首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Nisoldipine is a calcium channel blocker with low and variable oral bioavailability. This was attributed to slow dissolution and presystemic metabolism. Accordingly, the objective of this work was to enhance the dissolution rate of nisoldipine to formulate fast disintegrating tablets with rapid dissolution. Binary solid dispersions (SD) were prepared for the drug with hydroxypropyl methyl cellulose E5 (HPMC), polyvinylpyrrolidone (PVP), Pluronic F68 or polyethylene glycol 6000 (PEG 6000). SD formation increased the dissolution rate compared to pure drug with the corresponding physical mixtures failing to provide the same dissolution enhancement. This indicates that the SD enhanced dissolution is not due to the solubilizing effect of the polymer and can be due to physical change in the drug crystal which was confirmed by thermal analysis. SD with HPMC and PVP were selected for preparation of fast disintegrating tablets as they liberated most of the drug in the first 5?min. HPMC-based tablets disintegrated rapidly and released most of the drug in the first 2?min which correlated with the corresponding SD. In contrast, PVP-based tablets disintegrated slowly with gradual dissolution. This can be attributed to the binding effect of PVP. The study developed fast disintegrating tablet for intra-oral administration.  相似文献   

2.
The purpose of the present investigation was to achieve successful delivery specifically to the colon using guar gum as a compression coat over a core tablet of triphala. In this study, guar gum along with hydroxy propyl methyl cellulose (HPMC) was used as a compression‐coating polymer. The drug delivery system was based on the gastrointestinal transit time concept, assuming colon arrival time to be 6 h. Rapidly disintegrating core tablets containing 100‐mg triphala extract were compression coated with guar gum and HPMC. A 32 full factorial design was applied for optimization of the formulation. Both variables, the proportion of guar gum in polymer blend (X1) and coat weight of the tablet (X2), had an influence on the percent drug release after 4 h of dissolution of tablet in the presence of rat cecal content (Y240) and difference in percent drug release between 4 h and 10 h of dissolution of tablet in the presence of rat cecal content (YD).The results revealed that for protecting the rapidly disintegrating core of triphala in the physiological conditions of stomach and upper intestine, the core tablet should be coated with 50% of guar gum in coat formulation and higher coat weight. The proportion of guar gum exhibited predominant action as compared to coat weight. In vivo performance was assessed via an x‐ray roentgenography study by placing barium sulfate as an x‐ray opaque material instead of triphala. The guar gum–HPMC coating was found to be a promising drug delivery system for drugs such as triphala and sennosides to be delivered to the colon. Drug Dev. Res. 65:34–42, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

3.
《Drug delivery》2013,20(4):307-314
Abstract

The main aspire of this study was to develop ocular drug delivery system for dual drug glaucoma therapy by timolol maleate–brimonidine tartrate and endeavor the possibility of biocompatibility studies by in ova studies. Matrix type, both hydrophilic and lipophilic polymers, and reservoir-type ocular inserts of timolol maleate were prepared using hydrophilic polymers like polyvinyl alcohol, hydroxyl propyl methyl cellulose K4M and lipophilic polymers like ethylcellulose and eudragit S100 and were optimized. Based on the optimized formulation, triple-layered ocular inserts (reservoir type) of dual drug were prepared by solvent casting technique with an objective of reducing the frequency of administration, obtaining controlled release and greater therapeutic efficacy, preservative free dosage form for the treatment of glaucoma. FTIR spectral studies revealed no pharmaceutical incompatibility and no drug polymer interactions. Maximum drug release (99.18?±?1.7) was achieved when PVP and HPMC K4M in 1:1 ratio with PEG 400 (0.3?ml) drug reservoir layer was sandwiched between ethyl cellulose as rate control membrane up to 32?h in a controlled fashion. Drug release was by non-Fickian diffusion mechanism for single drug formulation. But in dual drug insert, timolol maleate best fit into zero order and for brimonidine tartrate to Higuchi model and diffusion of drugs from this by non-Fickian diffusion mechanism. In ovo studies suggested that the optimized formulation was found to be sterile, biocompatible and physicochemically stable and support us to claim that the developed formulation was biocompatible.  相似文献   

