首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drug delivery systems (DDSs) show great application prospects in tumor therapy. So far, physical encapsulation and covalent grafting were the two most common strategies for the construction of DDSs. However, physical encapsulation-based DDSs usually suffered from low drug loading capacity and poor stability, and covalent grafting-based DDSs might reduce the activity of original drug, which greatly limited their clinical application. Therefore, it is of great research value to design a new DDS with high drug loading capacity, robust stability, and original drug activity. Herein, we report a super-amphiphile based drug delivery system (HBS-DDS) through self-assembly induced by hydrogen bonds between amino-substituted N-heterocycles of the 1,3,5-triazines and hydrophilic carmofur (HCFU). The resulting HBS-DDS had a high drug loading capacity (38.1%) and robust stability. In addition, the drug delivery system exhibited pH-triggered size change and release of drugs because of the pH responsiveness of hydrogen bonds. In particular, the anticancer ability test showed that the HBS-DDS could be efficiently ingested by tumor cells, and its half-maximal inhibitory concentration (IC50 = 3.53 μg mL−1) for HeLa cells was close to that of free HCFU (IC50 = 5.54 μg mL−1). The hydrogen bond-based DDS represents a potential drug delivery system in tumor therapy.

Drug delivery systems (DDSs) show great application prospects in tumor therapy.  相似文献   

2.
Here we report the design, synthesis and biological evaluation of surface-modified silica nanoparticles (SNP) for the delivery of camptothecin (CPT). Drug has been covalently linked to the nanoparticle through an ester bond with the 20-hydroxy moiety, in order to stabilize its lactone ring and to avoid unspecific release of the drug. The obtained material is highly stable in plasma, with low release of the cargo at physiological pH. Cell internalization and in vitro efficacy assays demonstrated that nanoparticles carrying CPT (SNP-CPT) entered cells via endocytosis and the intracellular release of the cargo induced cell death with half maximal inhibitory concentration (IC50) values and cell cycle distribution profiles similar to those observed for the naked drug. Further, in vivo biodistribution, therapeutic efficacy and biocompatibility of the SNP-CPT were evaluated in human colorectal cancer xenografts using in vivo fluorescence or bioluminescence optical imaging. In vivo tumor-accumulation and whole-body tissue distribution were carried out based on the acquisition of fluorescence emission of a fluorophore (Cy5.5) conjugated to the SNP-CPT, as well as by HPLC quantification of tissue CPT levels. The results showed that, although SNP-CPT tended to accumulate in organs of the reticulo-endothelial system, nanoparticles boost CPT concentration in tumor vs administration of the free drug. Accordingly, SNP-CPT treatment delayed the growth of subcutaneous tumors while significantly reducing the systemic toxicity associated with CPT administration. These results indicate that the SNP-CPT could be used as a robust drug delivery system for antitumoral treatments based on CPT.  相似文献   

3.
A series of novel nonviral vectors targeting the HER-2/neu gene product human epidermal growth factor receptor-2 (HER2) were constructed and evaluated in breast cancer cell lines to optimize vector formulation for receptor-specific gene transfer. These vectors were DNA/polycation complexes (polyplexes) prepared by mixing, at varying ratios, plasmid DNA carrying a luciferase reporter gene to HerPEI, which is a conjugate of linear polyethylenimine (PEI), a cationic polymer, and trastuzumab (Herceptin), a HER2-specific monoclonal antibody. Transfection studies were carried out in both HER2 overexpressing Sk-Br-3 and HER2 low-expressing MDA-MB-231 breast cancer cells. The HerPEI polyplexes showed significantly greater transfection activity up to 20-folds than nonderivatized PEI-based polyplexes in the Sk-Br-3 cells. The transfection efficiency of targeted polyplexes was dependent on the trastuzumab:PEI ratio and can be blocked by excess free trastuzumab, suggesting HER2-mediated gene delivery. In contrast, no significant difference in transfection activities was observed between HER2-targeted and nontargeted polyplexes in the HER2 low-expressing MDA-MB-231 cells. The transfection efficiency of HerPEI polyplexes was retained in serum-containing medium. In summary, HerPEI polyplexes have shown promising HER2 receptor-specific gene transfer properties and warrant further evaluation as a tumor-targeted vector for gene therapy.  相似文献   

