首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aldosterone infusion with high salt treatment induces cardiac fibrosis in rats. Aldosterone enhanced angiotensin II (Ang II) has been shown to induce proliferation and increase the expression of Ang II receptor mRNA and Ang II binding in vitro. To investigate the role of Ang II type 1a receptor (AT1aR) in aldosterone-and-salt (Ald-NaCl)-induced cardiac fibrosis, we subcutaneously infused aldosterone (0.15 microg/h) and 1% NaCl (Ald-NaCl) into AT1aR knockout mice (AT1aR-KO) or wild type mice (Wt). To examine the role of NaCl on cardiac fibrosis, we gave some of the aldosterone-treated AT1aR-KO tap water (Ald-H2O). Ald-NaCl treatment increased systolic blood pressure and induced cardiac hypertrophy in both strains, whereas there were no such changes in the mice without aldosterone. Severe cardiac fibrosis was seen in Ald-NaCl-treated AT1aR-KO and not in Ald-NaCl-treated Wt. In contrast, Ald-NaCl-treated Wt with co-administration of an active metabolite of olmesartan, the AT1aR antagonist (10 mg/kg/day) did not show cardiac fibrosis. Na+/H+ exchanger, and Na+-K+ ATPase alpha2 subunit mRNA were decreased in AT1aR-KO. Na+/Ca2) exchanger mRNA was lower in AT1aR-KO than Wt and was decreased by Ald-NaCl in both strains. Phosphorylation of epidermal growth factor receptor and extracellular signal-regulated kinase was increased by Ald-NaCl treatment in AT1aR-KO. Connective tissue growth factor (CTGF) and osteopontin mRNA were increased and accumulation of CTGF proteins was seen in the hearts of Ald-NaCl-treated AT1aR-KO. Ald-H2O-treated AT1aR-KO did not show any cardiac fibrosis. These results suggest that Ald-NaCl-induced cardiac fibrosis required both aldosterone and salt. Because cardiac fibrosis was exaggerated in Ald-NaCl-treated AT1aR-KO but was not seen in Wt treated with Ald-NaCl and olmesartan, AT1aR may not play a primary role in progression of cardiac fibrosis by Ald-NaCl, and gene disruption of AT1aR may have some implications in this model.  相似文献   

2.
OBJECTIVE: The aim of the present study was to investigate possible inter-relationships between connective tissue growth factor (CTGF) and aldosterone in vascular and renal damage associated with hypertension. METHOD: Spontaneously hypertensive rats (SHR) were treated with two doses (100 and 30 mg/kg per day) of the mineralocorticoid receptor antagonist eplerenone, or with antihypertensive therapy (HHR) (20 mg/kg per day hydralazine + 7 mg/kg per day hydrochlorothiazide + 0.15 mg/kg per day reserpine). RESULTS: CTGF mRNA expression and protein levels in the aorta of SHR were upregulated (P < 0.05) compared with Wistar-Kyoto rats. Both doses of eplerenone similarly and significantly diminished CTGF upregulation, correlated with amelioration of aortic remodelling and endothelium-dependent relaxations. Only high-dose eplerenone and HHR significantly reduced arterial blood pressure. HHR treatment also diminished CTGF overexpression, suggesting a blood-pressure-mediated effect in CTGF regulation. This reduction, however, was lower (P < 0.05) than that produced by eplerenone (100 mg/kg per day). The direct effect of aldosterone on vascular smooth muscle cells was also studied. Incubation of cultured vascular smooth muscle cells with aldosterone increased CTGF production in a dose-related manner, but was reduced (P < 0.05) by the mineralocorticoid receptor antagonist spironolactone. Renal CTGF mRNA and protein levels were higher in SHR than in Wistar-Kyoto rats (P < 0.05), and were similarly diminished by all treatments (P < 0.05). CONCLUSIONS: These data show that aldosterone and haemodynamic stress from elevated blood pressure levels regulate vascular and renal CTGF in SHR. The results suggest that aldosterone, through CTGF stimulation, could participate in vascular and renal structural alterations associated with hypertension, describing a novel mechanism of aldosterone in hypertensive target organ damage.  相似文献   