4.
The present study is an attempt to formulate a controlled-release matrix tablet formulation for alfuzosin hydrochloride by using low viscous hydroxy propyl methyl cellulose (HPMC K-100 and HPMC 15cps) and its comparison with marketed product. Different batches of tablets containing 10 mg of alfuzosin were prepared by direct compression technique and evaluated for their physical properties, drug content, and in vitro drug release. All the formulations had a good physical integrity, and the drug content between the batches did not vary by more than 1%. Drug release from the matrix tablets was carried out for 12 hr and showed that the release rate was not highly significant with different ratios of HPMC K-100 and HPMC15cps. Similar dissolution profiles were observed between formulation F3 and the marketed product throughout the study period. The calculated regression coefficients showed a higher r2 value with zero-order kinetics and Higuchi model in all the cases. Although both the models could be applicable, zero-order kinetics seems to be better. Hence, it can be concluded that the use of low viscous hydrophilic polymer of different grades (HPMC K-100 and HPMC 15cps) can control the alfuzosin release for a period of 12 hr and was comparable to the marketed product.  相似文献   

5.
The eyes present unique opportunities and challenges when it comes to the delivery of pharmaceuticals.While absorption by this route is bungling,there are a few side effects with conventional dosage forms.Ocular inserts were prepared with prolonged release of drug and minimum swelling within cul-de-sac using aceclofenac.The work focused on treatment of conjunctivitis and cataracts by formulating ocular inserts of different polymeric combination of aceclofenac using hydroxypropyl methyl cellulose(HPMC,3% to 5%),chitosan(3% to 5%),poly vinyle alcohol(PVA,3% to 5%),methyl cellulose(MC,3% to 5%) as drug reservoir and ethyl cellulose(EC) polymer as rate controlling membrane by solvent casting technique with the objective of increasing contact time,achieving controlled release and greater therapeutic efficiency.The prepared ocular insert were then evaluated for physical appearances tensile strength,elongation at break(%),weight variation,uniformity of thickness,moisture absorption(%),pH,folding endurance,Fourier Transform Infrared spectroscopy,differential scanning calorimetry.Physicochemical characterization and in vitro transcorneal permeation studies reveals that,the prepared ocular insert formulations F2 and F8 containing HPMC and PVA had released their drug content,98.54% and 96.24%,respectively,over an extended period of 24 h.Hence these formulations were selected as best optimized formulations.It can be concluded that hydroxy propyl methyl cellulose is a good film forming hydrophilic polymer which shows potential agent for ocular drug delivery system.Incorporation of polyethylene glycol enhances the permeability of aceclofenac ocular insert and has perfect zero order release,proving a promising controlled release delivery system.  相似文献   

6.
The present study is an attempt to formulate a controlled-release matrix tablet formulation for alfuzosin hydrochloride by using low viscous hydroxy propyl methyl cellulose (HPMC K-100 and HPMC 15cps) and its comparison with marketed product. Different batches of tablets containing 10 mg of alfuzosin were prepared by direct compression technique and evaluated for their physical properties, drug content, and in vitro drug release. All the formulations had a good physical integrity, and the drug content between the batches did not vary by more than 1%. Drug release from the matrix tablets was carried out for 12 hr and showed that the release rate was not highly significant with different ratios of HPMC K-100 and HPMC15cps. Similar dissolution profiles were observed between formulation F3 and the marketed product throughout the study period. The calculated regression coefficients showed a higher r2 value with zero-order kinetics and Higuchi model in all the cases. Although both the models could be applicable, zero-order kinetics seems to be better. Hence, it can be concluded that the use of low viscous hydrophilic polymer of different grades (HPMC K-100 and HPMC 15cps) can control the alfuzosin release for a period of 12 hr and was comparable to the marketed product.  相似文献   