4.
It was the aim of this study to develop a mucoadhesive, permeation enhancing delivery system for orally administered poorly absorbed drugs. Chitosan was modified by the immobilisation of thiol groups utilising 2-iminothiolane (Traut's reagent). The permeation enhancing effect of the resulting chitosan-4-thio-butylamidine conjugate (chitosan-TBA conjugate) in combination with the permeation mediator glutathione (GSH) was evaluated in Ussing chambers on freshly excised small intestinal mucosa from guinea pigs using rhodamine 123 as marker for passive drug uptake. The mucoadhesive properties of the chitosan-TBA conjugate adjusted to pH 3, 5 and 7 were evaluated via the rotating cylinder method and via tensile studies. Release studies were performed with tablets comprising 10% cefadroxil used as model drug, 10% GSH and 80% chitosan-TBA conjugate pH 3 in 100 mM phosphate buffer pH 6.8 at 37 degrees C. Results showed a 3-fold higher permeation enhancing effect of the chitosan-TBA conjugate/GSH system in comparison to unmodified chitosan. Mucoadhesion studies revealed that the lower the pH of the thiolated chitosan is, the higher are its mucoadhesive properties. Release studies showed a sustained release of both cefadroxil and GSH over several hours. This delivery system might represent a promising novel tool in order to improve the therapeutic efficacy of various drugs which are poorly absorbed from the gastrointestinal tract.  相似文献   

5.
Biodegradable nanoparticles loaded with insulin-phospholipid complex were prepared by a novel reverse micelle-solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of insulin, and biodegradable polymers as carrier materials to control drug release. Solubilization study, IR and X-ray diffraction analysis were employed to prove the complex formation. The effects of key parameters such as polymer/SPC weight ratio, organic phase and polymer type on the properties of the nanoparticles were investigated. Spherical particles of 200 nm mean diameter and a narrow size distribution were obtained under optimal conditions. The drug entrapment efficiency was up to 90%. The in vitro drug release was characterized by an initial burst and subsequent delayed release in both pH 6.8 and pH 1.2 dissolution mediums. The specific modality of drug release, i.e., free or SPC-combined, was investigated in the aid of ultracentrifugation and ultrafiltration methods. The influence of polymer type on the drug release was also discussed. The pharmacological effects of the nanoparticles made of PLGA 50/50 (Av.Mw 9500) were further evaluated to confirm their potential suitability for oral delivery. Intragastric administration of the 20 IU/kg nanoparticles reduced fasting plasma glucose levels to 57.4% within the first 8 h of administration and this continued for 12 h. PK/PD analysis indicated that 7.7% of oral bioavailability relative to subcutaneous injection was obtained.  相似文献   

6.
Camptothecin (CPT) and its water-insoluble derivatives are known as topoisomerase-I inhibitors exhibiting high antitumoral activity against a wide spectrum of human malignancies. Until now clinical application of CPT is restricted by insolubility and instability of the drug in its active lactone form resulting in less antitumor potency and poor bioavailability. For these reasons CPT-loaded-microspheres were prepared by the solvent evaporation method using the H-series of poly(D,L-lactide-co-glycolide) (H-PLGA), which contain more carboxylic acid end chains and hydrate faster than the non-H-series. At 1.2% CPT-payload the drug was molecular dispersed throughout the matrix whereas at higher CPT-payload the amount of crystalline CPT-islets increased with the CPT content. The release pattern of CPT was biphasic comprising a first burst effect delivering 20-35% of the payload and increasing with drug-loading. This phase was followed by sustained delivery of CPT releasing 40-75% of the payload within 160 h. In comparison to PLGA-microspheres, the CPT-release rate from H-PLGA was twofold higher and accelerated. The active CPT-lactone was maintained during preparation, storage and release due to hindered diffusion of acidic oligomers among other mechanisms. Thus stabilization and sustained release of CPT from PLGA-microspheres might reduce local toxicity combined with prolonged efficacy offering new perspectives in CPT chemotherapy.  相似文献   