3.
BACKGROUND: Aldosterone is an important pathogenetic factor, independent of the renin-angiotensin system in cardiovascular and renal disease. Aldosterone breakthrough during angiotensin-converting enzyme (ACE) inhibitor therapy was reported in hypertension, diabetes mellitus, and chronic renal disease. It is unclear whether the angiotensin II receptor blocker (ARB) causes aldosterone breakthrough in patients with hypertension and diabetes mellitus, and whether aldosterone breakthrough contributes to renal injury in these patients. METHODS: We prospectively studied 95 hypertensive patients with diabetes mellitus. Patients were treated with candesartan (8 mg/day, n = 47) or valsartan (80 mg/day, n = 48) for 15 months. Blood pressure (BP), urinary albumin excretion (UAE), biochemical markers, plasma aldosterone concentration (PAC), and plasma renin activity (PRA) were measured before and at 3, 6, 12, and 15 months of treatment. Nine patients who exhibited aldosterone breakthrough after treatment with ARB were placed on spironolactone (25 mg/day) for 3 months, and BP, UAE, and biochemical markers were measured after treatment. RESULTS: Although the overall PAC was significantly decreased (P < .05) in each group, it eventually increased in 21 (candesartan, 11 patients; valsartan, 10 patients) of 95 patients (22%; aldosterone breakthrough). Blood pressure, PRA, and biomedical markers did not differ between the two groups during treatment. Although UAE was significantly decreased in patients with or without aldosterone breakthrough at 6 months, it was increased again at 15 months of treatment in patients with aldosterone breakthrough. Treatment with spironolactone markedly reduced UAE in these patients. CONCLUSIONS: Aldosterone breakthrough was seen to be equal in hypertensive patients with diabetes mellitus treated with candesartan or valsartan. Aldosterone blockade therapy may be effective in preventing renal injury in hypertensive patients with aldosterone breakthrough.  相似文献   

4.
BACKGROUND: Early and chronic angiotensin converting enzyme (ACE) inhibition prevents hypertension and improves the pressure natriuresis in Lyon hypertensive (LH) rats. The effect of this treatment on the responses of renal medullary blood flow (MBF) to angiotensin II (Ang II) was studied. METHODS: In chronic experiments, Ang II (7.5 to 480 ng/kg, intravenous) was injected in 15-week-old anesthetized LH and normotensive (LL) control rats treated orally since weaning with perindopril (0.4 or 1.5 mg/kg/day) with or without pretreatment with indomethacin (5 mg/kg intravenous). In acute experiment, Ang II (30 to 480 ng/kg intravenous) was given in LH rats treated acutely with perindopril (1.5 mg/kg, intravenous bolus). RESULTS: Administration of Ang II induced dose-dependent decreases in MBF, which were greater in LH than in LL rats. In LL rats, the initial and short-lasting (<1 min) medullary vasoconstriction evoked by Ang II was followed by a long-lasting (>2 min) and dose-dependent medullary vasodilation, which was blunted in LH rats. Chronic perindopril treatment normalized the blood pressure level in LH rats and corrected their blunted medullary vasodilation, whereas the same treatment had no significant effect in LL rats. In chronically perindopril-treated LH rats, indomethacin decreased by 90% the medullary vasodilation induced by Ang II. Acute perindopril treatment did not modify the medullary responses to Ang II in LH rats. CONCLUSIONS: Chronic ACE inhibition restores the vasodilator response of MBF to Ang II in LH rats. This effect, which is not observed after acute inhibition, is mainly mediated through the release of prostaglandins.  相似文献   

5.
To investigate whether the receptor blockades of angiotensin II type 1 and aldosterone receptors can prevent renal tissue injury in relation to the renal tissue mRNA levels of peroxisome proliferation-activated receptors-gamma (PPAR-gamma) and transforming growth factor-beta (1) (TGF-beta(1)) in spontaneously hypertensive rats (SHR) given N(G)-nitro-L-arginine methyl ester (L-NAME), which is considered a model of malignant hypertension. This study was performed in 5 groups of 17-week-old male SHR treated for 3 weeks as follows: group 1, control; group 2, L-NAME (50 mg/L in drinking); group 3, L-NAME plus aldosterone antagonist, spironolactone (SPRL, 100 mg/kg/day); group 4, L-NAME plus angiotensin II type 1 receptor blocker, telmisartan (TELM, 3 mg/kg/day); group 5, L-NAME plus combination therapy (COMB) with low-dose TELM (1 mg/kg/day) and SPRL (100 mg/kg/day). Urinary protein excretion and the glomerular injury score were significantly reduced in the SPRL, TELM, and COMB groups as compared with the L-NAME group, while significant blood pressure reduction was observed only in the TELM group. In the TELM and COMB groups, the perivascular cell infiltration and fibrosis area were significantly reduced together with the PPAR-gamma mRNA increase and TGF- beta(1) mRNA decrease. The urinary excretion of nitric oxides was significantly recovered and the wall to lumen ratio of the interlobular artery was significantly reduced only in the COMB group compared with the L-NAME group. Combined administration of 1 mg/kg/day telmisartan and 100 mg/kg/day spironolactone is thought to be effective in alleviating hypertensive renal injuries independently of blood pressure changes. The anti-inflammatory and antifibrotic effects due to PPAR-gamma activation and TGF-beta(1) inhibition may participate in the renoprotection of this combination therapy.  相似文献   