7.
Dipyridamole (DPL) is a weakly basic BCS class II drug which precipitates upon entering into intestine leading to pH dependant and variable absorption. Thus, research envisaged focuses on developing formulations that maintain supersaturation following upon acid to neutral pH transition. In an endeavor to accomplish the objective, solid dispersion (SD) with hydroxypropylmethyl cellulose (HPMC) and polyvinylpyrrolidone (PVP) was prepared by a quench cooling method. The three molecular weight grades of HPMC (HPMC E5, HPMC E15 and HPMC E50) and two molecular weight grades of PVP (PVP K30 and PVP K90) were investigated to observe effect of increasing molecular weight on stabilizing DPL supersaturated solutions. Equilibrium solubility studies revealed increase in solubility with both HPMC and PVP with greater benefit from HPMC. In vitro supersaturated dissolution results demonstrated that HPMC formulations provided greater degree and extent of supersaturation as compared to PVP formulations. The formulation with HPMC E50 provided maximum stabilization to supersaturation upon acid to neutral pH transition. Moreover, the effect of increase in molecular weight was more pronounced in HPMC rather than PVP. Stronger interactions were observed for DPL with HPMC, while no interaction was observed with PVP which was evident from Fourier transform infra-red studies. Differential scanning calorimetry and powder X-ray diffraction studies revealed the amorphous state of DPL in SD.  相似文献   

8.
Three factors, three levels (33) full factorial design was used to develop venlafaxine HCl fast dissolving oral films (FDOFs) to optimize the concentrations of the film forming polymer; hydroxypropyl methylcellulose HPMC (X1), superdisintegrant; sodium starch glycolate SSG, (X2) and glycerol as the film plasticizer (X3). Effects of the three factors on the disintegration time (Y1), swelling index (Y2), and dissolution efficiency at 15 min; DE%15 (Y3) of the prepared FDOFs were evaluated by using statistical models. The optimized film formula was characterized in term of x-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and morphological characteristics.Disintegration time was found to increase with the increase in HPMC (X1) concentration, and the shortest disintegration time (21.67 ± 2.08 s) was observed in case of F2 formula (lowest HPMC level and highest glycerol level in absence of SSG). The highest swelling index (3.64 ± 0.59) was observed in case of film formula F1 (medium concentrations of both HPMC and glycerol and highest SSG concentration. The results also indicated that as the concentration of HPMC increased the DE%15 decreased. SSG (X2), with highest value (72.33 ± 1.71%) was recorded for in case of F12 (using 2% HPMC, 5%SSG and 1.5% glycerol). The optimized FDOF formula derived by the statistical models suggested 2% HPMC, 5% SSG, and 1% glycerol.The data obtained from DSC and XRPD revealed no interaction between drug and FDOT excipients. In addition, XRPD studies proved that the venlafaxine HCl was homogeneously dispersed in the film matrix.  相似文献   

9.
In this research, the effect of mucoadhesive polymers such as hydroxyl propyl methyl cellulose (HPMC) with viscosity grade 60 and 500 mPas, sodium carboxy methyl cellulose (NaCMC) and carbopol 934 (Cp 934) alone or in combination with each other on the release profile of prednisolone was studied and mucoadhesion strength of these buccoadhesive formulations was evaluated. The results showed that the release of prednisolone from HPMC with viscosity grade 60 mPas and Cp 934 alone was fast and their mucoadhesion strengths was low. On the other hand, the release rates of prednisolone from the HPMC viscosity grade 500 mPas and NaCMC and mucoadhesion strengths were moderate and suitable. The results showed that with different blends of HPMC viscosity grade 500 mPas or NaCMC and Cp 934 with increasing in HPMC or NaCMC/Cp 934 ratio a remarkable decrease in the rate of drug release and an appreciable increase in the mucoadhesion strength was observed. Except from the formulations prepared with HPMC viscosity grade 60 and 500 mPas, other formulation had more fluctuations in release profiles and their kinetics of release were not fitted to zero order model.  相似文献   

10.
目的 制备一种新型利格列汀双层缓释片,并考察其体外释放行为。方法 以羟丙基甲基纤维素(hydroxyl propyl methyl cellulose,HPMC)为骨架材料、黄原胶为黏合剂,采用单因素设计筛选处方,进行利格列汀双层缓释片的制备,并绘制处方在pH 6.80介质中的体外溶出曲线;采用常规Ritger-Peppas、Higuchi、一级、零级释放曲线方程进行拟合,分析样品释药原理。结果 经优化后的样品由含药缓释层和含药速释层构成。缓释层由主成分利格列汀3 mg、缓释骨架材料HPMC(型号:K4M及K100M,用量均50 mg)、填充剂微晶纤维素100 mg、凝胶缓释基质黄原胶15 mg、润滑剂硬脂酸镁1 mg组成;速释层由主成分利格列汀2 mg、填充剂微晶纤维素10 mg、崩解剂交联聚乙烯吡咯烷酮15 mg、润滑剂硬脂酸镁1 mg组成。最终结果与零级释放方程匹配度最高,极具相关性,拟合结果r2无限接近于1。结论 成功制得利格列汀双层缓释片,并实现零级释放。  相似文献   