7.
A novel pH-dependent gradient-release delivery system was developed by mixing three kinds of pH-dependent microspheres. Nitrendipine, a dihydropyridine calcium antagonist, was selected as the poorly water-soluble model drug. To obtain gradient-release of the active drug in the stomach, duodenum and lower segment of the small intestine, respectively, three kinds of pH-dependent polymers, i.e. Acrylic resins Eudragit E-100, Hydroxypropylmethylcellulose phthalate and Hydroxypropylmethylcellulose acetate succinate, were formulated to produce the microspheres, which dissolve at an acid condition, the pH of > or = 5.5 and > or = 6.5, respectively. The quasi-emulsion solvent diffusion method was employed in the manufacturing process for the microspheres. All three kinds of microspheres had a highly spherical shape and high incorporation efficiency (>91.0%). The particle sizes were mainly affected by the agitation speed and temperature of the manufacturing process. The results of X-ray diffraction suggested that nitrendipine in the microspheres was molecularly dispersed in an amorphous state. The drug dissolution behavior of the system under the simulated gastrointestinal pH conditions revealed obvious gradient-release characteristics. The dissolution profiles and content of the systems stored at a temperature of 40 degrees C and a relative humidity of 75% were unchanged during a 3-month period of accelerating storage conditions. The results of the bioavailability testing in six healthy dogs suggested that the pH-dependent gradient-release delivery system could improve efficiently the uptake of the poorly water-soluble drug and prolong the Tmax value in vivo.  相似文献   

8.
The purpose of the present study was to design a novel carrier system based on a mucoadhesive polymer exhibiting improved properties concerning drug delivery to the vaginal mucosa. This was reached by the covalent attachment of L-cysteine to commercially available polyacrylic acid (Carbopol 974P). Mediated by a carbodiimide, increasing amounts of L-cysteine were covalently linked to the polymer. The resulting thiolated polyacrylic acid conjugates (NaC974P-Cys) displayed between 24.8 and 45.8 micromol thiol groups per gram of polymer. Because of the formation of intra- and/or intermolecular disulfide bonds, the viscosity of an aqueous thiolated polymer gel (3%) increased about 50% at pH 7.0 within 1 h. In oscillatory rheological measurements, it was shown that this increase in viscosity is mainly due to the increase in elasticity. Tensile studies carried out on freshly excised cow vagina demonstrated a significant (P<0.05) increase in the total work of adhesion (TWA) compared to the unmodified polymer. An amount of 24.8 micromol thiol groups per gram of polymer resulted in a 1.45-fold increase in the TWA, whereas an amount of 45.8 micromol showed an even 2.28-fold increase. These improved mucoadhesive properties can be explained by the formation of disulfide bonds between the thiolated polymer and cysteine rich subdomaines of the mucus layer. The release rate of the model drug progesterone from tablets based on microcrystalline cellulose serving as the reference was approximately 1% per hour, whereas it was 0.58% per hour for the unmodified polymer (NaC974P) and 0.12% per hour for the thiolated polymer (NaC974P-Cys). Therefore, this thiolated polymer is a promising carrier for progesterone providing a prolonged residence time and a controlled drug release.  相似文献   

9.
喜树碱具有广谱抗癌活性,但其水溶性差和毒副作用大等缺点限制了其在临床上的使用。为使喜树碱类药物能够更好地应用于临床,除了喜树碱的结构修饰和改造,新型药物传递系统的应用使喜树碱的功能得以更好地发挥,亦成为研究热点之一。文章总结近年来喜树碱传递系统及功能发挥的研究进展,在增加药物水溶性、提高内酯环稳定性以及药物控释与靶向传递几个方面进行了文献综述。随着相关技术的不断完善和发展,喜树碱类药物将是极具发展前景的一类抗癌药物。  相似文献   