6.
Angiotensin (Ang) II-infused hypertensive rats exhibit increases in renal angiotensinogen mRNA and protein, as well as urinary angiotensinogen excretion in association with increased intrarenal Ang II content. The present study was performed to determine if the augmentation of intrarenal angiotensinogen requires activation of Ang II type 1 (AT1) receptors. Male Sprague-Dawley rats (200 to 220 g) were divided into 3 groups: sham surgery (n=10), subcutaneous infusion of Ang II (80 ng/min, n=11), and Ang II infusion plus AT1 blocker (ARB), olmesartan (5 mg/d, n=12). Ang II infusion progressively increased systolic blood pressure (SBP) compared with sham (178+/-8 mm Hg versus 119+/-4 at day 11). ARB treatment prevented hypertension (113+/-6 at day 11). Twenty-four-hour urine collections were taken at day 12, and plasma and tissue samples were harvested at day 13. The Ang II+ARB group had a significant increase in plasma Ang II compared with Ang II and sham groups (365+/-46 fmol/mL versus 76+/-9 and 45+/-14, respectively). Nevertheless, ARB treatment markedly limited the enhancement of kidney Ang II by Ang II infusion (65+/-17 fmol/g in sham, 606+/-147 in Ang II group, and 288+/-28 in Ang II+ARB group). Ang II infusion significantly increased kidney angiotensinogen compared with sham (1.69+/-0.21 densitometric units versus 1.00+/-0.17). This change was reflected by increased angiotensinogen immunostaining in proximal tubules. ARB treatment prevented this increase (1.14+/-0.12). Urinary angiotensinogen excretion rates were enhanced 4.7x in Ang II group (4.67+/-0.41 densitometric units versus 1.00+/-0.21) but ARB treatment prevented the augmentation of urinary angiotensinogen (0.96+/-0.23). These data demonstrate that augmentation of intrarenal angiotensinogen in Ang II-infused rats is AT1-dependent and provide further evidence that urinary angiotensinogen is closely linked to intrarenal Ang II in Ang II-dependent hypertension.  相似文献   

7.
Cardiac myocyte necrosis induced by angiotensin II.   总被引:7,自引:0,他引:7  
Although the role of angiotensin II (Ang II) in the pathogenesis and progression of the failing heart is uncertain, previous reports have suggested that myocyte injury may be a component in this process. In this study, we investigated this possibility in more detail. Cardiotoxic effects of nonacutely hypertensive doses of Ang II were examined in 90 rats, including those receiving an angiotensin infusion (200 ng/min i.p.) and those with renovascular hypertension, where endogenous stimulation of Ang II occurred. Myocyte injury and wound healing resulting from these treatments were evaluated by 1) immunofluorescence after in vivo monoclonal antibody labeling of myosin to detect abnormal sarcolemmal permeability, 2) [3H]thymidine incorporation into DNA, to detect fibroblast proliferation, and 3) light microscopic evidence of myocytolysis and subsequent scar formation. We found that exogenous Ang II produced multifocal antimyosin labeling of cardiac myocytes and myocytolysis, which were maximal on days 1-2 of the infusion. Subsequently, DNA synthesis rates were increased, with fibroblast proliferation reaching peak levels on day 2 (Ang II-treated rats, 90.0 +/- 18.6 cpm/micrograms DNA; control rats, 11.4 +/- 2.3 cpm/micrograms DNA; p less than 0.05); microscopic scarring was found on day 14 and represented 0.12 +/- 0.02% of the myocardium. Concurrent treatment with both propranolol (30 mg/kg/day s.c.) and phenoxybenzamine (5 mg/kg/day i.m.) did not attenuate Ang II-induced antimyosin labeling. Increased endogenous Ang II, resulting from renal ischemia after abdominal aortic constriction, produced both antimyosin labeling and increased rates of DNA synthesis like that observed with Ang II infusion. Both myocyte injury and fibroplasia were prevented with captopril (65 mg/day p.o.), but this protective effect was not seen with reserpine pretreatment. Infrarenal aortic banding without renal ischemia, on the other hand, produced hypertension without necrosis. We conclude that pathophysiological levels of endogenous as well as low-dose exogenous Ang II were associated with altered sarcolemmal permeability and myocytolysis with subsequent fibroblast proliferation and scar formation. Myocyte injury was unrelated to the hypertensive or enhanced adrenergic effects of Ang II or to hypertension per se. Captopril was effective in preventing myocyte injury in renovascular hypertension. The mechanism(s) responsible for Ang II-induced necrosis will require further study.  相似文献   