11.
The present work is aimed to develop new oral drug delivery systems of 5-fluorouracil for the treatment of colorectal cancer by using hydrophilic swellable polymer hydroxy propyl methyl cellulose (HPMC) and pH responsive soluble polymer Eudragit L100 (ED) as coating materials. Core tablets containing 50mg of 5-fluorouracil were prepared by direct compression. The core tablets compression coated with different ratios (9:1, 8:2, 7:3, 6:4 and 5:5) of HPMC and ED with a coat weight of 300 and 400mg. All the formulations were evaluated for the hardness, friability, drug content uniformity and in vitro drug release studies in media of different pH 1.2, 7.4 and 6.8. The formulations released 0 to 7% of the drug in physiological environment of stomach and small intestine depending upon proportion of HPMC and ED used in the coat. Among the different ratios used for coating with HPMC:ED combination, ratio 9:1 gave the best release profile with the coat weight of 300mg (1.34% in the initial 5h and 87% in 24 h). Further increase in the coat weight to 400mg with different ratios of 9:1, 8:2, 7:3, 6:4 and 5:5 led to drug release of 0%, 0%, 0%, 3.47% and 6.25%, respectively in the initial 5 h and 73.52%, 87.03%, 92.18%, 96.33% and 97.61%, respectively, in 24 h. Thus, based on the results of in vitro drug release studies, the ratio 7:3 with a coat weight of 400mg was found to be suitable for targeting 5-fluorouracil to the colon without being released in physiological environment of stomach and small intestine. The formulation showed no change in physical appearance, drug content or in vitro release pattern after storage at 40° C / 75% RH for 3 months. The release of 5-fluorouracil from developed formulation was directly proportional to amount of ED used in the coat. The DSC and FTIR studies indicated no possibility of interaction between 5-fluorouracil and excipients.  相似文献   

12.
The aim of this study was to formulate cost effective taste-masked orally disintegrating tablets of ondansetron, a bitter drug using different superdisintegrants by a wet granulation technique. Microcrystalline cellulose (Avicel) as a diluent and disintegrant in addition to aspartame as a sweetener were used in all formulations. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. The tablets’ hardness was maintained in the range of 2–3 kg and friability was <1% for all batches. All tablet formulations disintegrated rapidly in vitro within 5.83 to 33.0 sec. The optimized formulation containing 15% Polyplasdone XL-10 released more than 90% of drug within 5 min and the release was comparable to that of a commercial product. In human volunteers, optimized formulation was found to have a pleasant taste and mouth feel and they disintegrated in the oral cavity within 12 sec. The stability results were also satisfactory. A pharmacokinetic study with the optimized formulation was performed in comparison with a reference (Zofer MD 8®) and they were found to be bioequivalent. In conclusion, a cost effective ondansetron orally disintegrating tablet was successfully prepared with acceptable hardness, desirable taste and rapid disintegration in the oral cavity.  相似文献   

13.
The aim of this investigation was to develop gastroretentive mucoadhesive tablets of cephalexin, which will retain in the stomach for 10?h. Cephalexin, a first-generation cephalosporin, becomes ionized in intestinal pH because pKa is 4.5 and thus reducing its bioavailability. The various batches were prepared by wet granulation method using variety of mucoadhesive polymers such as hydroxyl propyl methyl cellulose K4M, hydroxyl propyl cellulose, chitosan, carbopol 934P and sodium carboxymethylcellulose and subjected to various evaluation parameters such as mucoadhesive strength, in vitro drug release profile, swelling characteristics and physical properties. It was evident from the study that the formulation containing HPMC K4M and carbopol 934P in combination exhibited maximum mucoadhesive strength of 144.42?gms, in vitro residence time was 8.73?h and in vitro drug release was found to be 75.03% in 10?h with non-Fickian diffusion mechanism. So, the optimized formulation F2 was further subjected to in vivo retention time in rabbit by X-ray technique, SEM and Accelerated stability studies. Regarding all the properties evaluated, the formulation containing HPMC K4M and carbopol 934P in combination was found to be the best to achieve the aim of this study.  相似文献   

