated with Prostaglandin E1 in washed platelets. Moreover, sirtinol attenuated intracellular Ca2+ release and thromboxane B2 formation stimulated by thrombin, collagen, AA and U46619 in human washed platelets. This study indicated that sirtinol could inhibit the platelet aggregation induced by physiological agonists, AA and U46619. The mechanism of action may include an increase of cAMP level with enhanced VASP-Ser157 phosphorylation via inhibition of cAMP phosphodiesterase activity and subsequent inhibition of intracellular Ca2+ mobilization, thromboxane A2 formation, and ATP release during the platelet aggregation.  相似文献   

19.
The inhibitory effect of cyclic GMP on collagen-induced platelet activation was studied using 8-bromo cyclic GMP (8brcGMP) in washed rabbit platelets. Addition of collagen (1 micrograms/ml) to platelet suspension caused shape change and aggregation associated with thromboxane (TX) A2 formation. 8brcGMP (10-1000 microM) inhibited collagen-induced platelet aggregation and TXA2 formation in a concentration-dependent manner. 8brcGMP did not affect platelet cyclooxygenase pathways, but markedly inhibited collagen-induced arachidonic acid (AA) liberation from membrane phospholipids in [3H]AA-prelabeled platelets, indicating that the inhibitory effect of 8brcGMP on collagen-induced aggregation is due to an inhibition of AA liberation. In [32P]orthophosphate-labeled platelets, collagen stimulated phosphorylation of a 20,000 dalton (20-kD) and 40-kD proteins. 8BrcGMP stimulated phosphorylation of a specific protein having molecular weight of 46-kD and inhibited collagen-induced both 20- and 40-kD protein phosphorylation. Collagen could stimulate the AA liberation without activation of phospholipase C or Na+-H+ exchange, but could not in the absence of extracellular Ca2+. These findings suggest that cyclic GMP inhibits collagen-induced AA liberation which is mediated by an extracellular Ca2+-dependent phospholipase A2. However, cyclic GMP seems to inhibit the Ca2+-activated phospholipase A2 indirectly, since 8brcGMP had no effect on Ca2+ ionophore A23187-induced platelet aggregation or AA liberation. It is therefore suggested that cyclic GMP may regulate collagen-induced increase in an availability of extracellular Ca2+ which is responsible for phospholipase A2 activation in rabbit platelets.  相似文献   

20.
p-Chlorobiphenyl (1–50 μm ) concentration-dependently inhibited the aggregation and release reaction of rabbit washed platelets induced by arachidonic acid and collagen, but not those induced by platelet-activating factor (PAF), U46619 and thrombin. The IC50 values of p-chlorobiphenyl on the arachidonic acid and collagen-induced platelet aggregation were 2.9 ± 0.5 and 12.8 ± 2.3 μm , respectively. The formation of both platelet thromboxane B2 and prostaglandin D2 caused by arachidonic acid was inhibited by p-chlorobiphenyl concentration-dependently. In myo-[3H]inositol-labeled and fura-2-loaded platelets, [3H]inositol monophosphate generation and the rise in intracellular Ca2+ stimulated by arachidonic acid were inhibited by p-chlorobiphenyl. In human platelet-rich plasma, p-chlorobiphenyl and indomethacin prevented the secondary aggregation and blocked ATP release from platelets induced by adenosine 5′-diphosphate and adrenaline without affecting the primary aggregation. It is concluded that p-chlorobiphenyl may be a cyclo-oxygenase inhibitor and its antiplatelet action is mainly due to the inhibition of thromboxane formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号