8.
We hypothesized that angiotensin (Ang) II hypertensive rats have impaired natriuresis after renal medullary endothelin (ET) B receptor stimulation that would be more evident in male versus female rats. Acute intramedullary infusion of the ET(B) agonist sarafotoxin 6c in normotensive male rats increased sodium excretion from 0.51±0.11 μmol/min during baseline to 1.64±0.19 μmol/min (P<0.05) after S6c. After 2 weeks of Ang II infusion (260 ng/kg per minute SC), male rats had an attenuated natriuretic response to S6c of 0.62±0.16 μmol/min during baseline versus 0.95±0.07 μmol/min after S6c. In contrast, ET(B)-dependent natriuresis was similar in female hypertensive rats (0.48±0.07 versus 1.5±0.18 μmol/min; P<0.05) compared with normotensive controls (1.05±0.07 versus 2.14±0.24 μmol/min; P<0.05). Because ET(A) receptors also mediate natriuresis in normotensive female rats, we examined ET(A) receptor function in female Ang II hypertensive rats. Intramedullary infusion of ET-1 increased sodium excretion in both hypertensive and normotensive female rats, which was partially blocked by the ET(A) antagonist BQ-123. Maximum ET(B) receptor binding in inner medullary membrane preparations was comparable between vehicle and Ang II hypertensive females; however, maximum ET(B) binding was significantly lower in male hypertensive rats (1952±251 versus 985±176 fmol/mg; P<0.05). These results indicate that renal ET(B) function is impaired in male Ang II hypertension attributed, at least in part, to a reduced number of ET(B) binding sites. Furthermore, renal ET receptor function is preserved in female rats during chronic Ang II infusion, suggesting that renal ET receptor function could serve to limit hypertension in females compared with males.  相似文献   

9.
Angiotensin II receptor blockers (ARBs) are widely used for the treatment of hypertension. It is believed that treatment with an ARB increases the level of plasma angiotensin II (Ang II) because of a lack of negative feedback on renin activity. However, Ichikawa (Hypertens Res 2001; 24: 641-646) reported that long-term treatment of hypertensive patients with olmesartan resulted in a reduction in plasma Ang II level, though the mechanism was not determined. It has been reported that angiotensin 1-7 (Ang-(1-7)) potentiates the effect of bradykinin and acts as an angiotensin-converting enzyme (ACE) inhibitor. It is known that ACE2, which was discovered as a novel ACE-related carboxypeptidase in 2000, hydrolyzes Ang I to Ang-(1-9) and also Ang II to Ang-(1-7). It has recently been reported that olmesartan increases plasma Ang-(1-7) through an increase in ACE2 expression in rats with myocardial infarction. We hypothesized that over-expression of ACE2 may be related to a reduction in Ang II level and the cardioprotective effect of olmesartan. Administration of 0.5 mg/kg/day of olmesartan for 4 weeks to 12-week-old stroke-prone spontaneously hypertensive rats (SHRSP) significantly reduced blood pressure and left ventricular weight compared to those in SHRSP given a vehicle. Co-administration of olmesartan and (D-Ala7)-Ang-(1-7), a selective Ang-(1-7) antagonist, partially inhibited the effect of olmesartan on blood pressure and left ventricular weight. Interestingly, co-administration of (D-Ala7)-Ang-(1-7) with olmesartan significantly increased the plasma Ang II level (453.2+/-113.8 pg/ml) compared to olmesartan alone (144.9+/-27.0 pg/ml, p<0.05). Moreover, olmesartan significantly increased the cardiac ACE2 expression level compared to that in Wistar Kyoto rats and SHRSP treated with a vehicle. Olmesartan significantly improved cardiovascular remodeling and cardiac nitrite/ nitrate content, but co-administration of olmesartan and (D-Ala7)-Ang-(1-7) partially reversed this anti-remodeling effect and the increase in nitrite/nitrate. These findings suggest that olmesartan may exhibit an ACE inhibitory action in addition to an Ang II receptor blocking action, prevent an increase in Ang II level, and protect cardiovascular remodeling through an increase in cardiac nitric oxide production and endogenous Ang-(1-7) via over-expression of ACE2.  相似文献   