10.
Design of a liposome delivery system for vaginal administration of acyclovir, able to provide sustained release and improved bioavailability of the encapsulated drug for the local treatment of genital herpes was investigated. Acyclovir was encapsulated in liposomes prepared by the polyol dilution method, whereby various phospholipid compositions were used: egg phosphatidylcholin (PC)/egg phosphatidylglycerol (PG) 9:1, egg phosphatidylcholine (PC) and egg phosphatidycholine (PC)/stearylamine (SA) 9:3. All liposome preparations were characterized and compared for particle size, polydispersity, encapsulation efficiency and tested for in vitro stability in different media chosen to simulate human vaginal conditions: buffer, pH 4.5 (corresponding to normal human vaginal pH), vaginal fluid simulant (medium developed so as to mimic the fluid produced in the vagina) with or without mucin. To be closer to in vivo application of liposomes and to achieve further improvement of their stability, liposomes were incorporated in a vehicle suitable for vaginal self-administration. Bioadhesive hydrogel made from Carbopol 974P NF resin with adequate pH value and desirable viscosity was chosen as a vehicle for liposomes containing acyclovir. In vitro release studies of liposomes incorporated in the hydrogel proved their applicability as a novel vaginal delivery system with localized and sustained release of encapsulated acyclovir. Even after 24 h of incubation in vaginal fluid simulant more than 35% of the originally encapsulated drug was retained in the hydrogel.  相似文献   

11.
An array of pyridine appended 2-hydrazinylthiazole derivatives has been synthesized to discover novel chemotherapeutic agents for Mycobacterium tuberculosis (Mtb). The drug-likeness of pyridine appended 2-hydrazinylthiazole derivatives was validated using the Lipinski and Veber rules. The designed thiazole molecules have been synthesized through Hantzsch thiazole methodologies. The in vitro antimycobacterial studies have been conducted using Luciferase reporter phage (LRP) assay. Out of thirty pyridine appended 2-hydrazinylthiazole derivatives, the compounds 2b, 3b, 5b, and 8b have exhibited good antimycobacterial activity against Mtb, an H37Rv strain with the minimum inhibitory concentration in the range of 6.40–7.14 μM. In addition, in vitro cytotoxicity of active molecules has been observed against Human Embryonic Kidney Cell lines (HEK293t) using MTT assay. The compounds 3b and 8b are nontoxic and their cell viability is 87% and 96.71% respectively. The in silico analyses of the pyridine appended 2-hydrazinylthiazole derivatives have been studied to find the mode of binding of the active compounds with KasA protein of Mtb. The active compounds showed a strong binding score (−5.27 to −6.23 kcal mol−1).

Thirty novel pyridine-appended 2-hydrazinylthiazole derivatives have been synthesized and tested for their antimycobacterial activity against Mictrobactrium tuberculosis, H37Rv strain.  相似文献   

12.
This study reports on 'azo-polysaccharide gels', more specifically azo-inulin and azo-dextran gels, for colon drug delivery. Compared with azo-hydrogels which can be only degraded by reduction of the azo-groups, this study evaluates whether, in vitro, azo-polysaccharide gels can be degraded through both reduction of the azo-groups in the crosslinks as well as enzymatic break down of the polysaccharide backbone. The azo-polysaccharide gels were synthesized by radical crosslinking of a mixture of methacrylated inulin or methacrylated dextran and N,N'-bis(methacryloylamino)azobenzene (B(MA)AB) and were characterized by dynamic mechanical analysis and swelling measurements. Azo-dextran gels could be obtained from methacrylated dextran having low degree of substitution but not from lowly substituted methacrylated inulin. Increasing the amount of B(MA)AB resulted in denser azo-inulin and azo-dextran networks. Compared with their swelling in dimethylformamide, all azo-dextran gels became more swollen in water while azo-inulin gels shrank upon exposure to water, indicating a more hydrophobic character of the azo-inulin gels. Break down of the inulin and dextran chains in the azo-polysaccharide gels by inulinase and dextranase, respectively, was observed. However, the degradation of azo-dextran gels by dextranase seemed to be more pronounced than the degradation of the azo-inulin gels by inulinase. In rat caecal content medium, reduction of the azo function in azo-inulin gels was not observed. This may be attributed to a low partitioning of nicotinamide-adenine dinucleotide phosphate (NADP(+)) in the gels.  相似文献   