14.
Abstract

Orally fast disintegrating tablets (FDTs or ODTs) have received ever-increasing demand during the last decade, and the field has become a rapidly growing area in the pharmaceutical industry. Upon introduction into the mouth, these tablets dissolve or disintegrate in the mouth in the absence of additional water for easy administration of active pharmaceutical ingredients. Although the FDT area has passed its infancy, as shown by a large number of commercial products on the market, there are still many aspects to improve in the FDT formulations. Despite advances in the FDT technologies, formulation of hydrophobic drugs is still a challenge, especially when the amount of drug is high. In this study, a new solution is being developed to incorporate higher doses of a model hydrophobic drug; meloxicam, without affecting the fast disintegrating properties of the formulation. In order to enhance the solubilization of meloxicam in FDT formulations, β cyclodextrin inclusion complex of the drug is prepared and FDTs containing meloxicam--β cyclodextrin inclusion complex (F1 A and F2 A) were compared and evaluated with the FDTs containing pure meloxicam (F1 and F2) by means of in vitro quality control tests.  相似文献   

15.

Background and the purpose of the study

Sertraline hydrochloride is a selective serotonin reuptake inhibitor principally used in the treatment of major depressive disorder. To maintain the therapeutic plasma drug concentration of the drug for prolonged period, the transdermal drug delivery has been chosen as an alternative route of drug delivery. The pharmacokinetic properties of sertraline hydrochloride make it suitable for transdermal delivery. The purpose of the study was to investigate the effect of polymers and penetration enhancers on the transdermal delivery of the drug in order to improve its therapeutic efficacy.

Methods

In the preparation of films, Eudragit RL 100, Eudragit RS 100, hydroxy propyl methyl cellulose (HPMC) and ethyl cellulose were used as polymers. The films were characterized for thickness, tensile strength, drug content, moisture uptake, moisture content, water vapor transmission rate and drug release. The films exhibiting higher rates of drug release were subjected to study the effect of oleic acid and propylene glycol as penetration enhancers on skin permeation of sertraline hydrochloride. In vivo and skin irritation studies were performed for the optimized film.

Results

Films containing Eudragit RL 100, Eudragit RL 100 and HPMC showed the highest drug release of 94.34% and 96.90% respectively in a period of 42 hrs. The release data fitted into kinetic equations, yielded zero-order and fickian mechanism of drug release. There was a two-fold increase in skin permeation of sertraline hydrochloride in the presence of penetration enhancers in the film. The physical evaluation indicated the formation of smooth, flexible and translucent films. No skin irritation occurred on rabbit skin and the infrared studies showed the compatibility of the drug with the formulation excipients. The in vivo study revealed a constant plasma concentration of drug for long periods and the films containing penetration enhancers had achieved adequate plasma levels of the drug.

Conclusions

The obtained results indicated the feasibility for transdermal delivery of sertraline hydrochloride using eudragit RL 100 and HPMC.  相似文献   

16.
The research undertaken exemplifies the effects of hydroxypropyl methylcellulose (HPMC) molecular weight (MW) grades of on lag time of press-coated ethylcellulose (EC) tablets. The formulation comprised an immediate release core (containing prednisone as a model drug) surrounded by compression coating with variegated EC-HPMC blends. Five selected HPMC grades (E5, E15, E50, K100LV and K4M) were explored at three different concentrations (10% w/w, 20% w/w and 30% w/w in outer coat) to understand their effects on lag time and drug release. In vitro drug release testing demonstrated that, with increase in concentration of E5 and E15, up to 30% w/w, the mean lag time decreased progressively; whereas with remaining grades, the mean lag time initially decreased up to 20% w/w level and thereafter increased for 30% w/w level. Importantly, with increase in HPMC concentration in the outer coat, the variability in lag time (%RSD; n?=?6) was decreased for each of E5, E15 and E50, whereas increased for K100LV and K4M. In general, the variability in lag time was increased with increase in HPMC MW at studied concentration levels. Markedly, tablets with 30% w/w K4M in outer coat exhibited slight premature release (before the rupture of outer coat) along with high variability in lag time. Overall, the study concluded that low MW HPMCs (E5, E15 and E50) were found rather efficient than higher MW HPMCs for developing robust EC-based press-coated pulsatile release formulations where precise lag time followed by sharp burst release is desired.  相似文献   