10.
Collecting duct (CD) renin is stimulated by angiotensin (Ang) II, providing a pathway for Ang I generation and further conversion to Ang II. Ang II stimulates the epithelial sodium channel via the Ang II type 1 receptor and increases mineralocorticoid receptor activity attributed to increased aldosterone release. Our objective was to determine whether CD renin augmentation is mediated directly by Ang II type 1 receptor or via the epithelial sodium channel and mineralocorticoid receptor. In vivo studies examined the effects of epithelial sodium channel blockade (amiloride; 5 mg/kg per day) on CD renin expression and urinary renin content in Ang II-infused rats (80 ng/min, 2 weeks). Ang II infusion increased systolic blood pressure, medullary renin mRNA, urinary renin content, and intrarenal Ang II levels. Amiloride cotreatment did not alter these responses despite a reduction in the rate of progression of systolic blood pressure. In primary cultures of inner medullary CD cells, renin mRNA and (pro)renin protein levels increased with Ang II (100 nmol/L), and candesartan (Ang II type 1 receptor antagonist) prevented this effect. Aldosterone (10(-10) to 10(-7) mol/L) with or without amiloride did not modify the upregulation of renin mRNA in Ang II-treated cells. However, inhibition of protein kinase C with calphostin C prevented the Ang II-mediated increases in renin mRNA and (pro)renin protein levels. Furthermore, protein kinase C activation with phorbol 12-myristate 13-acetate increased renin expression to the same extent as Ang II. These data indicate that an Ang II type 1 receptor-mediated increase in CD renin is induced directly by Ang II via the protein kinase C pathway and that this regulation is independent of mineralocorticoid receptor activation or epithelial sodium channel activity.  相似文献   

11.
Angiotensin type 1 receptor blockers are more effective than other antihypertensive agents in slowing the progression of renal disease. Angiotensin II (Ang II) induces production of NAD(P)H oxidase-dependent superoxide in vascular and mesangial cells, but the direct role of Ang II in glomerular superoxide production remains unknown. Here we examined the effect of Ang II on superoxide production both ex vivo and in vivo. Ang II increased superoxide generation in isolated normal glomeruli in a dose-dependent manner, and co-incubation with olmesartan, an angiotensin type 1 receptor blocker, suppressed such increase. Subtotal nephrectomized rats (Nx, n=8) showed impaired renal function, increased glomerular sclerosis, and significantly high superoxide production in glomeruli. These changes were inhibited in olmesartan-treated (n=8), but not hydralazine-treated (n=8) Nx rats. Oxidative stress and nitrosative stress were observed in Nx glomeruli, as evidenced by increased levels of carbonyl protein and nitrotyrosine formation, respectively. These changes were inhibited by 8-week treatment with olmesartan. The apoptosis observed in Nx glomeruli was also suppressed by olmesartan. Superoxide generation in Nx glomeruli was blocked by an NAD(P)H oxidase inhibitor, diphenylene iodinium. The mRNA expression levels of two NAD(P)H oxidase subunits were increased in Nx, and olmesartan significantly reduced the mRNA expression levels. These results indicate that Ang II directly induced superoxide production through activation of NAD(P)H oxidase, and olmesartan would inhibit superoxide production and oxidative stress independent of its blood pressure-lowering effect. These findings support the notion that superoxide plays a primary role in glomerular injury in chronic kidney disease.  相似文献   