13.
A series of 1H-1,2,3-triazole-linked ospemifene-isatin and O-methylated ospemifene–isatin conjugates were synthesized and assayed for their anti-proliferative activities against estrogen-responsive as well as estrogen-non-responsive cells. The non-cytotoxic conjugate 14e, with an optimal combination of bromo substituents at the C-5/C-7 positions of isatin, proved to be a promising hit with an IC50 value of 31.62 μM against MCF-7 and 19.23 μM against MDA-MB-231. The observed anti-proliferative activities of active conjugates were further corroborated via docking studies carried out on estrogen receptor subtypes α and β.

A series of 1H-1,2,3-triazole-linked ospemifene–isatin and O-methylated ospemifene–isatin conjugates were synthesized and assayed for their anti-proliferative activities against estrogen-responsive as well as estrogen-non-responsive cells.  相似文献   

14.
A matrix-in-cylinder system for sustained drug delivery, consisting of a hot-melt extruded ethylcellulose (EC) pipe surrounding a drug containing HPMC-Gelucire 44/14 core, was evaluated in vitro and in vivo. In an aqueous medium, the HPMC-Gelucire core forms a gel plug, which releases the drug-through the open ends of the EC pipe--by means of erosion. The influence of hydrodynamic and mechanical stress and the effect of different 'physiologically relevant' dissolution media on the in vitro drug release were investigated. From these in vitro dissolution tests, it was concluded that the EC pipe has a protective effect on the drug containing HPMC-Gelucire core. It largely protects the core against hydrodynamics and mechanical stress. Furthermore, drug release from the matrix-in-cylinder system was only slightly affected by the composition of the dissolution medium. A randomised crossover in vivo study in dogs revealed that the matrix-in-cylinder system containing propranolol hydrochloride has an ideal sustained release profile with constant plasma levels maintained over 24 h. Moreover, administration of the matrix-in-cylinder system resulted in a 4-fold increase in propranolol bioavailability when compared with a commercial sustained release formulation (Inderal).  相似文献   

15.
Mycobacterium tuberculosis resistance to commercially available drugs is increasing day by day. To address this issue, various strategies were planned and are being implemented. However, there is a need for new drugs and rapid diagnostic methods. For this endeavour, in this paper, we present the synthesis of acetylene containing 2-(2-hydrazinyl) thiazole derivatives and in vitro evaluation against the H37Rv strain of Mycobacterium tuberculosis. Among the developed 26 acetylene containing 2-(2-hydrazinyl) thiazole derivatives, eight compounds inhibited the growth of Mycobacterium tuberculosis with MIC values ranging from 100 μg ml−1 to 50 μg ml−1. The parent acetylene containing thiosemicarbazones showed promising antimycobacterial activity by inhibiting up to 75% of the Mycobacterium at 50 μg ml−1. In addition, in silico studies were employed to understand the binding mode of all the novel acetylene-containing derivatives against the KasA protein of the Mycobacterium. Interestingly, the KasA protein interactions with the compounds were similar to the interactions of KasA protein with thiolactomycin and rifampicin. Cytotoxicity study results indicate that the compounds tested are non-toxic to human embryonic kidney cells.