17.
刘明  王慧森  任孝德  李更生 《中国药师》2007,10(11):1065-1067
目的:考察清开灵分散片的制备工艺和最优处方。方法:以分散时间为考察指标,采用正交设计试验对清开灵分散片处方进行筛选。结果:以微晶纤维素为填充剂,微粉硅胶为助流剂,硬脂酸镁为润滑剂,3%的交联聚乙烯吡咯烷酮、6%的低取代羧丙基纤维素和5%的羧甲基淀粉钠为崩解剂,湿法制粒制备分散片。结论:本法研制的清开灵分散片处方合理,工艺可行。  相似文献   

18.
The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.  相似文献   

19.
Solid dispersion formulations made up of d-alpha-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000) and polyvinyl pyrrolidone co-vinyl acetate 64 (PVPVA 64) or hydroxy propyl methyl cellulose 2910 (HPMC 2910) were developed in order to improve the dissolution of UC 781. UC 781 dissolution rate was markedly improved as compared to the physical mixtures and the pure drug, attaining maximum drug releases of up to 100% after only 5 min in the case of TPGS 1000-UC 781-PVPVA 64 solid dispersions and 30 min in TPGS 1000-UC 781-HPMC 2910. The increased UC 781 dissolution rate could be maintained when formulating UC 781 in PVPVA 64 tablets. The latter disintegrated in only 4 min, reaching drug releases of up to 90% (w/w). In addition, as opposed to the corresponding solid dispersions, no decrease in drug release occurred upon dissolution of PVPVA 64 tablets when the pH was increased to 6.8. Contrary to the PVPVA 64 tablet formulations, HPMC 2910 tablets showed a slow dissolution process due to the gelling nature of the polymer. The drug was slowly released as HPMC 2910 dissolved in the medium, however also in this case 90% (w/w) of the drug was dissolved after 4 h. Both polymers formed compatible blends in combination with the drug. Thermal analysis of the ternary mixtures revealed eutectic behavior exhibiting an extremely fine dispersion of the drug in the carrier. This was confirmed by the fact that no drug crystals could be detected using X-ray diffraction (XRD). As opposed to the physical mixtures, PVPVA 64 and HPMC 2910 solid dispersions did not contain any isolated polymer-rich phases, hence showed improved homogeneity. Amorphous TPGS 1000 clusters occurred in PVPVA 64 and HPMC 2910 formulations upon addition of at least 10% (w/w) UC 781, showing extremely low glass transition temperatures depending of the thermal history of the samples.  相似文献   

20.
Vaginal fluconazole (FLZ) prolonged release tablets containing chitosan in physical blends with other bioadhesive polymers were designed. Chitosan was mixed with hydroxypropyl methylcellulose (HPMC), guar gum or sodium carboxymethyl cellulose (NaCMC) at different ratios and directly compressed into tablets. In-vitro release profiles of FLZ were monitored at pH 4.8. Compressing chitosan with HPMC at different ratios slowed FLZ release, however, time for 80% drug release (T80) did not exceed 4.3?h for the slowest formulation (F11). Adding of chitosan to guar gum at 1:2 ratio (F3) showed delayed release with T80 17.4?h while, in presence of PVP at 1:2:1 ratio (F5), T80 was 8.8?h. A blend of chitosan and NaCMC at 1:2 ratio (F15) showed prolonged drug release with T80 11.16?h. Formulations F5 and F15 showed fair physical characteristics for the powder and tablets and were subjected to further studies. Fast swelling was observed for F15 that reached 1160.53?±?13.02% in 4?h with 2?h bioadhesion time to mouse peritoneum membrane compared with 458.83?±?7.09% swelling with bioadhesion time exceeding 24?h for F5. Extensive swelling of F15 could indicate possible dehydration effect on vaginal mucosa. Meanwhile, antifungal activity against C. albicans was significantly high for F5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号