12.
Sun Y  Zhang J  Zhang JQ  Ramires FJ 《Hypertension》2000,35(5):1078-1084
Studies have demonstrated that local angiotensin II (Ang II) generation is enhanced in repairing kidney and that ACE inhibition or AT(1) receptor blockade attenuates renal fibrosis. The localization of ACE and Ang II receptors and their relationship to collagen synthesis in the injured kidney, however, remain uncertain. Using a rat model of renal injury with subsequent fibrosis created with chronic elevations in circulating aldosterone (ALDO), we examined the distribution and binding density of ACE and Ang II receptors in repairing kidneys, as well as their anatomic relationship to transforming growth factor-beta1 (TGF-beta1) mRNA, type I collagen mRNA, collagen accumulation, and myofibroblasts. Two groups of animals (n=7 in each group) were studied: (1) normal rats served as controls, and (2) uninephrectomized rats received ALDO (0.75 microg/h SC) and 1% NaCl in drinking water for 6 weeks. Compared with control rats, in ALDO-treated rats we found (1) significantly (P<0.01) increased blood pressure, reduced plasma renin activity, and increased plasma creatinine levels, (2) diffuse fibrosis in both renal cortex and medulla, (3) abundant myofibroblasts at these sites of fibrosis, (4) significantly increased (P<0.01) binding density of ACE and Ang II receptors (60% AT(1), 40% AT(2)) at the sites of fibrosis, and (5) markedly increased (P<0.01) expression of TGF-beta1 and type I collagen mRNAs at these same sites. Thus, in this rat model of renal repair, the enhanced expression of ACE, Ang II receptors, and TGF-beta1 is associated with renal fibrosis. Ang II generated at the sites of repair appears to have autocrine/paracrine functions in the regulation of renal fibrous tissue formation alone or through its stimulation of TGF-beta1 synthesis.  相似文献   

13.
Previous studies have shown that renin-angiotensin (Ang) system vaccines may be effective for the treatment of hypertension, but their efficacy for the prevention of renal disease is unclear. The aim of this study was to compare the effects of an Ang II type 1 (AT1) receptor vaccine with an Ang II receptor blocker (ARB) and a vasodilator on blood pressure (BP) and renal injury in the L-NAME nephropathy model. Male spontaneously hypertensive rats (SHRs) were divided into six groups and treated transiently with three injections of vehicle or AT1 receptor vaccine (0.1 mg) at age 4, 6 and 8 weeks, or continuously with candesartan cilexetil (0.1 mg kg(-1) per day) or hydralazine hydrochloride (5 mg kg(-1) per day), then administered NG-nitro-L-arginine methyl ester (L-NAME) from age 18 to 21 weeks to induce renal injury. Vaccination against the AT1 receptor caused a significant increase in AT1 receptor titers, and a sustained decrease in BP. L-NAME treatment resulted in a marked increase in proteinuria in the control groups, which was completely suppressed in the AT1 vaccine-treated group, and glomerular injury scores were also significantly decreased. Real-time RT-PCR and immunofluorescence studies revealed increased renin mRNA, and increased glomerular expression of nephrin. Comparable results were seen in rats treated continuously with the ARB candesartan, but not with hydralazine. These results suggest that transient AT1 vaccination is as effective as continuous treatment with ARB, not only for the attenuation of hypertension, but also for the prevention of L-NAME-induced nephropathy in SHR.  相似文献   

14.
End-stage renal disease (ESRD) comprises an enormous public health burden, with an incidence and prevalence that are increasingly on the rise. This escalating prevalence suggests that newer therapeutic interventions and strategies are needed to complement current therapeutic approaches. Although much evidence demonstrates conclusively that angiotensin II mediates progressive renal disease, recent evidence also implicates aldosterone as an important pathogenetic factor in progressive renal disease. Recently, several lines of experimental evidence demonstrate that selective blockade of aldosterone, independent of renin-angiotensin blockade, reduces proteinuria and nephrosclerosis in the spontaneously hypertensive stroke-prone rat (SHRSP) model and reduces proteinuria and glomerulosclerosis in the subtotally nephrectomized rat model (ie, remnant kidney). Whereas pharmacologic blockade with angiotensin II receptor blockers and angiotensin-converting enzyme (ACE) inhibitors reduces proteinuria and nephrosclerosis/glomerulosclerosis, selective reinfusion of aldosterone restores these abnormalities despite continued renin-angiotensin blockade. Aldosterone may promote fibrosis by several mechanisms, including plasminogen activator inhibitor-1 (PAI-1) expression and consequent alterations of vascular ribrinolysis, by stimulation of transforming growth factor-beta1 (TGF-beta1), and by stimulation of reactive oxygen species (ROS). Based on this formulation, randomized clinical studies will be initiated to delineate the potential renal-protective effects of aldosterone receptor blockade.  相似文献   