In an attempt to find novel anti-mycobacterial agents, novel acetylene containing 2-(2-hydrazinyl)thiazole derivatives have been synthesized and evaluated against Mycobacterium tuberculosis.  相似文献   

16.
We have developed surface-shielded ligand-polycation based gene delivery systems which are able to target gene expression to distant tumors after systemic application. Tumor-specific targeting is achieved by (1) incorporation of cell-binding ligands; and (2) shielding of the complexes from non-specific interactions with blood components and non-target cells. Shielding of polycation/DNA complexes can be achieved by coating with either polyethylene glycol or by incorporating the ligand transferrin at high densities. Following systemic application, surface-shielded DNA complexes coding for a highly active, yet highly toxic cytokine, tumor necrosis factor-alpha (TNFalpha), localized gene expression to distant tumors, resulting in hemorrhagic tumor necrosis and inhibition of tumor growth. TNFalpha activity was confined to the tumor without systemic TNF-related toxicity. These results indicate that targeted gene delivery may be an attractive strategy to use highly potent molecules in cancer treatment.  相似文献   

17.
The influence of liposome composition, size, lamellarity and charge on the (trans)dermal delivery of tretinoin (TRA) was studied. For this purpose we studied both multilamellar (MLV) or unilamellar (UV) liposomes. Positively or negatively charged liposomes were obtained using either hydrogenated (Phospholipon90H) or non-hydrogenated soy phosphatidylcholine (Phospholipon90) and cholesterol, in combination with stearylamine or dicetylphosphate. Liposomal formulations were characterized by transmission electron microscopy (TEM) and optical and light polarized microscopy for vesicle formation and morphology, and by dynamic laser light scattering for size distribution. In order to obtain more information about the stability and the thermodynamic activity of the liposomal tretinoin, TRA diffusion through a lipophilic membrane was investigated. The effect of the vesicular incorporation of tretinoin on its accumulation into the newborn pig skin was also studied. The experiments were performed in vitro using Franz cells in occlusive conditions and were compared to three different controls. The tretinoin amount delivered through and accumulated in the several skin layers was detected by HPLC. Furthermore, TEM in combination with osmium tetroxide was used to visualize the skin structure after the liposomal administration. Overall obtained results showed that liposomes may be an interesting carrier for tretinoin in skin disease treatment, when appropriate formulations are used. In particular, negatively charged liposomes strongly improved newborn pig skin hydration and TRA retention, though no evidence of intact vesicle penetration was found.  相似文献   

18.
19.
20.
Flavonoids exhibit essential but limited biological properties which can be enhanced through chemical modifications. In this study, we designed, synthesized, and characterized two novel flavonoid derivatives, quercetin penta-acetamide (1S3) and apigenin tri-acetamide (2S3). These compounds were confirmed using (1H, 13C) NMR, UV-Vis, and FT-IR characterizations. Their interaction with fish sperm DNA (FS-DNA) at physiological pH was investigated by UV-Vis and fluorescence spectrophotometry. The binding constant (Kb) for the UV-Vis experiment was found to be 1.43 ± 0.3 × 104 M−1 for 1S3 and 2.08 ± 0.2 × 104 M−1 for 2S3. The binding constants (KSV) for the fluorescence quenching experiment were 1.83 × 104 M−1 and 1.96 × 104 M−1 for 1S3 and 2S3, respectively. Based on molecular modeling and docking studies, the binding affinities were found to be −7.9 and −9.1 kcal mol−1, for 1S3 and 2S3, respectively. The compound–DNA docked model correlated with our experimental results, and they are groove binders. Furthermore, mutagenicity potential was examined. 1S3 and its metabolites showed no mutagenic activity for both TA98 and TA100 strains. 2S3 did not show any mutagenic activity for the strain TA 98, while its metabolites were only active at high doses. Both 2S3 and its metabolites showed mutagenic activity in the TA100 strain.

The interaction of new molecules obtained by the design and synthesis of flavonoid derivatives by molecular docking with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号