15.
Recently, aldosterone has been shown to activate local renin-angiotensin system in vitro. To elucidate the potential role of local renin-angiotensin system in aldosterone-induced cardiovascular injury, we investigated the effects of selective mineralocorticoid receptor (MR) antagonist eplerenone (EPL), angiotensin (Ang) II type 1 receptor antagonist candesartan (ARB), and superoxide dismutase mimetic tempol (TEM) on the development of hypertension, vascular injury, oxidative stress, and inflammatory-related gene expression in aldosterone-treated hypertensive rats. The increased systolic blood pressure and vascular inflammatory changes were attenuated by cotreatment either with EPL, ARB, or TEM. Aldosterone increased angiotensin-converting enzyme expression in the aortic tissue; its effects were blocked by EPL but not by ARB or TEM. Aldosterone also increased Ang II contents in the aortic tissue in the presence of low circulating Ang II concentrations. Aldosterone induced expression of various inflammatory-related genes, whose effects were abolished by EPL, whereas the inhibitory effects of ARB and TEM varied depending on the gene. Aldosterone caused greater accumulation of the oxidant stress marker 4-hydroxy-2-neonenal in the endothelium; its effect was abolished by EPL, ARB, or TEM. Aldosterone increased mRNA levels of reduced nicotinamide adenine dinucleotide phosphate oxidase components; their effect was abolished by EPL, whereas ARB and TEM decreased only the p47phox mRNA level but not that of p22phox or gp91phox. The present findings suggest that the Ang II-dependent pathway resulting from vascular angiotensin-converting enzyme up-regulation and Ang II-independent pathway are both involved in the underlying mechanisms resulting in the development of hypertension, vascular inflammation, and oxidative stress induced by aldosterone.  相似文献   

16.
Several investigations have shown heterogeneity in the functional responses to angiotensin II (Ang II) in patients with essential hypertension. The present study was initiated to evaluate whether the A(1166)C polymorphism of the Ang II type 1 receptor (AT(1)R) gene contributes to this variability in Ang II responses. After 7 days of a high-sodium diet (220 mmol Na(+) per day), we measured in 42 essential hypertensive patients blood pressure, heart rate, effective renal plasma flow (ERPF), glomerular filtration rate (GFR), active plasma renin concentration, aldosterone, and atrial natriuretic peptide (ANP) before and during Ang II infusion (increasing doses of 0.3, 1.0, and 3.0 ng/kg per minute). Calculated variables were filtration fraction and renal vascular resistance (RVR). Patients in the 3 genotype groups (AA: n=14; AC: n=17; CC: n=11) were matched for gender, age, and body mass index. At baseline, CC patients had decreased GFR (P:=0.06) and aldosterone (P:<0.05) and increased ANP (P:<0.05) compared with AA patients. Moreover, responses of ERPF, GFR, and RVR to the lowest concentration of Ang II (0.3 ng/kg per minute) were more pronounced in CC patients than in AA patients (ERPF/GFR: P:<0.05; RVR: P:=0.07), whereas maximal responses were all comparable between the groups. Heart rate was decreased at all levels of Ang II infusion in CC patients, while it did not change in AA or AC patients. There were no differences in responses of active plasma renin concentration, aldosterone, and ANP to Ang II between the 3 groups. From these data, we conclude that the C allele of the AT(1)R A(1166)C polymorphism is associated with increased sensitivity but not reactivity to Ang II. An augmented response to Ang II may well be responsible for the increased incidence of cardiovascular abnormalities found in patients with 1 or 2 C alleles.  相似文献   

17.
Mori T  Cowley AW 《Hypertension》2004,43(4):752-759
Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.  相似文献   

18.
Accumulating evidence suggests that mineralocorticoid receptor blockade effectively reduces proteinuria in hypertensive patients. However, the mechanism of the antiproteinuric effect remains elusive. In this study, we investigated the effects of aldosterone on podocyte, a key player of the glomerular filtration barrier. Uninephrectomized rats were continuously infused with aldosterone and fed a high-salt diet. Aldosterone induced proteinuria progressively, associated with blood pressure elevation. Notably, gene expressions of podocyte-associated molecules nephrin and podocin were markedly decreased in aldosterone-infused rats at 2 weeks, with a gradual decrease thereafter. Immunohistochemical studies and electron microscopy confirmed the podocyte damage. Podocyte injury was accompanied by renal reduced nicotinamide-adenine dinucleotide phosphate oxidase activation, increased oxidative stress, and enhanced expression of aldosterone effector kinase Sgk1. Treatment with eplerenone, a selective aldosterone receptor blocker, almost completely prevented podocyte damage and proteinuria, with normalization of elevated reduced nicotinamide-adenine dinucleotide phosphate oxidase activity. In addition, proteinuria, podocyte damage, and Sgk1 upregulation were significantly alleviated by tempol, a membrane-permeable superoxide dismutase, suggesting the pathogenic role of oxidative stress. Although hydralazine treatment almost normalized blood pressure, it failed to improve proteinuria and podocyte damage. In cultured podocytes with consistent expression of mineralocorticoid receptor, aldosterone stimulated membrane translocation of reduced nicotinamide-adenine dinucleotide phosphate oxidase cytosolic components and oxidative stress generation in podocytes. Furthermore, aldosterone enhanced the expression of Sgk1, which was inhibited by mineralocorticoid receptor antagonist and tempol. In conclusion, podocytes are injured at the early stage in aldosterone-infused rats, resulting in the occurrence of proteinuria. Aldosterone can directly modulate podocyte function, possibly through the induction of oxidative stress and Sgk1.  相似文献   

19.
Aldosterone breakthrough during ACE inhibitor therapy has been reported. This study investigates changes in plasma aldosterone concentration (PAC) and its mechanism and effects on target organ damage during long-term angiotensin II type 1 (AT1) receptor antagonist (AT1A) therapy in hypertensive rats. An AT1A (candesartan, 1 mg/kg per day PO) was administered in stroke-prone spontaneously hypertensive rats from 4 weeks of age for 34 weeks. PAC was significantly decreased during the first 4 weeks but showed aldosterone breakthrough after 8 weeks of AT1A administration. Plasma angiotensin II concentration was significantly elevated, whereas no change was seen in plasma ACTH or serum potassium. The mechanism(s) of aldosterone breakthrough were investigated by giving high doses of candesartan (3 mg/kg per day PO), dexamethasone (200 microg/kg per day IP), or the AT2 antagonist (PD123319, 10 mg/kg per day SC) during the last week of the 24-week AT1A treatment period. Dexamethasone and AT2 antagonist but not high-dose AT1A produced a significant decrease in PAC, with a larger decrease produced by the AT2 antagonist. To clarify the effects of the residual aldosterone, effects of coadministration of low-dose spironolactone (10 mg/kg per day SC), an aldosterone antagonist, on left ventricular hypertrophy and expression of brain natriuretic peptide mRNA were determined. Low-dose spironolactone further improved left ventricular hypertrophy and brain natriuretic peptide mRNA expression despite no additional depressor effect. These results suggest that aldosterone breakthrough occurs during long-term AT1A therapy, mainly by an AT2-dependent mechanism. Residual aldosterone may attenuate the cardioprotective effects of AT1A.  相似文献   

20.
The goal of this study was to test the hypothesis that intrarenal angiotensin (Ang) II has a proinflammatory effect leading to renal damage and dysfunction in Dahl salt-sensitive (S) rats on high-Na intake. Forty-six 7- to 8-week old Dahl S or Dahl salt-resistant (R)/Rapp strain rats were maintained for 5 weeks on high sodium (8%) with or without candesartan cilexetil in daily doses of 10 to 15 mg/kg/day. Arterial catheters were implanted at day 28. By day 35 in the high-Na S + candesartan rats, renal tissue Ang II concentration, renal monocytes/macrophages, tumor necrosis factor-α, and monocyte chemoattractant protein-1 significantly decreased. Plasma Ang II remained at very low levels in all groups. Reduced renal damage in candesartan-treated Dahl S rats was demonstrated by marked decreases in urinary protein excretion and renal glomerular and interstitial damage. After 5 weeks of high-Na, compared with high-Na Dahl S rats, arterial pressure was unchanged in candesartan S rats, but creatinine clearance was increased. Therefore, candesartan reduced renal tissue Ang II, renal damage, infiltration of immune cells, cytokines, chemokines, and improved renal hemodynamics. These data suggest that intrarenal Ang II plays an important role in causing renal inflammation, which leads to renal cortical damage, proteinuria, and decreases in renal hemodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号